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The reheating process in inflationary universe models is considered as an out-of-equilibrium mix-
ture of two interacting and reacting fluids, and studied within the framework of causal, irreversible
thermodynamics. The evolution of the temperature and the decay rate as determined by causal
thermodynamics are estimated at different stages of the process. A simple model is also used to find
the perturbations of the expansion rate, including the possibility of damped oscillations.

I. INTRODUCTION

The reheating period is a key ingredient in many inflationary models of the very early Universe. During reheating,
most of the matter and radiation of the Universe is created via the decay of the inflaton field, while the temperature
grows by many orders of magnitude. Traditionally, the idealized picture of a very quick decay in which the products
reach equilibrium immediately is assumed [1]. However, recent quantum field theoretical investigations [2] - [10]
indicate that the reheating period is characterized by complicated nonequilibrium processes, the main characteristics
of which are initial, violent particle production via parametric resonance (‘preheating’), with a highly nonequilibrium
distribution of the produced particles, subsequently relaxing to an equilibrium state.
In this paper we aim at obtaining a phenomenological understanding of the reheating process within a model of

two interacting and reacting fluids. We regard this approach as complementary to the above-mentioned quantum
field theoretical studies. The model involves a fluid with the equations of state for matter (modelling scalar field
oscillations about the true ground state in the reheating) that decays into a relativistic fluid. The implications of an
intermediate decay into other massive (bosonic) particles that does not explicitly occur in this model, are assumed
to be describable with the help of a large, effective decay rate of the initial into the final component of the entire
process, leaving the detailed microphysical study of this epoch to quantum field theoretical investigations which are
beyond the scope of the present paper.
While these simplifications may appear drastic, they open the possibility of studying the backreaction of the decay

process as a whole on the entire cosmological dynamics, including the behaviour of the scale factor. We believe this
to be a main advantage of our approach since most of the quantum field theoretical calculations do not even take into
account the expansion of the universe.
A two-fluid description of the expanding Universe is necessarily dissipative, even if the components are assumed to

be intrinsically perfect fluids. This is also true for nonreacting fluids (conserved particle numbers), where the different
cooling rates of the subsystems produce an effective, entropy generating bulk viscous pressure of the system as a whole
[11], [12]. In fact conservation of the particle number is only a very special case, particularly at high energies. The
processes we are interested in are characterized by particle decay and production.
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As has been shown recently, any deviation from detailed balance in the decay and inverse decay reactions in the
expanding Universe gives rise to additional bulk pressures [13]. In the present case of strong perturbations of the
detailed balance (the reactions are predominantly one-directional with the inverse processes largely suppressed), one
expects considerable bulk viscous pressures that characterize the deviations from equilibrium of the cosmological
fluid as a whole. To describe this nonequilibrium process, we shall resort to the well-known Israel-Stewart theory of
transport processes [14] which, because of its causality and stability properties [15], has been repeatedly applied in
the cosmological context – see [16], [17], [18] and references therein.
In this theory, generalized ‘fluxes’, like a bulk pressure, become dynamical degrees of freedom on their own and

have associated relaxation times. Our point of view here is to regard the cosmic substratum during the reheating
period as a causal, dissipative fluid, relaxing to equilibrium. (By “causal” we mean that dissipative signals propagate
only at subluminal speeds).
Bearing in mind that the Israel-Stewart theory was derived for small deviations from equilibrium (for attempts

to apply it to far-from-equilibrium situations see [17], [18]), we point out that in the present context it is the high
‘preheating’ particle production rate that provides a ‘creation’ contribution to the ‘effective’ bulk pressure which may
be much larger than the conventional, thermodynamic, dissipative bulk pressure. While the latter is considered to
be small in the applications of this paper, the ‘effective’ bulk pressure, that determines the reheating temperature, is
not.
Section II establishes the basic relationships concerning both particle and energy–momentum non–conservation in

