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Abstract. The weak lensing effects are known to change
only weakly the shape of the power spectrum of the Cos-
mic Microwave Background (CMB) temperature fluctu-
ations. I show here that they nonetheless induce specific
non-Gaussian effects that can be detectable with the four-
point correlation function of the CMB anisotropies. The
magnitude and geometrical dependences of this correla-
tion function are investigated in detail. It is thus found to
scale as the square of the derivative of the two-point corre-
lation function and as the angular correlation function of
the gravitational displacement field. It also contains spe-
cific dependences on the shape of the quadrangle formed
by the four directions.

When averaged at a given scale, the four-point func-
tion, that identifies with the connected part of the fourth
moment of the probability distribution function of the lo-
cal filtered temperature, scales as the square of logarith-
mic slope of its second moment, and as the variance of the
gravitational magnification at the same angular scale.

All these effects have been computed for specific cos-
mological models. It is worth noting that, as the amplitude
of the gravitational lens effects has a specific dependence
on the cosmological parameters, the detection of the four-
point correlation function could provide precious comple-
mentary constraints to those brought by the temperature
power spectrum.

Key words: Cosmology: Dark Matter, Large-Scale Struc-
tures, Gravitational Lensing, Cosmic Microwave Back-
ground

1. Introduction

A robust prediction of inflationary scenarios is that the
temperature fluctuations of the Cosmic Microwave Back-
ground (CMB) are expected to obey Gaussian statistics.
Actually this prediction has been challenged recently by

Send offprint requests to: F. Bernardeau; fbernardeau@cea.fr

several authors (Falk, Rangarajan & Srednicki 1993, Mun-
shi, Souradeep & Starobinsky 1995) who calculated the
skewness induced by nonlinear couplings in the primary1

stage of the temperature fluctuation generation. The skew-
ness induced at this level has been found, however, to
be entirely negligible compared to the cosmic variance,
and thus not accessible to detections. Therefore, the pri-
mary temperature maps are entirely defined, in a statisti-
cal sense, by the power spectrum of the temperature fluc-
tuations or equivalently by the shape of the two-point cor-
relation function. A number of other statistical indicators
are thus set up by this a priori hypothesis. In particu-
lar Bond & Efstathiou (1987) have investigated expected
properties of such temperature maps, as the number den-
sity of temperature peaks, their correlation functions...
Moreover, the exploration of the CMB physics has been
boosted recently after it has been realized that it would
be possible to determine all the cosmological parameters
with a remarkable precision from an accurate, and acces-
sible, measurement of the temperature power spectrum
(Jungman et al. 1996). In particular, the effects of the
secondary sources of temperature fluctuations (Sunyaev-
Zel’dovich effects, nonlinear Doppler effects, lenses..) and
foregrounds (point sources, galactic dust) on the power
spectrum have been investigated in more details (see Co-
bras/Samba report, 1996, for a general discussion on these
problems). These calculations have shown that most, if not
all, of these effects have a relatively small impact on it. In
these calculations, however, the impact of secondary ef-
fects on the Gaussian nature of the temperature field has
not been considered. Particularly interesting are the the
higher order correlation functions that are identically zero
for Gaussian fields, and are thus direct indicators of any,
even small, non-Gaussian features.

In this paper the calculations will be focused on the ef-
fects of weak-lensing on CMB maps. They, indeed, consti-
tute a particularly attractive mechanism because it comes

1 “primary” means the anisotropies induced on the last scat-
tering surface by either potential fluctuations, Doppler effects
or photon density fluctuations, not taking into account the sec-
ondary effects nor the foregrounds.

http://arxiv.org/abs/astro-ph/9611012v2
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from a coupling between the primary temperature fluctu-
ation field and the mass concentration on the line of sight
acting as deflectors. Their impact on the power spectrum
has been investigated primarily by Blanchard & Schneider,
(1987) who found the effect to be negligible. More recent
works (Kashlinsky 1988, Cole & Efstathiou 1989, Sasaki
1989, Tomita & Watanabe 1989, Linder 1990, Cayón,
Mart́ınez-González & Sanz 1993a, b, Fukushige, Makino
& Ebisuzaki 1994, Seljak 1996) eventually confirmed this
conclusion, although the point was debated for a while.
In particular Seljak (1996) made a detailed calculations of
these effects for realistic models of CMB anisotropies and
using a semi-analytic calculation based on a power spec-
trum approach that includes nonlinear corrections. In this
text I will follow a rather similar approach to investigate
the apparition of non-Gaussian features caused by weak
lensing effects.

In section 2, I present the basis of the physical mecha-
nisms describing the CMB map deformations induced by
weak lensing effects. In Section 3, I give the explicit ex-
pression of the first non-vanishing correlation function, the
four-point, in different remarkable geometries. In Section
4, quantitative predictions are given for two different cos-
mological models. The dependence of the results on the
cosmological parameters, and the practical interests that
such a measurement could have, are discussed in the last
section.

2. Weak Lensing Effects on CMB Maps

2.1. The Basis of the Physical Mechanism

The effect of a gravitational lens is to induce a displace-
ment of the light path, thus moving the apparent position
of a sky patch on the last scattering surface by a given
angle. The temperature of this patch is not affected itself,
i.e. lenses do not created new structures, and a perfectly
isotropic sky would remain so. The patch of the sky ob-
served at the position γobs. is thus actually coming from
the position γprim. on the “primordial sky”, and the dis-
placement, δγ, is induced by the mass concentration on
the line of sight. More precisely δγ is given by the trans-
verse derivative of the projected potential φ of the mass
fluctuations,

δγ ≡ γprim.(γ)− γobs.(γ)

= 2

∫ χCMB

0

dχ
D0(χCMB, χ)

D0(χCMB)
∇⊥φ(χ), (1)

where D0 is the angular distance, χ is the distance of the
lenses along the line of sight and χCMB is the distance of
the last scattering surface (see Kaiser 1992, Seljak 1996,
Bernardeau, van Waerbeke & Mellier 1996 for more details
on this equation). It is interesting to rewrite this equation
in terms of the Fourier transform of the mass density fluc-

tuation field. The Fourier transforms δ(k) are defined by,

δ(γ, χ) =

∫

d3k

(2 π)3/2
D+(χ) δ(k)×

exp [iD0 k⊥ · γ + ikr χ] , (2)

where the linear growth factor D+(χ) and the Fourier
transforms are normalized to the present time. Then the
potential reads,

