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Abstract

I discuss the origin of the “Sakharov oscillations” (or “secondary Doppler peaks”) in
standard angular power spectra of the Cosmic Microwave Background anisotropies calcu-
lated for inflationary models. I argue that these oscillations appear because perturbations
from inflation have a set of properties which makes them “passive perturbations”. All pas-
sive perturbations undergo a period of linear “squeezing” resulting in a dramatic degree
of (classical) phase coherence of pressure waves in the photon-baryon fluid. This phase
coherence eventually is reflected in oscillatory features in the angular power spectrum of
the temperature anisotropies observed today. Perturbations from cosmic defects are “ac-
tive perturbations” which have sharply contrasting properties. Active perturbations are
highly non-linear and the degree of phase coherence in a given model reflects the interplay
between competing effects. A large class of active models have non-oscillatory angular
power spectra, and only an extremely exotic class has the same degree of coherence as is
found in all passive models. I discuss the significance of the search for these oscillations
(which transcends the testing of any given model) and take a critical look at the degree
to which the question of coherence has been treated so far in the literature.

1 Introduction

The Cosmic Microwave Background (CMB) provides us with perhaps the clearest window on
the very early universe. Based just on our current understanding, the impact of the next
generation of high resolution CMB experiments on theoretical cosmology is guaranteed to be
enormous, and full implications of the new data have yet to be determined.

1To appear in proceedings of the XXXIst Rencontre de Moriond, ‘Microwave Background Anisotropies’,
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The subject of this paper is the distinctive “Secondary Doppler Peaks” or “Sakharov
Oscillations[1]” in the angular power spectra of the microwave anisotropies calculated for in-
flationary models. I discuss how these features reflect the very specific properties of “passive
perturbations” of which the inflationary models are a subset. The very different nature of the
defect based (or “active”) models suppresses the tendency to generate Sakharov oscillations,
although a different mechanism can produce Sakharov oscillations in certain active models.

Section 2 outlines the basic ingredients of a of CMB anisotropy calculation, emphasizing
the differences between active and passive models. Section 3 spells out how the Sakharov
oscillations appear in passive models. Section 4 describes the basic properties of active models
make it hard to produce oscillations in the angular power spectrum, but also points out how
some degree of oscillation is still possible. At the end of Section 4 I comment of the degree
to which this issue has been addressed quantitatively in the literature. Concluding comments
appear in Section 5.

Much of this paper is based on work with my collaborators P. Ferreira, J Magueijo, and D.
Coulson, as reported in [2, 3, 4].

2 The evolution of the perturbations

Most models of structure formation consider perturbation which originate at an extremely
early time (eg the GUT era or even the Planck era) and which have very small amplitudes (of
order 10−6) until well into the matter era. Perturbations of inflationary origin start as short
wavelength quantum fluctuations which evolve (during the inflationary period) into classical
perturbations on scales of astronomical interest. Defect based models undergo a phase transition
(typically at around GUT temperatures, eg T ≈ 1016GeV ) forming defects which generate
inhomogeneities on all scales.

For all these models, once the inflationary period and/or phase transition is over, the Uni-
verse enters an epoch where all the matter components obey linear equations except for the
defects (if they are present). This “Standard Big Bang” epoch can be divided into three dis-
tinct periods. The first of these is the “tight coupling” period where radiation and baryonic
matter are tightly coupled and behave as a single perfect fluid. When the optical depth grows
sufficiently the coupling becomes imperfect and the “damping period” is entered. Finally there
is the “free streaming” period, where the CMB photons only interact with the other matter via
gravity. While the second and third periods can have a significant impact on the overall shape
of the angular power spectrum, all the physics which produces the Sakharov oscillations takes
place in the tight coupling regime, which is the focus of the rest of this paper.

Working in in synchronous gauge, and following the conventions and definitions in references
[5, 6, 2], the Fourier space perturbation equations are:
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Here τµν is the pseudo-stress tensor, ΘD ≡ ∂iΘ0i, Θµν is the defect stress energy, a is the cosmic
scale factor, G is Newton’s constant, δX is the density contrast and ΩX is the mean energy



density over critical density of species X (X = r for relativistic matter, c for cold matter, B for
baryonic matter), s ≡ 3

4
δr − δc, R = 3

4
ρB/ρr, ρB and ρr are the mean densities in baryonic and

relativistic matter respectively, cs is the speed of sound and k is the comoving wavenumber.
The dot denotes the conformal time derivative ∂η.

In the inflationary case there are no defects and Θµν = 0. With suitable initial conditions
these linear equations completely describe the evolution of the perturbations. In the defect
case Θµν 6= 0, and certain components2 of Θµν(η) are required as input. Cosmic defects are
“stiff”, which means Θµν(η) can be viewed as an external source for these equations. The
additional equations from which one determines Θµν(η) are highly non-linear, although the
solutions tend to have certain scaling properties which allow Θµν(η) to be modelled using a
variety of techniques (see for example [2, 8, 7]).