our two-fluid system, and presents an expression for the evolution of the temperature of the overall fluid. Section III
introduces the causal transport relation for the thermodynamic, dissipative bulk stress, and deduces the corresponding
equation for the evolution of the Hubble parameter. Section IVA solves the latter equation at three different stages
of the reheating by assuming a very short relaxation time, and determines the temperature evolution in each of
them. The qualitative description of the dynamics is determined essentially by a single thermodynamical quantity,
the dissipative contribution to the speed of sound. If this is larger than the adiabatic contribution to the sound speed
at the beginning of reheating, we show that the temperature rises rapidly to a maximum (reheating) temperature,
which we estimate. This condition for rising temperature is equivalent to a growth in the total particle number
density, which is reasonable in the initial stage of reheating, when coherent oscillations of the scalar field lead to
huge production of particles. Thereafter, the temperature falls, but less rapidly than in the non–dissipative case. In
Section IVB, we construct a simple model to calculate the perturbations of the expansion rate due to causal viscous
and reactive effects. The model includes the possibility of damped oscillations in the beginning of reheating. Finally,
section V summarizes our conclusions.
Units have been chosen so that c = kB = h̄ = 1.

II. THE TWO-FLUID MODEL

Let us assume the energy-momentum tensor T ik of the cosmic medium splits into two perfect fluid parts:

T ik = T ik
1 + T ik

2 , (1)

with (A = 1, 2)

T ik
A = ρAu

iuk + pAh
ik . (2)

pA is the equilibrium pressure of species A. For simplicity we assume that both components share the same 4-velocity
ui, with projection tensor hik = gik + uiuk. The particle flow vector N i

A of species A is

N i
A = nAu

i , (3)

where nA is the particle number density. We are interested in situations where neither the particle numbers nor the
energy-momentum of the components are separately conserved, i.e. particle interconversion and exchange of energy
and momentum between the components are admitted.
The balance laws for the particle numbers are

N i
A;i = ṅA +ΘnA = nAΓA , (4)

where Θ ≡ ui
;i is the fluid expansion and ΓA is the rate of change of the number of particles of species A. There

is particle production for ΓA > 0 and particle decay for ΓA < 0. For ΓA = 0 we have separate particle number
conservation.
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Interactions between the fluid components amount to the mutual exchange of energy and momentum. Consequently,
there will be no local energy-momentum conservation for the subsystems separately. Only the energy-momentum
tensor of the system as a whole is conserved. Denoting the loss- and source-terms in the separate balances by tiA, we
may write

T ik
A;k = −tiA , (5)

implying

ρ̇A +Θ(ρA + pA) = uit
i
A , (6)

and

(ρA + pA) u̇
i + pA,kh

ik = −hi
kt

k
A . (7)

All the considerations to follow will be independent of the specific structure of the tiA. In general, there are no
limitations on the strength or the structure of the interaction.
Each component is governed by a separate Gibbs equation:

TAdsA = d

(

ρA
nA

)

+ pAd

(

1

nA

)

. (8)

Using (4) and (6) one finds for the time evolution of the entropy per particle

nATAṡA = uit
i
A − (ρA + pA) ΓA . (9)

With nonvanishing source terms in the balances for nA and ρA, the rate of change of entropy per particle is nonzero
in general. Below we shall deal with the special case that the terms on the right hand side of (9) just cancel.
According to (5) the condition of energy-momentum conservation for the system as a whole,

(

T ik
1 + T ik

2

)

;k
= 0 , (10)

implies

ti1 = −ti2 . (11)

There is no corresponding condition, however, for the particle number balance as a whole. Defining the integral
particle number density n as

n = n1 + n2 , (12)

we have

ṅ+Θn = nΓ , (13)

with

nΓ = n1Γ1 + n2Γ2 . (14)

Γ is the rate by which the total particle number n changes. We do not require Γ to be zero, since total particle number
conservation is only a very special case, especially at high energies.
From now on we assume that the source terms on the right hand side of (9) cancel among themselves, i.e., that

the entropy per particle of each of the components is preserved. The particles decay or come into being with a fixed

entropy sA. This adiabaticity condition amounts to the assumption that the particles at any stage are amenable to a
perfect fluid description. With ṡA = 0 in (9) one has

uit
i
A = (ρA + pA) ΓA . (15)

This relationship establishes a link between the source terms in (4) and (6) which originally are independent quantities.
The simplifying assumption ṡA = 0 takes into account the circumstance that the production process itself is the main
source of entropy production, while dissipative processes within each of the separate components are less important.
The cosmic fluid as a whole will be considered, however, as dissipative (see below).
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Combining (11) and (15) one has

uit
i
1 = (ρ1 + p1) Γ1 = −uit

i
2 = − (ρ2 + p2) Γ2 , (16)

which provides us with a relation between the rates Γ1 and Γ2:

Γ2 = −
[

ρ1 + p1
ρ2 + p2

]

Γ1 . (17)

Use of this relation in (14) yields

nΓ = n1Γ1h1

[

1

h1
− 1

h2

]

, (18)

where hA ≡ (ρA + pA) /nA are the enthalpies per particle. Total particle number conservation, i.e. Γ = 0, is only
possible if h1 = h2.
As is shown elsewhere [12], [13], a system of two fluids, each of them perfect on its own, is dissipative in general

and may be characterized by an energy-momentum tensor

T ik = ρuiuk + (p+ π)hik . (19)

The equilibrium pressure p of the total system and the energy density ρ are assumed to obey equations of state

p = p (n, n1, T ) (20)

and

ρ = ρ (n, n1, T ) , (21)

where T is the equilibrium temperature of the system as a whole, defined by (cf. [11], [12])

ρ1 (n1, T1) + ρ2 (n2, T2) = ρ (n, n1, T ) . (22)

It is worth mentioning that there does not exist a corresponding relation for the pressures. The partial pressures of
the components do not add up to the equilibrium pressure in general. The difference between the sum p1 (n1, T1) +
p2 (n2, T2) and the equilibrium pressure p (n, T ) contributes to the thermodynamical, dissipative bulk pressure π. A
further source of π is deviations from detailed balance, i.e. contributions due to ΓA 6= 0 [13].
The behavior of the equilibrium temperature T of the system as a whole is governed by [13]

Ṫ

T
= − (Θ− Γ)

∂T p

∂Tρ
− Θπ

T∂Tρ
+

(

Ṫ

T

)

∗

, (23)

where the abbreviations ∂T f = ∂f/∂T and

(

Ṫ

T

)

∗

≡ −pΓ− p1Γ1 − p2Γ2

T ∂T ρ

=
ρ1 + p1
T∂Tρ

(n2

n
p1 −

n1

n
p2

)

[

1

n1h1
+

1

n2h2

]

Γ1 (24)

were used. The term (24) takes into account deviations from classical gas behavior. It vanishes for pA = nAT , i.e.
for a mixture of classical gases. For a mixture of a classical and a quantum gas, or for a mixture of fermions and
bosons, it will be nonzero in general. We shall restrict ourselves to the case of two classical fluids, i.e. to the case
(Ṫ /T )∗ = 0. This simplifying assumption is in line with the general restriction of our approach concerning the detailed
microphysics, pointed out in the introduction.
The temperature evolution equation (23) suggests that we define an ‘effective’ bulk pressure

π
eff

≡ π − Γ

Θ
T∂

T
p = π − Γ

Θ
p , (25)

so that (23) in the classical case may be written as
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Ṫ

T
= −Θ

∂
T
p

∂
T
ρ
− Θπ

eff

T∂
T
ρ

. (26)

Our main concern in the following sections will be to study the influence of the different parts of the entropy producing
‘effective’ bulk pressure π

eff
on the cosmological evolution.

The π
eff

-term in (26) describes the deviation from the adiabatic temperature behaviour. It is obvious that any

π
eff

< 0 on the right-hand side of (26) yields a positive, i.e., ‘reheating’ contribution to Ṫ /T , counteracting the first
term on the right-hand side of (26) that simply describes the adiabatic cooling due to the expansion.
As we shall discuss below the nonequilibrium term on the right-hand side of (26) may overcompensate the adiabatic

term during the initial ‘preheating’ stage.
The effective bulk pressure (25) consists of the conventional, thermodynamic, dissipative bulk pressure π and a

creation part −pΓ/Θ. For Γ > Θ, a condition that is expected to be fulfilled during the initial stage of reheating, the
creation part gives the dominant contribution to the effective bulk pressure. Even for a small or vanishing thermody-
namic viscous pressure π the entropy producing nonequilibrium parts on the right-hand side of the temperature law
(26) may overcompensate the adiabatic part, provided only that the production rate Γ is sufficiently high. In other
words, even the production of particles with an equilibrium distribution, equivalent to the possibility of a perfect fluid
description, gives rise to ‘reheating’ and entropy production. We shall consider this to be the dominant part of the
entropy production during preheating. It is the particle production process itself which is connected with entropy
production, simply through the enlargement of the phase space. There are additional entropy producing contributions
due to the fact that in reality the particles will deviate from equilibrium. These contributions will be subject to a
causal transport equation in the following section.