φ(γ, χ) =
3

2
Ω0

D+(χ)

a(χ)

∫

d3k

(2 π)3/2
δ(k)

k2
×

exp [iD0 k⊥ · γ + ikr χ] (3)

which implies that the displacement can be written,

δγ =

∫ χCMB

0

dχ w(χ)

∫

d3k

(2 π)3/2
× (4)

ik⊥

k2 D0(χ)
δ(k) exp [iD0(χ)k⊥ · γ + ikr χ] ,

with

w(χ) = 3Ω0

D0(χCMB − χ)D0(χ)

D0(χCMB)

D+(χ)

a(χ)
. (5)

The function w(χ) gives the efficiency function of lenses
for sources located on the last scattering surface. It will
be investigated in more details in the last section.

Note that in the following I will amply use the small
angle approximation. It implies in particular that a given
patch of the sky can be decomposed in flat waves and also
that, in moment calculations, the component of k along
the line of sight can be neglected compared to the norm
of k⊥.

2.2. The Effects on CMB Maps

Compared to detections on background galaxies, the in-
vestigation of lens effects on the last scattering surface
is very attractive, because this surface is at a well de-
fined redshift, and has a negligible width. The analysis of
the lens effects requires however more sophisticated tools
since the induced shear cannot be directly measured. The
primordial temperature patches on the CMB sky are in-
deed known only statistically and have a large angular
correlation length. In which way, then, can the lens effects
be revealed? Actually lensed CMB maps can be seen as
collections of temperature patches of different sizes and
shapes, which or only a fraction of which are displaced
or deformed. Although this is slightly arbitrary, two ef-
fects can be distinguished in the way sizes and shapes of
patches are affected,

– the shear effect that deforms, stretches out tempera-
ture patches in the shear direction,

– the magnification effect that globally enlarges or
shrinks those patches.
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The local deformations of the temperature patches are
however a priori difficult to disentangle from the actual
primordial intrinsic temperature fluctuations2. What will
make then the effects detectable is the fact that close

patches will be deformed in a similar way (when they are
seen through a unique lens), and the excess of these close
rare features cannot be accounted from a Gaussian field.
It is thus possible to quantify their presence by statistical
indicators. The power spectrum is of course not adapted
to take into account the apparition of such non-Gaussian
features. For that matter the high-order correlation func-
tions, that are all identically zero for pure Gaussian fields,
are extremely precious. Indeed these higher-order corre-
lation functions contain informations about shapes, and
their derivations can be pursued completely with Pertur-
bation Theory techniques. In the following I focus my
analysis on the first non vanishing correlation function,
the four-point one.

3. The Effects of Weak Lensing on Temperature
Correlation Functions

3.1. Statistical Properties

From the first equation it is easy to see that the tempera-
ture, δobs.T , observed in the direction γ is in fact the unaf-

fected temperature δprim.
T coming from a slightly changed

direction,

δobs.T (γobs.) = δprim.
T (γprim.) = δprim.

T (γobs. + δγ). (6)

In the following I assume that the displacement is small
compared to the angular scale at which the observations
are made. This is a fair assumption since the displacement
is at most of 1′ (for cores of clusters) and that the angular
resolution of the future satellite missions does not go below
10′. As a result it is always possible to expand the relation
(6) with respect to the displacement,

δobs.T (γ) = δprim.
T (γ) +

∂

∂γi

δprim.
T (γ)δγi +

∂2

∂γi∂γj

δprim.
T (γ)δγiδγj + . . . (7)

where the Einstein index summation prescription is used.
It is important to have in mind that both quantities

δprim.
T (γ) and δγ are independent Gaussian fields. The pri-
mordial temperature field is Gaussian for inflationary sce-
nario, and independent of the lens potential field because
the last scattering surface is far from the intervening lenses
(that will be found to be at redshift <∼ 5). The lens po-
tential field will be assumed to be in the linear regime,
although this is not a crucial hypothesis3.

2 In particular there are no known working method to con-
struct weak-lensing maps from CMB temperature maps.
3 This assumption allows the use of the linear power spec-
trum, but one could have included nonlinear corrections to

In the following the correlation functions or moments
will be calculated in the small angle approximation, for
which the plane approximation for the last scattering sur-
face can be made. Thus one can write,

δprim.
T (γ) =

∫

d2l

(2π)
al exp(il·γ), (8)

where the al coefficients obey Gaussian statistical rules.
In particular,
〈

al al′
〉

= δDirac(l+ l′) Cl, (9)

where the Cl are the “famous” Cl describing the angular
power spectrum.

On the other hand the random variables δ(k) obey the
statistics,
〈

δ(k) δ(k′)
〉

= δDirac(k + k′)P (k), (10)

where P (k) is normalized to the present day. In order to
produce a consistent set of power spectra it is important to
have a consistent normalization for Cl and P (k). This can
be obtained from the small l behavior of Cl corresponding
to the small k behavior of P (k). In the following I will
assume an Harrison-Zel’dovich initial spectrum, so that,

P (k) = A k at small k. (11)

The coefficient A can be related to the small l behavior of
l (see Hu 1995 for instance),

l(l + 1)Cl =
A

4π
Ω2

0

(

a(χCMB)

D+(χCMB)

)2

at small l. (12)

3.2. The Two-Point Correlation Function

The dominant corrective term for the angular two-point
correlation function can be calculated from the expansion
(7),

〈

δobs.T (γ1)δ
obs.
T (γ2)

〉

=
〈

δprim.
T (γ1)δ

prim.
T (γ2)

〉

+ (13)

〈 ∂

∂γi

δprim.
T (γ1)δγi(γ1)

∂

∂γj

δprim.
T (γ2)δγj(γ2)

〉

+

〈

δprim.
T (γ1)

∂2

∂γi∂γj

δprim.
T (γ2)δγi(γ2)δγj(γ2)

〉

+ . . .

