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Can Doppler Peaks discriminate among Inflationary
models and Topological Defect scenarios ?

By Mairi Sakellariadou

Département de Physique Théorique, Université de Genève, 24 quai Ernest-Ansermet,
CH-1211 Genève 4, Switzerland

Abstract Doppler peaks in the cosmic microwave background may allow us to distinguish among

the two classes of theories—inflationary models and topological defect scenarios—which attempt

to explain the origin of structure formation in the universe. We consider density perturbations

seeded by global textures in a universe dominated by cold dark matter. We calculate the height

and the position of the primary peak and conclude a different signature than the one obtained if

the initial perturbations were due to the amplification of quantum fluctuations of a scalar field

during a generic inflationary era. We believe that our analysis holds for all kinds of global defects

and general global scalar fields. We then question the validity of the temporal coherence of the

sources, assumed in the texture models. We finally discuss the temporal coherence of cosmic

string sources, through correlations of the energy and momentum in an evolving cosmic string

network in Minkowski space.

One of the most important issues of modern cosmology is the origin of the large-scale struc-
ture. We believe that it was produced by gravitational instability from small primordial
fluctuations in the energy density, generated in the early universe. Within this framework
there are two classes of theories to explain the origin of the primordial density perturba-
tions. They can be due to quantum fluctuations of a scalar field during an inflationary era,
or they may be seeded by topological defects produced during a symmetry breaking phase
transition. Inflationary fluctuations lead to an approximately scale-invariant (Harrison-
Zel’dovich) spectrum of density perturbations, generated through a linear mechanism,
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with a Gaussian distribution of amplitudes on scales which are cosmological today. These
are passive coherent fluctuations. Topological defect perturbations lead also to an ap-
proximately scale-invariant spectrum of density perturbations, however generated via a
non-linear process, with constant amplitude on each scale at horizon crossing at all times.
These are active incoherent fluctuations, for which causality requires the existence of a
large-scale radiation white noise-spectrum. Either of these two classes of theories predicts
precise fingerprints in the cosmic microwave background (CMB) anisotropies, which can
be used to differentiate among them using a purely linear analysis.

The CMB fluctuation spectrum is usually parametrized in terms of multiple moments
Cℓ, defined as the coefficients in the expansion of the temperature autocorrelation function
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which compares points in the sky separated by an angle ϑ. The main physical mechanisms
which contribute to the redshift of photons propagating in a perturbed Friedmann geom-
etry are: fluctuations in the gravitational potential on the last-scattering surface (Sachs-
Wolfe effect), acting on large angular scales (ℓ<∼50) ; acoustic waves in the baryon-radiation
fluid prior to recombination (Doppler peaks), acting on angular scales (0.1◦<∼ θ<∼2◦); and
suppression of CMB anisotropies due to the finite thickness of the recombination shell as
well as to photon diffusion during recombination (Silk damping), acting on the smallest
angular scales (ℓ>∼1000). Both, generic inflationary models and topological defect scenar-
ios predict an approximately scale-invariant spectrum of density perturbations on large
angular scales. Thus CMB anisotropies on intermediate and small angular scales are very
important. If the two families of models predict different characteristics for the Doppler
peaks, one can discriminate among them. Inflationary perturbations predict coherent os-
cillations, with the primary Doppler peak at ℓ ∼ 200, having an amplitude ∼ 4–6 times
the Sachs-Wolfe plateau, and the appearance of secondary oscillations [1].

To study the characteristics of the Doppler peaks in the CMB produced from textures,
we will employ a gauge-invariant linear perturbation analysis. Neglecting the integrated
Sachs-Wolfe (ISW) effect, the Silk damping and the contribution of neutrino fluctuations,
the Doppler contribution to the CMB anisotropies is [2]

[

δT

T
(x,n)

]Doppler

≈ 1

4
Dr(xrec, ηrec) +V(xrec, ηrec) · n , (2)

where V is the peculiar velocity of the baryon fluid with respect to the overall Friedmann
expansion, Dr is a gauge-invariant variable describing the density fluctuation in the coupled
baryon radiation fluid and xrec = x−n η0 (n denotes a direction in the sky, η is conformal
time, with η0, ηrec the present time and the time of recombination respectively).