III. THE CAUSAL EVOLUTION EQUATION

In the Israel-Stewart second order theory of irreversible processes, the viscous pressure π is a dynamical degree
of freedom on its own [14]. Instead of applying the much more involved full Israel-Stewart theory we shall restrict
ourselves to the so-called truncated version [17], [18], [19] of this theory, since the latter already captures the essence
of noninstantaneous relaxations. While the full and the truncated theories may disagree significantly if applied to
far-from-equilibrium situations [17], [18], [19], they are expected to provide similar results near equilibrium [18]. Now,
reheating is anything but close to equilibrium. But as already mentioned, the main contribution to the entropy
production during the decay process may be traced back to the second term in the expression (25) for the effective
bulk pressure. The thermodynamic, dissipative bulk pressure π may be regarded as a small perturbation under these
circumstances and is supposed to obey the truncated causal transport equation

π + τπ̇ = −ζΘ . (27)

The quantity τ denotes the relaxation time associated with the thermodynamic, disipative bulk pressure, i.e. the
time the system would take to come to equilibrium (perfect fluid behaviour) if the generalized ‘force’ – in this case
the expansion Θ – were suddenly turned off. It may be related to the bulk viscosity ζ by [19] (see also [18])

ζ

τ
= c2b(ρ+ p) , c2b ≤ 1− c2s , (28)

where cs is the adiabatic sound speed and cb is the bulk viscous countribution to the dissipative speed of sound v,
given by v2 = c2s + c2b . Thus

π + τπ̇ = −Θc2bργτ . (29)

Here and throughout we will use the abbreviation

γ ≡ 1 +
p

ρ
,

where γ is not assumed constant.
The Einstein field equations for a spatially-flat Robertson-Walker spacetime are

3H2 = κρ , (30)

where κ is Einstein’s gravitational constant, and
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Ḣ = − 1
2κ (ρ+ p+ π) , (31)

where H = 1
3Θ = Ṙ/R and R is the cosmic scale factor. By eqs.(30) and (31), the thermodynamic bulk pressure may

be written as

κπ = −3γH2 − 2Ḣ . (32)

To calculate π̇ one first has to determine ṗ via

ṗ =
∂p

∂n
ṅ+

∂p

∂T
Ṫ . (33)

Using the balance law (13) for n, and the evolution equation (23) for T , we find

ṗ = − (3H − Γ) (ρ+ p) c2s − 3Hπ

(

∂T p

∂Tρ

)

, (34)

with the adiabatic sound velocity cs given by

c2s =

(

∂p

∂ρ

)

isentropic

=
n

(ρ+ p)

∂p

∂n
+

T

(ρ+ p)

(∂T p)
2

∂Tρ
. (35)

By differentiating (31), we get

π̇ = −2

3

Ḧ

H2
ρ− 2

Ḣ

H
ρ

(

1 +
∂T p

∂Tρ

)

− 3H (ρ+ p)
∂T p

∂T ρ

+ (3H − Γ) (ρ+ p) c2s . (36)

Using (32) and (36) in (29), the evolution equation for H becomes

τ

[

Ḧ

H2
+ 3

Ḣ

H

(

1 +
∂T p

∂Tρ

)

+
9

2
Hγ

(

∂T p

∂Tρ
− c2s − c2b

)

+
3

2
c2sγΓ

]

+
Ḣ

H2
+

3

2
γ = 0 . (37)

Equation (37) is the causal dynamical equation in general form. We now specify the equations of state implicit in
ρ and p. We assume that fluid 1 is described by the equations of state for nonrelativistic matter, i.e.