The corrective terms have been written up to the
quadratic term in the large-scale structure density field.
The previous expression can be written in Fourier space,

〈

δobs.T (γ1)δ
obs.
T (γ2)

〉

=

∫

d2l

(2π)2
Cl exp [il·γ12] + (14)

∫

d2l

(2π)2
Cl exp[il·γ12]

∫

dχ1dχ2 w(χ1)w(χ2)×

∫

d3k

(2π)3
P (k)

(

l · k

k2 D0(χ1)D0(χ2)

)2

exp[i(χ1 − χ2)kr]×

(

exp[iD0(χ1)k⊥ ·γ1 − iD0(χ2)k⊥ ·γ2]− 2
)

it, since the lens density field is by no means required to be
Gaussian.
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where γ12 is the angular distance between γ1 and γ2,
γ12 = |γ1−γ2|. This formula has been obtained using eqs.
(9,10) defining the two power spectra. To complete the
calculations one can use the small-angle approximation,
well verified below 1 degree scale, which implies that

k ≈ k⊥ and P (k) ≈ P (k⊥). (15)

Then the integral over kr leads to a Dirac function in
χ1 − χ2. We eventually have,

〈

δobs.T (γ1)δ
obs.
T (γ2)

〉

= C(γ12) + (16)
∫

l dl

2π

∫

dχ w2(χ)

∫

k dk

2π
P (k)

l2

k2D2
0(χ)

×

[(J0(kD0 γ12)− 1)J0(l γ12) + J2(kD0 γ12)J2(l γ12)] ,

with

C(γ) =

∫

l dl

2π
Cl J0(l γ12). (17)

This result does not coincide apparently with the one of
Seljak (1996, equation A.6), but simply because the expo-
nential was not expanded in his expression. That this ex-
pansion can be done is amply justified by the fact that the
displacements are small compared to the angular resolu-
tion scale. Then one recovers exactly the same expression.
Note that the autocorrelation function of the displacement
field is automatically introduced by the third term in (13).

3.3. Higher-Order Correlation Function

It is quite easy to see that the weak-lensing effects do not
introduce a three-point correlation function. It is indeed
impossible to build a term of non-zero ensemble average
involving three al factors.

The first non trivial high order correlation function is
thus the four-point correlation function. At this stage it
is important to have in mind that the observable quan-
tity is the connected part,
〈

δobs.T (γ1) δ
obs.
T (γ2) δ

obs.
T (γ3) δ

obs.
T (γ4)

〉

c
, of the ensemble

average,
〈

δobs.T (γ1) δ
obs.
T (γ2) δ

obs.
T (γ3) δ

obs.
T (γ4)

〉

, that is
the part which is obtained when the products of two point
correlation functions that can be built have been sub-
tracted out,

〈

δobs.T (γ1) δ
obs.
T (γ2) δ

obs.
T (γ3) δ

obs.
T (γ4)

〉

c
≡ (18)

〈

δobs.T (γ1) δ
obs.
T (γ2) δ

obs.
T (γ3) δ

obs.
T (γ4)

〉

−
〈

δobs.T (γ1) δ
obs.
T (γ2)

〉 〈

δobs.T (γ3) δ
obs.
T (γ4)

〉

−

perm. (2 other terms).

The connected part is obviously zero for the primordial
field: it is a direct consequence of its Gaussian nature.
The dominant term, in terms of weak lensing effects, is
thus given by,

〈

δobs.T (γ1) δ
obs.
T (γ2) δ

obs.
T (γ3) δ

obs.
T (γ4)

〉

c
≡ (19)

〈

δobs.T (γ1)
∂

∂γi

δprim.
T (γ2)

〉〈

δγi(γ2) δγj(γ3)
〉

×

〈 ∂

∂γj

δprim.
T (γ3) δ

obs.
T (γ4)

〉

+ perm. (11 other terms).

Roughly speaking it means that the four-point correlation
function, in units of the square of the second, is propor-
tional to the weak lensing angular correlation function.
Although at this stage it is difficult to give definitive quan-
titative predictions, the magnitude of the fourth order cor-
relation function should be about 10−2 (the order of the
corrective term in [13]), which should be easily detectable
in full sky coverage CMB maps. The expression of the
four-point correlation function can be given in terms of
the power spectra,

〈

δobs.T (γ1) δ
obs.
T (γ2) δ

obs.
T (γ3) δ

obs.
T (γ4)

〉

c
= (20)

∫

d2l1
(2π)2 Cl1

∫

d2l2
(2π)2 Cl2

∫

dχw2(χ)

∫

d2k

(2π)2
P (k)

l1 · k

k2 D0

l1 · k

k2 D0

exp [il1 · γ12 + iD0k · γ23 + il2 · γ34] +

perm. (11 other terms).

This expression can be calculated with an integration over
the angles between l1 and γ12 and l2 and γ34 respectively.
It yields the Bessel functions J1(l1 γ12) and J1(l2 γ34).
The results can thus be expressed in terms of the angular
derivative of the two-point correlation function,

d

dγ
C(γ) = −

∫

l2dl

2π
Cl J1(lγ), (21)

and with quantities associated with the angular correla-
tion of the displacement field,

Dp(γ) =

∫

dχw2(χ)

∫

k dk

2π

P (k)

k2 D2
0

Jp(D0 k γ), (22)

leading to (Appendix A),

〈

δobs.T (γ1) δ
obs.
T (γ2) δ

obs.
T (γ3) δ

obs.
T (γ4)

〉

c
= (23)

1

2

d

dγ
C(γ12)

d

dγ
C(γ34)×

[D0(γ23) cos(ϕ12 − ϕ34)−D2(γ23) cos(ϕ12 + ϕ34)] +

+ perm. (11 other terms),

where ϕ12 is the angle between γ12 and γ23 and ϕ34 is the
angle between γ43 and γ32 (see Fig. 1). Two terms are thus
involved. The a priori dominant term is the one in D0, and
it is weighted by the cosine of the angle ϕ12−ϕ34 ≡ ψ (see
Fig. 1), that is the angle between the directions γ12 and
γ34 on the sky. It gives a clear geometrical dependence for
the four point-correlation function. However, one should
have in mind that 11 other terms have to be taken into
account in this calculation. This signal may therefore be
masked by other geometric dependences.
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Fig. 1. Description of the angles intervening in the expression
(24) of the four-point correlation function. The thick solid line
materializes the dC(θ)/d θ factor, whereas the hatched lines
represents the correlation functions of the displacement field.