We study a two-component fluid system: baryons plus radiation, which prior to re-
combination are tightly coupled, and CDM. The evolution for the perturbation variables
D (density perturbation) and V (velocity perturbation) in a flat background is given by

D
(

Dr

Dc

)

= S , (3)
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where subscripts “r” and “c” denote the baryon-radiation plasma and CDM, respectively.
In Eq. (3), D stands for a second order differential operator and S denotes the source
term, in general given by S = 4πGa2(ρ+ 3p)seed; in our case, where the seed is described
by a global scalar field φ, the source term is S = 8πG(φ′)2. Numerical simulations show
that the average of |φ′|2 over a shell of radius k can be modeled by [3]: 〈|φ′|2〉(k, η) =
0.5Aη̃2η−1/2[1 + α(kη) + β(kη)2]−1, where η̃ is the symmetry breaking scale of the phase
transition leading to texture formation; A, α, β are parameters of order 1. For a given scale
k, we chose the initial time such that the perturbation is super-horizon and the universe
is radiation dominated. With these initial conditions we solve the system of second order
equations for the perturbation variables, obtaining Dr and D′

r. The Doppler contribution
to the CMB anisotropies is given by

Cℓ =
2

π

∫
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where w = pr/ρr; jℓ is the spherical Bessel function of order ℓ, and j′ℓ its first derivative.
The angular power spectrum, shown in the figure, yields the Doppler peaks; we show
separately the contribution of Dr (upper dotted line), D′

r (lower dotted line), as well as
their sum (solid line).

Fig. The angular power spectrum for the Doppler contribution
to the CMB anisotropies is shown in units of ǫ. We choose the
cosmological parameters h = 1/2, ΩB = 0.05 and zrec = 1100.

The ISW effect will shift the position of the first peak to somewhat larger scales,
lowering ℓpeak by (5–10)% and possibly increasing slightly its amplitude (by less than
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30%). So the primary peak is displaced by ∆ℓ ∼ 150 towards smaller angular scales than
in standard inflationary models. Silk damping will decrease the relative amplitude of the
third peak with respect to the second one; however it will not affect substantially the
height of the first peak, which is ℓ(ℓ+ 1)Cℓ|Doppler

= (2− 3) 6C2 [2].

Here, as well as in [4], we assumed maximum coherence for the texture models and
found that the peaks were preserved. As emphasised in [5], the distinctive appearance of
Doppler peaks and troughs seen in inflationary calculations and texture models depend
sensitively on the temporal coherence of the sources. Assuming little coherence the peaks
are washed out, while an assumption of total coherence preserves them. An incoherent
defect perturbation is effectively coherent and displays secondary oscillations, if the defect
scaling coherence time is much bigger than 2πη/ξc , where ξc is the defect coherence length
[6]. Assumning effective coherence for textures means that the coherence function

CΦ(kη, kη′) ≡
< Φ(k, η) Φ(k, η′) >

σ(Φ(k, η)) σ(Φ(k, η′))
,

is equal to 1, where σ denotes the square root of the power spectrum. Checking numerically
whether the unequal time corrrelator for |φ′|2 has an exponential decay on a timescale
which will define the coherence time, we conclude [7] that even though effective coherence
is not fully justified for textures, the characteristic features of the first Doppler peak found
here, do indeed hold, while secondary oscillations should exist but be softened than the
ones predicted according the coherent approximation.

We now question the validity of the coherence assumption for local gauge strings,
since understanding the temporal coherence of string sources is very important when cal-
culating their microwave background signals. The authors in [5] assumed that strings were
effectively incoherent and obtained a rather featureless CMB power spectrum at large mul-
tipole ℓ. In [6] this assumption was justified by a numerical study of the two-time energy
density correlator. The authors concluded the absence of secondary oscillations and the
validity of the totally incoherent approximation. Performing numerical experiments, we
investigate scaling properties of the power spectra and correlations of the energy and mo-
mentum in an evolving string network in Minkowski space [8] and measure the coherence
time in the network. We expect a network of cosmic strings evolving in Minkowski space to
have all the essential features of one in a Friedmann background, while the big advantage
of Minkowski space is that the network evolution is very easy to simulate numerically.
To a good approximation, the cosmic string network can be thought of as consisting of
randomly placed segments of string, of length ξ/

√
1− v̄2 and number density ξ−3, with

random velocities; ξ denotes the energy density scale defined by ξ2 = µ/ρinf (µ is the
linear mass density and ρinf is the density of string with energy greater than ξ) and v̄ is
the r.m.s string velocity. The coherence time scale in a Fourier mode of wavenumber k
is determined by the time segments take to travel a distance k−1 [8]. We find that the
characteristic coherence time scale for a mode of spatial frequency k is ηc ≃ 3/k [8]. Our
numerical results indicate that at high k, ηc decreases faster than k−1, but we believe that
this behaviour is a lattice artifact. The implications of our simulations for the appearance
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of the Doppler peaks are not entirely clear cut. The coherence time is smaller than, but of
the same order of magnitude as, the period of acoustic oscillations in the photon baryon
fluid at decoupling, which is roughly 11/k [9]. This is in turn smaller than the time at
which the power in the energy and velocity sources peak, approximately 20/k [8]. We
believe that our string correlation functions can serve as realistic sources to answer the
question of existence or absence of secondary peaks in the CMB angular power spectrum.
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