ρ1 = n1m+ 3
2n1T , p1 = n1T , m ≫ T , (38)

while fluid 2 is relativistic:

ρ2 = 3n2T , p2 = n2T . (39)

Consequently (37) reduces to

τ

[

Ḧ

H2
+

(

5n1 + 8n2

n1 + 2n2

)

Ḣ

H
+ 3

{

(n1 + n2)n1m

(n1 + 2n2) (n1m+ 3n2T )
− 3

2
γc2b

}

H

+
(5n1 + 8n2)n1m

8(n1 + 2n2)(n1m+ 3n2T )
Q

]

+
Ḣ

H2
+

3(n1m+ 4n2T )

2(n1m+ 3n2T )
= 0 , (40)

where Q ≡ |Γ1| > 0 was assumed, i.e. the nonrelativistic component decays. This is the causal evolution equation to
be solved.
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IV. CAUSAL DYNAMICS OF REHEATING

The equation (40) is a complicated nonlinear second order equation. To solve it, one could resort to numerical
integration. However, this is strongly dependent on initial conditions and on the form of the decay rate Q, and it
cannot readily give an idea of the overall dynamical features implied by the equation. Furthermore, part of the purpose
of our thermodynamical approach is to avoid detailed complexities and to aim for an overall qualitative understanding
arising from the constraint of causality.
In Section IV.A, we use eq.(40) to estimate the temperature and decay rate during reheating, neglecting the small

perturbation of the expansion rate due to thermodynamic viscous effects. (Notice that the gravitational field equations
‘feel’ only the thermodynamic viscous pressure.) It turns out that under this condition the reheating dynamics may
be discussed in terms of the ratio cb/cs of the dissipative to the adiabatic contributions to the speed of sound. Then
in Section IV.B, we calculate the perturbation of the expansion rate in a simple case.

A. Temperature and decay rate

It is reasonable to assume that the expansion is approximately governed by non-viscous effects, and that the latter
can be treated as a back-reaction. In this approximation, we neglect the terms multiplying τ in (40), and arrive at
the equation governing the expansion rate:

Ḣ

H2
+

3(n1m+ 4n2T )

2(n1m+ 3n2T )
≈ 0 . (41)

We solve this for three different stages of the decay. Then we use (40) to determine the corresponding decay rate Q.
The evolution of the temperature is given by

Ṫ

T
=

1

6(n1 + 2n2)T
[−12H(p1 + p2 + π) + n1mQ] (42)

as follows from (26) and from

Γ =
n1

4n

m

T
Q,

which is a consequence of (18) and the equations of state (38) and (39). In the perfect fluid limit π = Q = 0 one

recovers Ṫ /T = −2H for n1 ≫ n2, i.e. the nonrelativistic case, while for radiation (n1 ≪ n2) the well–known

behaviour Ṫ /T = −H is reproduced. Assuming that |π| ≪ p1 + p2, in agreement with the applicability conditions of
the Isreal-Stewart theory, equation (42) may be written as

Ṫ

T
≈ −2H

(

n1 + n2

n1 + 2n2

)[

1− Γ

3H

]

. (43)

It follows that the temperature rises when Γ > 3H . By (13), this is equivalent to ṅ > 0, i.e. to a growth in the total
particle number density (cf. [20]). As discussed in Section I, such abundant net particle creation is expected to occur
in the initial nonrelativistic stage of reheating.

(i) Nonrelativistic regime

In this regime the fluid is dominated by massive particles, so that n1 ≫ n2, γ ≈ 1. Then (41) reduces to

Ḣ + 3
2H

2 ≈ 0 ⇒ H ≈ 2

3t
. (44)

Inserting this solution back into (40), we find that the decay rate at the beginning of reheating is

Q ≈ 36
5 c2bH ⇒ Γ ≈ 3

(

cb
cs

)2

H where c2s ≈ 5

3

T

m
. (45)
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It is a specific feature of the present first-order approximation that it fixes the rates Q and Γ which, in our general
setting, are input parameters. Q and Γ are positive and proportional to H . Moreover, our approximation relates cb,
the bulk viscous contribution to the sound speed, to Q and Γ. The exact value of Γ is fixed by the ratio c2b/c

2
s. Since,

according to (45), c2s ≪ 1, a value c2b ≈ 1 is admitted by (28). This amounts to Γ ≫ H , i.e., violent particle production
as required for ‘preheating’. A sufficiently high value of Γ also determines the entropy production. Neglecting second-
order terms in π, the entropy flow vector is given by Sa ≈ nsua, where s is the entropy per particle. For large Γ,
neglecting the change in the entropy per particle, the entropy production density is approximately

Sa
;a ≈ 3

(

cb
cs

)2

sH . (46)

Equation (42) implies that at the beginning of the reheating, the rate of temperature change is given by

Ṫ

T
≈ −2

[

1−
(

cb
cs

)2
]

H . (47)