Quantitative calculations can be done for specific cos-
mological models (see next section). However, one obvious
problem for a practical determination of this correlation
function is that it depends on 5 different variables. It is
thus crucial to reduce the number of variables by consid-
ering simplified geometries.

3.4. Peculiar Geometries

3.4.1. When two Directions Coincide

The first geometry one may think of is when two
points are merged together, that is the expression of
〈

δobs.T (γ1)
[

δobs.T (γ2)
]2
δobs.T (γ3)

〉

c
. This notation is actu-

ally a bit oversimplified since the local temperature fluc-
tuations are actually filtered by the used apparatus. One
should thus have in mind that the two directions denoted
γ2 are actually close random directions in a beam centered
on γ2.

Of course, once again, many terms are contributing to
this ensemble average but I will first concentrate on the
case where the connection between the two δobs.T (γ2) is
made by the lens coupling term (subsection A.2.b). In such
a case one can see that ψ is given by the angle between
γ2−γ1 and γ3−γ2 and is not affected by the smoothing.
This is not the case for the term in cos(ϕ12 + ϕ34) which
is expected to vanish because it is averaged to zero (more
precise derivations are given in the Appendix). This con-
tribution is thus proportional to the cosine of the angle,
and to the autocorrelation function of the displacement
field.

What about the other terms? Their geometrical repre-
sentations are given in Fig. 2. The (2a) diagram is the term
that has just been considered and is expected to dominate
the final expression. Note that all these diagrams have a
symmetry factor of 2 compared to what is given in the Ap-
pendix. At first view the (2b) diagram vanishes because
ϕ12 takes a random value averaging both cos(ϕ12 − ϕ34)
and cos(ϕ12 +ϕ34) to zero. A more detailed calculation is
proposed in the Appendix. It shows that it gives a contri-
bution proportional to the angular correlation function of

2
γ

ψ

γ
3

ψ

γ
3

γ
3

2
γ

2
γ

ψ
2

γ

���
���
���

���
���
���

��
��
��

��
��
��

��
��
��

��
��
��

���
���
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γ
1

γ
1

γ
1γ

1

(2c)

(2b)

(2d)

(2a)

ψ

γ
3

3

Fig. 2. Geometrical representation of the terms intervening in
the expression (25).

the local weak lensing convergence (see Blandford et al.
1991, Villumsen 1996, Bernardeau et al. 1996),

M0(γ) =

∫

dχw2(χ)

∫

k dk

2π
P (k)J0(D0 k γ). (24)

The two other diagrams are simpler since they can be
simply obtained from the general expression (24). Taking
all these terms into account we have,

〈

δobs.T (γ1)
[

δobs.T (γ2)
]2
δobs.T (γ3)

〉

c
≈ (25)

d log(C)

d log(θ0)

d

dγ
C(γ13) [γ12M0(γ12) cos(ψ1)+

γ23M0(γ23) cos(ψ3)] +

d

dγ
C(γ12)

d

dγ
C(γ23) cos(ψ)×

[

D0(θ0) +D0(γ13)−D0(γ12)−D0(γ23)
]

where ψ3 is shown on Fig. (2b) (ψ1 corresponds to the di-
agram obtained when the roles of γ1 and γ3 are inverted)
and θ0 is the smoothing angle of the experiment. In this
expression, theD2 terms have been neglected,D0 has been
changed in D0 for diagram (2a) and C in C in (2b). This
is due to the filtering effects. One should indeed take into
account the average displacement within the beam size
of the experiment in the first case, the rms temperature
fluctuations in the second. More precisely we have,

D0(θ) =

∫

dχw2(χ)

∫

k dk

2π

P (k)

k2 D2
0

W 2(D0 k θ), (26)

and

C(θ) =

∫

l dl

2π
ClW

2(l θ), (27)
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with, for a top-hat window function for instance,

W (x) =
2J1(x)

x
. (28)

It is then interesting to define the function,

κ4(γ12,γ23) = (29)
〈

δobs.T (γ1)
[

δobs.T (γ2)
]2
δobs.T (γ3)

〉

c
〈

δobs.T (γ1) δ
obs.
T (γ2)

〉 〈

δobs.T (γ2) δ
obs.
T (γ3)

〉 ,

which is a dimensionless quantity. It does not depend in
particular on the magnitude of the CMB temperature fluc-
tuations and it is directly proportional to the large-scale
structure power spectrum, with a known dependence on
the shape of the anisotropy power spectrum. This quan-
tity would thus be a measure the weak lensing effects in
CMB maps. Taking into account the fact that the diagram
(2b) generally leads to a negligible contribution we have,

κ4(γ12,γ23) ≈ (30)

d

dγ
log[C(γ12)]

d

dγ
log[C(γ23)] cos(ψ)×

[

D0(θ0) +D0(γ13)−D0(γ12)−D0(γ23)
]

.

A 2D contour plot of the function κ4(γ12,γ23) is proposed
in Fig. 6 for a peculiar cosmological case.

The main contribution to this expression is the term
coming from the diagram (2a), but the contributions from
(2c) and (2d) cannot be neglected because the correlation
function of the displacement field D0 is only slowly de-
creasing with the angle (see next section). It is interesting
to have in mind the physical effect described by this re-
sult. It corresponds indeed to a shear effect that is the de-
formation of two nearby temperature patches by a single

lens. It can thus be seen as the excess of close temper-
ature peaks that are elongated in the same direction. It
is therefore logical that this effect is proportional to the
correlation function of the displacement field. However,
it does not always dominated the four point correlation
function. This is the case in particular at the degree scale
since the derivative of the temperature correlation func-
tion vanishes (see Fig. 4 in the next Section). The next
subsection is devoted to a simpler geometry where this
case is more specifically investigated.

3.4.2. When two Pairs Coincide

This case is obtained from the previous case when the
directions γ3 and γ4 coincide. The geometrical represen-
tations of the involved terms are presented in Fig. 3. The
a priori dominant term corresponds to the diagram (3b).
However, as noted previously, both the diagrams (3b) and
(3c) vanish for specific values of the distance between γ1

and γ2. In such a case we are left with the diagram (3a).
A crude evaluation of this diagram gives zero because the

2
γ1

γ

γ
1 2

γ��
��
��

��
��
��

γ
1 2

γ

��
��
��

��
��
��

(3c)

(3a)

(3b)

Fig. 3. Geometrical representation of the terms intervening in
the expression (31).

averages over the angles ϕ12 and ϕ34 are expected to van-
ish. However this is true only when the smoothing angle
is negligible compared to the angular distance between γ1

and γ2. More precise calculations (subsection A.3) show
that this term is proportional to the logarithmic derivative
of the temperature variance in the beam. The resulting
value of the correlation function is (taking into account a
symmetry factor of 4),

〈 [

δobs.T (γ1)
]2 [

δobs.T (γ2)
]2 〉

c
≈ (31)

1

4

(

θ0
dC(θ0)

dθ

)2

M0(γ12) +

[

d

dγ
C(γ12)

]2

×

[

D0(θ0)−D0(γ12)
]

.

Note that the first term is no more proportional to the
angular correlation of the displacement field, but to the
angular correlation of the convergence (that is, within a
factor 2, of the magnification in the weak lensing regime).
Here the physical mechanism has changed. The correla-
tion function is not due to a local shear, but to single
lens amplification of patches on the primordial sky that
create an excess of close bright peaks. It is thus clearly a
magnification effect.

3.4.3. When the four Directions Coincide

The last case I consider is when the four directions coin-
cide. In this case the magnification effect always dominates
and the results, obtained in subsection A.4, are similar
to the one discussed in the previous subsection, but with
small changes introduced by the filtering effects,

〈 [

δobs.T (θ0)
]4 〉

c
=

3

4

(

θ0
dC(θ0)

dθ

)2

M0(θ0) (32)

with

M0(θ0) =

∫

dχw2(χ)

∫

k dk

2π
P (k)W 2(D0 k θ0). (33)
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This result has been properly demonstrated for a top-hat
window function, and should be roughly correct for other
window functions. Note that this expression is also the
fourth cumulant of the local filtered temperature prob-
ability distribution function. We can as well define the
dimensionless quantity,

κ4(θ0) =

〈 [

δobs.T (θ0)
]4 〉

c
〈 [

δobs.T (θ0)
]2 〉2

≈
3

4

(

d log[C(θ0)]

d log[θ]

)2

M0(θ0)(34)

which tells us that the dimensionless kurtosis of the local

filtered CMB temperature probability distribution func-

tion is proportional to the variance of the local filtered

convergence.

4. Quantitative Predictions

4.1. The Cosmological Models

The cosmological models used to illustrate the previous re-
sults by quantitative predictions are standard CDM mod-
els with Ωbaryon = 0.05, H0 = 50 km/s/Mpc with an ini-
tial Harrison-Zel’dovich spectrum. Two cases have been
chosen, Ω0 = 1, Λ = 0 (model 1) and Ω0 = 0.3, Λ = 0.7
(model 2). The transfer function and temperature power
spectrum were both computed with the code of Seljak &
Zaldarriaga (1996).

For convenience the mass fluctuation power spectra
were approximated by simple analytic fits (similar to the
ones proposed by Bond & Efstathiou 1984),

P (k) = A
k

(

1 +
[

a k + (b k)3/2 + (c k)2
]u)2/u

, (35)

with

u = 1.13;

a =
6.5

3000 Γ
;

b =
3

3000 Γ
;

c =
1.7

3000 Γ
;

and

Γ = 0.5 for Ω0 = 1.0

Γ = 0.13 for Ω0 = 0.3.

The normalization factor is given by the relation (12) with
observational constraints,

l(l + 1)Cl =
24π

5

(

Q0

T0

)2

. (36)

The measured values of Q0 and T0 by the COBE satellite
(Mather et al. 1994, Gorski et al. 1994)

T0 = 2.726± 0.010 K, (37)

Q0 = 19.9± 1.6 10−6 K, (38)

provide the normalization constraint for A,

A ≈ 1.01 10−8 Ω−2
0

(

a(χCMB)

D+(χCMB)

)2

. (39)

Note that in the previous equations, distance units have
been chosen so that cH0 = 1.

4.2. Numerical Results

Fig. 4. The function 1/C(θ) dC(θ)/dθ as a function of the
angle. The thick line is for model 1 and the thin line for model
2

I present the derivatives of the temperature angular
correlation functions in Fig. 4. They exhibit a remarkable
property, since they both drop to zero at a scale slightly
larger than 1 degree. This property can be of great help
to disentangle various contributions. For instance it im-
plies that specific geometries produce a vanishing four-
point correlation function. This is the case for instance
when three of the four directions form an equilateral tri-
angle with ∼ 1.2 deg of side length. Such a property could
be of crucial interest to ascertain the origin of an observed
four-point correlation function.

The two other quantities of interest are the functions
D0(γ), D2(γ) and D0(γ) (eqs. 22, 26) that describe the
magnitude of the lens effects. They are presented in Fig.
5. One can see that D0 and D0 dominate at small scale.
The resulting shape of the dimensionless four-point corre-
lation function κ4(γ12,γ23) (eq. 29) is presented in Fig. 6.
It exhibits specific features induced by the cos(ψ) factor
and by the derivative of the temperature angular correla-
tion function. The fact that the latter vanishes is clearly
present with a significant circular feature at 1 degree scale.
It implies that the kurtosis is maximum for angular dis-
tances below 1 degree. Note that in this figure, all con-
tributions have been included, but the contributions from
(2b) are found to be negligible and not to affect the global
features of this plot.
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Fig. 5. The functions D0 (solid lines), D2 (dashed lines) and
D0 (long dashed lines) for model 1 (thick lines) and model 2
(thin lines).