In the initial stage, a very large rate of creation of particles can lead to a growth in the net number density and thus
in the temperature. By (47), this is again equivalent to the effective dissipative contribution cb to the sound speed
exceeding the adiabatic contribution cs:

ṅ > 0 ⇔ Ṫ > 0 ⇔ cb > cs (48)

Equation (47) then implies that initially the temperature rises extremely rapidly (see also [20]). It reaches a maximum,
which we could call the reheating temperature Treh, following standard terminology, and then decreases as cb falls
below cs. By (45), the reheating temperature is given by

Treh ≈ 3
5 c

2
bm . (49)

It follows from (46) that there is high entropy production in this regime. Alternatively, this regime may be char-
acterized in terms of the effective bulk pressure (25). For Γ ≥ 3H the condition |π| ≪ p1 + p2 = p leads generally
to

π
eff

≈ − Γ

3H
p . (50)

Using the relations (45) one gets

π
eff

≈ −
(

cb
cs

)2

p ≈ −3

5
nmc2b ≈ −nTreh , (51)

equivalent to

|π
eff

|
p

≈ Treh

T
. (52)

For large particle production the condition |π
eff

| ≫ p is fulfilled. The reheating temperature (49) may be understood
as the temperature for which |π

eff
| ≈ p ≈ p1.

(ii) Intermediate regime

Here the energy densities of both components are comparable, i.e. n1m ≈ 3n2T so that γ ≈ 7
6 and consequently

equation (41) simplifies to

Ḣ + 7
4H

2 ≈ 0 ⇒ H ≈ 4

7t
. (53)

Then (40) implies that the decay rate is

8



Q ≈ 1

2

(

1 + 42c2b
)

H ⇒ Γ ≈ 3

8

[

1 + 8

(

cb
cs

)2
]

H where c2s ≈ 4

21
. (54)

As can be seen from (42), the temperature behaviour is

Ṫ

T
≈ −7

8

[

1− 8

7

(

cb
cs

)2
]

H . (55)

After the initial stage in the nonrelativistic regime, the creation of ultrarelativistic particles slows down, while the
nonrelativistic particles continue to decay, and we no longer expect that ṅ is positive. Thus Ṫ < 0, although by
(55) the cooling rate is less than the non–dissipative case (cb = 0). We expect that the temperature should decrease
monotonically after reaching its maximum Treh. By (55) this is the case provided that

c2b < 7
8c

2
s ⇒ c2b < 1

6 . (56)

We expect that (56) is easily satisfied in the intermediate regime, after the initial violent rate of creation of particles
has passed, and the two–fluid mixture evolves increasingly towards ‘normal’ two–fluid behaviour, for which cb ≪ 1
(see equation (53) of [12]).

(iii) Ultra-relativistic regime

In this last stage of reheating, the energy density becomes dominated by the radiation fluid, i.e. n2T ≫ n1m and
γ ≈ 4

3 . Therefore from (41) we have

Ḣ + 2H2 ≈ 0 ⇒ H ≈ 1

2t
. (57)

Then (40) implies the decay rate:

Q ≈ 36c2b

(

n2T

n1m

)

H ⇒ Γ ≈ 3

(

cb
cs

)2

H where c2s ≈ 1

3
. (58)

The temperature change follows from (42) as

Ṫ

T
≈ −

[

1−
(

cb
cs

)2
]

H . (59)

As argued above, we expect that cb < cs is easily satisfied, so that the temperature continues to fall, although still
at a reduced rate relative to the non–dissipative case. Towards the end of reheating the cosmic medium approaches a
perfect, relativistic fluid with vanishing ζ, so that c2b must tend to zero. For any nonzero c2b the decay rate Q diverges
in the limit n1m ≪ n2T .

B. Perturbations of the expansion rate

It is possible, given a priori the forms of the relaxation time τ and the decay rate Q, to calculate the perturbations
of the expansion rate H due to causal viscous and reaction effects, via (40). We illustrate this with a simple model,
which in particular can accomodate oscillations in H during the initial stage of reheating (compare [21], p241).
The simple model is based on the ansatz that τ−1 and Q are proportional to the expansion rate in the initial stage

of reheating, i.e.

τ−1 = νH , Q = βH , (60)

where ν and β are positive constants (with ν > 1 for a consistent hydrodynamic description). The ansatz for Q is
consistent with (45) if cb is constant. Using (60) in (40) in the nonrelativistic regime, we find that the evolution of
the expansion rate is governed by

9



Ḧ + (5 + ν)HḢ +
[

3 + 3
2ν + 5

8β − 9
2c

2
b

]

H3 ≈ 0 . (61)

Now we know that

H =
2

3t
+ h where |h| ≪ 2

3t
. (62)

Substituting (62) into (61) and linearising, we find that the perturbation h is governed by

ḧ+
[

2
3 (5 + ν)

]

t−1ḣ+
[

1
6

(

4 + 8ν + 5β − 36c2b
)]

t−2h

≈
[

1
27

(

36c2b − 5β
)]

t−3 .

This is the equation of a forced damped oscillator, as is readily seen after the change of variable to s = ln t:

h′′ +
[

1
3 (7 + 2ν)

]

h′ +
[

1
6

(

4 + 8ν + 5β − 36c2b
)]

h

≈
[

1
27

(

36c2b − 5β
)]

e−s . (63)

The simplest case is (45), i.e., 5β = 36c2b , for which (63) leads to the overdamped perturbation

h(t) ≈ ε1t
−2 + ε2t

−(1+2ν)/3 . (64)

Damped oscillations of h about the zero–order solution 2/(3t) occur when

30β > 216c2b + (2ν − 5)2 , (65)

which shows that cb is a damping factor, while the decay coefficient β contributes to oscillation. A further constraint
on the thermodynamic parameters arises from the requirement that the particular integral of (63) must be small
compared to 2/(3t):

|B| ≡
∣

∣

∣

∣

36c2b − 5β

5β − 36c2b + 4ν − 4

∣

∣

∣

∣

≪ 1 . (66)

If (65) and (66) are satisfied, then the damped oscillatory perturbation is given by

h(t) ≈ 2
9Bt−1 + t−(7+2ν)/6 [ε1 cos(ω ln t) + ε2 sin(ω ln t)] , (67)

where

ω = 1
6

[

30β − 216c2b − (2ν − 5)2
]1/2

is the frequency of oscillation. A simple choice that satisfies (65) and (66) is

ν = 5
2 , β = 2

165 + 36
5 c

2
b ,

in which case

H ≈ 2

3t
− 1

450t
+

1

t2
ε exp

(

i

√
11

33
ln t

)

.

Finally, we note that the perturbations of the Hubble rate induce perturbations of the temperature via the tem-
perature evolution equation (42). Using (60) and n1 ≫ n2, p1 + p2 + π ≈ n1T , we find

Ṫ + 2HT ≈ 1
6βmH .

Denoting by T̄ the dominant zero–order part of the temperature, which is determined by H̄ ≡ 2/(3t), and by δT the
perturbation induced by δH ≡ h, this equation leads to

(δT )· + 2H̄ δT ≈
(

1
6βm− 2T̄

)

h . (68)

Equation (68) determines the temperature perturbation explicitly in terms of the Hubble rate perturbation. Clearly,
if h has an oscillatory component, then so will δT .
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V. CONCLUDING REMARKS

A qualitative analysis based on a thermodynamic two–fluid model subject to causality has produced overall features
which are consistent with expectations. The decay rate of nonrelativistic particles implied by causality is positive
throughout the reheating process (thus providing a consistency check on our approach), and proportional to the
expansion. The overall behaviour of the temperature and decay rate are essentially determined by cb, the dissipative
contribution to the sound speed. Provided that cb exceeds the adiabatic contribution cs in the beginning of reheat-
ing, equivalently, provided that the total number density grows by virtue of super–abundant particle creation, the
temperature rises very rapidly at the start of reheating. It quickly reaches a maximum value (49), whereafter it falls
with expansion, at a reduced rate (determined by cb) relative to the non–dissipative case. Large amounts of entropy
are generated in the early stage, as shown by (46). A simplified model (60) allows us to calculate explicitly the de-
caying perturbations of the Hubble rate, including a case of oscillatory perturbations (67) around matter–dominated
behavior.
We have thus shown the capacity of a phenomenological model based on causal relativistic thermodynamics to

predict the expected basic features of reheating with economy and simplicity, and independent of detailed knowledge
of the interaction. This should be counted as another success of the Israel–Stewart theory (as adapted to deal with
interacting fluids), and another argument in favour of the theory with its causality and stability properties.
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