-1 -0.5 0 0.5 1
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-0.5

0

0.5

1
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  < −0.5

  < 0.5

  < 1.5

  < 2.5

  < 3.5

  < 4.5

  < 5.5

  > 5.5
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Fig. 6. Contour plot of the function κ4(γ12,γ23) (eq. 29) as
a function of the relative position (in degrees) of γ

3
when γ

2

is the central point of the graph and γ
1
is at the coordinates

x = 0, y = +0.63 deg. The value of κ4 has been multiplied by
1000.

I also present the quantities intervening in the expres-
sion of the dimensionless kurtosis of the CMB temperature
PDF. The index of the local temperature fluctuations is
given in Fig. 7 for the two cosmological models. The vari-
ance of the convergence is presented in Fig. 8, and the
resulting value of κ4 in Fig. 9.

The resulting coefficient κ4 can be as high as 5 10−3.
It depends however a lot on the cosmological models
and more particularly on the amount of power at about
10 h−1Mpc scale. The reason why M0, and consequently
κ4, is smaller for the Ω = 0.3 case is thus actually due to
the change of shape of P (k) (i.e., a lower value of Γ), and
not directly to the low value of Ω. The dependence on the
cosmological parameters is investigated in more details in
the next subsection.

Fig. 7. The functions d log[C(θ)]/d log[θ] for model 1 (thick
line) and model 2 (thin line)

Fig. 8. The functions M0 (solid lines) and M0 (dashed lines)
for model 1 (thick lines) and model 2 (thin lines)

Fig. 9. The function κ4(θ) (eq. 34) for model 1 (thick line)
and model 2 (thin line)
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4.3. Dependence on the Cosmological Parameters

The dependence on the cosmological parameters enters in
various aspects. It is important in particular for the rela-
tion between the Cl and the mass fluctuation power spec-
trum P (k). This is not the aim of this paper to explore
in great details all these dependences. There is however
a dependence which is specific of the lens effects, that is
the shape of the efficiency function w(z) (eq. 5). In Fig.
10, I present the function w(z) for different cosmological
models. We can see that both the shape and the ampli-
tude of this function strongly depend on the cosmological
parameters.

The main dependence is actually due to the factor Ω
appearing in the expression of w(z). This is however quite
misleading since this factor cancels out with the one in-
tervening in the expression of the normalization factor A
(eq. 39). The dependence on the cosmological parameters
is thus mainly contained in the shape of the power spec-
trum, that is in the ratio between the amount of power
at relatively small scale to the power at very large scale,
although they enter significantly in the efficiency function
w(z), even when the overall Ω factor has been dropped.
The way the two cosmological parameters Ω0 and Λ enter
in this expression is unfortunately rather cumbersome. It
is however clear that the CMB four-point correlation func-
tion contains informations on the cosmological parameters
in a quite different combination compared to the one inter-
vening in the temperature power spectrum. In particular
the detection of such an affect may allow to better disen-
tangle what is specific of Cl from what contribute directly
to P (k).

Fig. 10. The function w(z) (eq. 5) for the Einstein-de Sitter
case (thick solid line), a model with Ω = 0.3, Λ = 0.7 (thin
solid line) and a model with Ω = 0.3, Λ = 0 (dashed line).

5. Discussion and Conclusions

In this work, I have calculated the expression of the
four-point temperature correlation function as induced by

weak-lensing effects. For standard CDM model, the ampli-
tude of this correlation function, in units of the square of
the second, is found to be of order of 5 10−3. However, this
estimation did not take into account the nonlinear evolu-
tion of the power spectrum that might significantly am-
plify this signal at small angular scale. This is for instance
what is predicted for the two-point correlation function
of the polarization of background galaxies (Jain & Sel-
jak 1996). Unfortunately, in the case of CMB maps, the
scale at which this effect might appear cannot be deduced
straightforwardly from this work. This effect is indeed the
result of a line of sight integration that mix different scales
and different redshifts for a given selection function (e.g.
Fig. 10) which is itself dependent on the redshift of the
sources. Moreover all the intervening quantities have non
trivial dependences on the cosmological parameters that
should be taken into account. A detailed examination of
the nonlinear effects is then left for a forthcoming paper.

I would like to stress, that the amplitude of the lensing
effects should be large enough to be detectable, at least
marginally, in full sky CMB anisotropy measurements.
The possibility of doing such measurements is directly re-
lated to the cosmic noise associated with the quantities
of interest, fourth moment or four-point correlation func-
tion. So far, no precise estimation of the cosmic noise for
the four-point correlation function has been made, but
following Srednicki (1993), who presented the calculation
for the three-point correlation function, one expects the
cosmic variance of those quantities to be of the order of
1/lpk. where lpk. is the typical value of l contributing to
the temperature fluctuations. One can observe that the
value of 1/lpk. is of the order of the signal, however, one
should have in mind that a direct and too naive calcula-
tion of the cosmic noise may be actually misleading since
the long wavelength fluctuations (corresponding to the low
l part of the power spectrum) contribute significantly to
it, whereas the lensing signal originates mainly from the
small angular scales (below 1 degree). It suggests that
the weak lensing signal might be more easily detectable
in maps where the long wavelength temperature fluctua-
tions have been removed. Moreover the detailed methods
used to extract the signal might also be of different ro-
bustness against the cosmic noise. In particular, it could
be fruitful to take advantage of the a priori knowledge of
the geometrical dependence of the four-point correlation
function (see for example the cos(ψ) factor in the expres-
sion [30]). In a forthcoming paper, we explore the different
possible strategies for the data analysis, and will present
detailed estimations of the precision at which such a de-
tection could be made in the future satellite missions.

It also has to be noted that other secondary effects or
foregrounds may also contribute to the four-point corre-
lation function, not to mention the case of more exotic
cosmological models based on intrinsically non-Gaussian
topological defects. In particular the nonlinear Doppler ef-
fects could induce a significant four-point correlation func-
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tion, because it is caused by intrinsically non-Gaussian
objects. There are however no reasons for these effects to
have the same geometrical dependences, cos(ψ) factor and
dependence on the shape of the temperature two-point
correlation function. Hence, it should be possible to dis-
tinguish this effect from other sources.

The most exciting aspect of this analysis is probably
that the magnitude of the effect depends on the cosmo-
logical parameters, Ω, Λ and P (k) in a known way. The
detection of the temperature four-point correlation func-
tion may thus reveal to be extremely precious to test the
global picture of the large-scale structure formation, as it
will be unveiled by CMB anisotropy measurements.
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Appendix A: Calculation of the Filtering Effects

In this appendix I explicitly take into account the filtering
effects to compute the expressions of the four-point cor-
relation function in different geometries. The filtering can
be the one due to the angular resolution of the apparatus
or due to a subsequent filtering of the temperature field.
When it needs to be specified the adopted window func-
tion will always be the angular top-hat window function.

The expression I am interested in is the expression (19)
where γprim. and the coupling term ∇γprim. ·δγ are given
by,

δprim.
T (γ) =

∫

d2l

(2π)2
alW (l θ0) e

il·γ , (40)

and,

∇γprim.(γ) · δγ = (41)
∫

d2l

(2π)2
alW (lθ0)

∫

dχw(χ)

∫

d2k

(2π)2
×

al δ(k)
l · k

k2 D0

W (|l+D0 k| θ0) exp[i(l+D0k) · γ],

where θ0 is the smoothing angle. The quantity of interest
is thus

C4(γ1,γ2,γ3,γ4) =

∫

d2l1
(2π)2

Cl1

∫

d2l2
(2π)2

Cl2 × (42)

∫

dχw2(χ)

∫

d2k

(2π)2
P (k)W (l1 θ0)×

l1 · k

k2 D0

exp[il1 · γ12]W (|l1 −D0k| θ0) exp[iD0k · γ23]

W (|l2 −D0k| θ0) exp[il2 · γ34]
l2 · k

k2D0

W (l2 θ0).

In the following I will estimate this expression for different
hypothesis on γ1, γ2, γ3 and γ4.

A.1 Four separate Directions

Here I assume that

θ0 ≪ γij whatever i and j. (43)

The integral (42) will be dominated by values of l1, l2 and
k for which l1 γ12, l2 γ34 and k γ23 are about unity. It
implies that li θ0 and |li −D0k| θ0 are all small quantities
thus making the filtering effects negligible, so that,

C4(γ1,γ2,γ3,γ4) ≈

∫

d2l1
(2π)2

Cl1

∫

d2l2
(2π)2

Cl2 × (44)

∫

dχw2(χ)

∫

d2k

(2π)2
P (k)×

l1 · k

k2 D0

exp[il1 · γ12 + iD0k · γ23 + il2 · γ34]
l2 · k

k2 D0

.
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An interesting property to be used is that

∫

d2l

(2π)2
Cl exp[il · γ]

l · x

l x
= −

γ · x

γ x

∫

ldl

2π
Cl J1(l γ).(45)

It implies that

C4(γ1,γ2,γ3,γ4) = (46)

dC(γ)

dγ
(γ12)

dC(γ)

dγ
(γ34)

∫

dχw2(χ)×

∫

d2k

(2π)2
P (k)

k2 D2
0

γ12 · k

γ12 k

γ34 · k

γ34 k
exp[iD0k · γ23],

with,

C(γ) =

∫

d2l

(2π)2
Cl e

il·γ . (47)

This integral can be eventually integrated from properties
of Bessel functions,

∫ 2π

0

dφ exp[ix cos(φ)] cos2(φ) = π [J0(x)− J2(x)] , (48)

∫ 2π

0

dφ exp[ix cos(φ)] sin2(φ) = π [J0(x) + J2(x)] , (49)

∫ 2π

0

dφ exp[ix cos(φ)] sin(φ) cos(φ) = 0, (50)

with which we find,

〈

δobs.T (γ1) δ
obs.
T (γ2) δ

obs.
T (γ3) δ

obs.
T (γ4)

〉

c
= (51)

1

2

d

dγ
C(γ12)

d

dγ
C(γ34)×

[D0(γ23) cos(ϕ12 − ϕ34)−D2(γ23) cos(ϕ12 + ϕ34)],

where,

Dp(γ) =

∫

dχw2(χ)

∫

k dk

2π

P (k)

k2
Jp(D0 k γ), (52)

ϕ12 is the angle between γ12 and γ23 and ϕ34 is the angle
between γ43 and γ32 (see Fig. 1).

A.2 When two Directions Coincide

A.2.a When γ1=γ2

In this case, l1 is expected to be of the order of 1/θ0, thus
larger than k so that

W (|l1 −D0k| θ0) ≈W (l1 θ0)− (53)

l1 · k

l1
θ0 D0W

′(l1 θ0) + ...

As a result one has,

C4(γ1,γ1,γ2,γ3) =

∫

d2l1
(2π)2

Cl1

∫

d2l2
(2π)2

Cl2 (54)

∫

dχw2(χ)

∫

d2k

(2π)2
P (k)×

exp[iD0k · γ12 + il2 · γ23]
l2 · k

k2 D0

×

(

W 2(l1 θ0)
l1 · k

k2 D0

− θ0W
′(l1 θ0)W (l1 θ0)

(l1 · k)
2

l1 k2

)

.

When one integrates over the angle of l1 the first term
vanishes. The second term of the expansion is thus the
dominant contribution, which takes the form,

C4(γ1,γ1,γ2,γ3) = −
1

4
θ0

dC(θ0)

dθ

∫

d2l2
(2π)2

Cl2 (55)

∫

dχw2(χ)

∫

d2k

(2π)2
P (k)×

exp[iD0k · γ12 + il2 · γ23]
l2 · k

k2
.

Using the property (45) we have

C4(γ1,γ1,γ2,γ3) = −
1

4
θ0

dC(θ0)

dθ

d

dγ
C(γ23)× (56)

γ12 · γ23

γ23

∫

dχw2(χ)×

∫

k dk

2π
P (k)

J0(D0 k γ12) + J2(D0 k γ12)

2
.

Interestingly C4 is now proportional to the angular corre-
lation function of the local magnification and not of the
local displacement.

A.2.b When γ2=γ3

In this case k is expected to be of the order of 1/θ0, thus
larger than l1 and l2. As a result one has,

C4(γ1,γ2,γ2,γ3) =

∫

d2l1
(2π)2

Cl1

∫

d2l2
(2π)2

Cl2 (57)

∫

dχw2(χ)

∫

d2k

(2π)2
P (k)×

exp[il1 · γ12 + il2 · γ23]
l2 · k

k2 D0

W 2(k θ0)
l1 · k

k2 D0

,

leading to

C4(γ1,γ2,γ2,γ3) =
1

2

d

dγ
C(γ12)

d

dγ
C(γ23)× (58)

cos(ψ)D0(θ0),

where

D0(θ) =

∫

dχw2(χ)

∫

k dk

2π

P (k)

k2 D2
0

W 2(D0 k θ). (59)

Here the effect is proportional to the mean displacement
in the beam size θ0.
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A.2.c Other Cases

The other cases do not give specific formulae and can be
derived from results of section A.1.

A.3 When two Pairs Coincide

A.3.a When γ1 = γ2 and γ3 = γ4

This case is similar to the A.2.b case where the result is
dominated by the second order term of an expansion in
k θ0, that here should be written for l1 and l2. We then
have

C4(γ1,γ1,γ2,γ2) =

∫

d2l1
(2π)2

Cl1

∫

d2l2
(2π)2

Cl2

∫

dχw2(χ)

∫

d2k

(2π)2
P (k)× (60)

l1θ0W (l1 θ0)W
′(l1 θ0)

(

l1 · k

k l1

)2

exp[iD0k · γ12]×

(

l2 · k

k l2

)2

l2θ0W (l2 θ0)W
′(l2 θ0).

The integrations over the angles between l1 and k and
between l2 and k give each a factor 1/2 leading to

C4(γ1,γ1,γ2,γ2) =
1

16

(

θ0
dC(θ0)

dθ

)2

× (61)

∫

dχw2(χ)

∫

d2k

(2π)2
P (k) exp[iD0k · γ12],

which can be expressed in terms of the angular correlation
function of the magnification.

A.3.b When γ1 = γ4 and γ2 = γ3

This case is a particular case of subsection A.2.a.

A.4 When the four Directions Coincide

In this case we have

C4 =

∫

d2l1
(2π)2

Cl1

∫

d2l2
(2π)2

Cl2

∫

dχw2(χ)

∫

d2k

(2π)2
P (k)

l2 · k

k2 D0

l1 · k

k2 D0

× (62)

W (|l1 −D0k| θ0) W (|l2 −D0k| θ0) W (l1 θ0)W (l2 θ0).

This expression cannot be simplified furthermore if the
window function is not specified. In this paragraph I as-
sume that W is the top-hat window function,

W (x) =
2 J1(x)

x
. (63)

To complete the calculation it is interesting to have in
mind the property (Bernardeau 1995),

∫

d2l1
(2π)2

d2l2
(2π)2

W |l1 + l2|

(

1 +
l1 · l2
l21

)

= (64)

∫

l1dl1
2π

W (l1)

∫

l2dl2
2π

[

W (l2) +
1

2
l2W

′(l2)

]

.

This property is rigorously exact. In principle it is not pos-
sible to separate the two terms. Both relations are however
good approximation as it will be shown in the following.
It is thus reasonable to assume that

∫

d2l1
(2π)2

d2l2
(2π)2

W |l1 + l2|
l1 · l2
l21

≈ (65)

1

2

∫

l1d
l
1

(2π)
W (l1)

∫

l2dl2
(2π)

l2W
′(l2).

Then, using this property it is easy to show that

C4 =
1

16

(

d log[C(θ0)]

d log[θ]

)2

M0(θ0). (66)

A.5 Validity of the top-hat window function property (65)

To examine the property (65), an interesting property of
the Bessel function to use is that (Gradshteyn & Ryzhik,
1980, eq. [8.532.1]),

2 J1 (|k1 + k2|)

|k1 + k2|
=

∞
∑

p=0

(1 + p)
2 J1(k1)

k1

2 J1(k2)

k2
× (67)

C1
p

(

−
k1 · k2

k1k2

)

,

with

C1
p

[

− cos(ϕ)
]

= (−1)p+1 sin(p+ 1)ϕ

sin(ϕ)
. (68)

We have thus

∫ 2π

0

dϕC1
p (− cos(ϕ)) = 0 for p odd, (69)

and

∫ 2π

0

dϕC1
p (− cos(ϕ)) = 2π for p even. (70)

As a result

C4 = 26
∫

dl1
2π

Cl1

∫

dk

2π
P (k)

∫

dl2
2π

Cl2 (71)

J1(l1 θ0)J1(l2 θ0)
∑

p1,p2

(1 + 2p1) (1 + 2p2)×

J1+2p1
(l1 θ0)J1+2p1

(k θ0)J1+2p2
(k θ0)J1+2p2

(l2 θ0)
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In the following I assume a power law behavior for both
the mass power spectrum and Cl,

P (k) ∝ knw , (72)

Cl ∝ lnc . (73)

Then using the property,

∫ ∞

0

Jν(t)Jµ(t) t
−λdt = (74)

Γ(λ)

2λ

Γ
(

ν+µ−λ+1

2

)

Γ
(

ν+µ+λ+1
2

)

Γ
(

−ν+µ+λ+1
2

)

Γ
(

ν−µ+λ+1
2

) ,

one can easily compute the few terms of the previous se-
ries. It is found to converge very rapidly. The resulting
ratio,

r(nc, nw) =
∑

p1,p2
(1 + 2p1) (1 + 2p2)× (75)

S(p1, 1, nc)S(p1, p2, nw)S(1, p2, nc)

S(1, 1, nc)2 S(1, 1, nw)
,

with

S(p1, p2, n) =
Γ (1+p1+p2+n/2)

Γ (p2−p1+1−n/2)
× (76)

1

Γ (p2+p1+2−n/2) Γ (−p2+p1+1−n/2)
,

is plotting in Fig. 11. It shows that the error made by
using the approximation is at most of a few percent for
the values of nc and nw of interest.

-1.8 -1.4 -1 -0.6 -0.2
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  < 1.

  < 1.01

  < 1.01

  < 1.02
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  < 1.03

  > 1.03

z

Fig. 11. The ratio (75) as a function of nc and nw .
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