3 The passive case: Squeezing and phase coherence

Quite generically, for wavelengths larger than the Hubble radius (RH ≡ a/ȧ), Eqns [1-3] have
one decaying and one growing solution. The growing solution reflects the gravitational instabil-
ity, and, as required of any system which conserves phase space volume, there is a corresponding
decaying solution. For example, in the radiation dominated epoch, the two long wavelength
solutions for the radiation perturbation δr are δr ∝ η2 and δr ∝ η−2. Over time, RH grows
compared with a comoving wavelength so in the Standard Big Bang epoch a given mode starts
with wavelength λ >> RH but eventually crosses into the λ < RH regime. In the period of
tight coupling modes with λ < RH undergo oscillatory behavior since the radiation pressure
stabilizes the fluid against gravitational collapse. This process of first undergoing unstable be-
havior which eventually converts to oscillatory behavior is the key to the formation of Sakharov
oscillations.

I will now illustrate the process with a simple toy model. The simplest example of grow-
ing/decaying behavior is given by the upside down harmonic oscillator (q̈ = q) which has the
general solution q = Aet+Be−t). Figure 1 (left panel) shows the trajectories in phase space for
this system. As the “particle” rolls down the inverted parabolic potential both q and q̇ increase
arbitrarily and any starting point in phase space evolves arbitrarily close to the q̇ = q axis.
Any initial region in phase space will become squeezed against this axis and elongated along it,
as illustrated by the circle in the figure. This “squeezing3” process is generic to any equation
which has one growing and one decaying solution, although the simple shape of the squeezed
region is specific to models with linear equations.

The right-side-up harmonic oscillator (q̈ = −q) serves to illustrate the oscillating regime
(when the wavelength is smaller than RH). The right hand panel in Fig 1 shows the phase
space trajectories for the right-side-up harmonic oscillator. The familiar oscillatory behavior
describes circles in the q − q̇ plane (in polar coordinates the angle corresponds to phase of the
oscillation). The linearity ensures that the period of rotation is the same on all trajectories,
thus preserving the shapes of any initial region as it rotates around.

The physical system in question (e.g. δr) undergoes first squeezing and then oscillatory
behavior. During the unstable period the initial phase space distribution (dictated, in the case
of an inflationary scenario, by the quantum zero-point fluctuations) is squeezed by many orders
of magnitude. The distribution which enters the oscillatory period is thus highly squeezed

2 Conservation of stress energy allows the equations to be manipulated so that different components of Θµν

are required as input (a matter mainly of numerical convenience)[5, 6, 7, 8, 9, 10, 11].
3These dynamics are similar to those producing “squeezed states” of light in quantum optics, but the effect

discussed here is completely classical. [12]



Figure 1: Phase space trajectories for the up-side-down harmonic oscillator (left panel)
and right-side-up harmonic oscillator (right panel). These toy models illustrate the grow-
ing/decaying regime and oscillating regime (respectively). The growing/decaying regime causes
“squeezing”, which drives all solutions toward (and outward along) the q = q̈ axis. In a passive
model the perturbations first encounter the squeezing regime and thus the phase space distri-
bution which enters oscillatory regime is highly squeezed and a unique temporal phase (up to
a shift by π) is specified for the oscillatory regime. The elongated curve on the right panel is
the result of squeezing a circle (centered at the origin) by a factor of 100. Typically inflation
models will have squeeze factors of 1020 or greater.

(much more so than the oblong shape depicted in the right panel of Fig 1). The end result it
that the temporal phase of oscillation is rigorously dictated by the period of squeezing which
went before.

This effect is illustrated more directly in Fig 2, where different solutions for δr are shown.
Representative solutions are shown from across the entire ensemble, the growing solution dom-
ination guarantees that each one goes through zero at essentially the same time.

Figure 3 shows the ensemble averaged values of δ at a fixed time as a function of wavenumber
(the power spectrum). The zeros correspond to modes which have been caught at the “zero-
point” of their oscillations. The phase focusing across the entire ensemble guarantees that there
will always be some wavenumbers where the power is zero. It is these zeros which are at the
root of the oscillations in the angular power spectrum.

An important point is that these zeros are an absolutely fundamental feature in any passive
theory. No amount of tinkering with the details can counteract that fact that an extended
period of liner evolution will lead to growing mode domination, which in turn fixes the phase of
the oscillations in the tight coupling era. If one were to require oscillation in a passive model to
be out of phase from the prescribed value, one would imply domination by the decaying mode
outside the Hubble radius – in other words a Universe which is not at all Robertson-Walker on
scales greater than RH .
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Figure 2: Passive perturbations: Evolution of two different modes during the tight coupling
era. While in (a) elements of the ensemble have non-zero values at η⋆, in (b), all members
of the ensemble will go to zero at the final time (η⋆), due to the fixed phase of oscillation set
by the domination of the growing solution (or squeezing) which occurs before the onset of the
oscillatory phase. The y-axis is in arbitrary units.

4 The active case: Coherence lost

4.1 The nature of the ensemble

As described in Section 2, the active case is very different from the passive case, due to the
presence of what is effectively a source term in Eqns [1-3]. One consequence is that the whole
notion of the ensemble average is changed. In the passive case any model with Gaussian initial
conditions can be solved by solving Eqns [1-3] with the initial values for all quantities given by
their initial RMS values. The properties of linearly evolved Gaussian distributions guarantee
that this solution will always give the RMS values at any time. Thus the entire ensemble is
represented by one solution.

In the active case this is not in general possible. One has to average over an ensemble of
possible source histories, which is a much more involved calculation. In [3] we “square” the
evolution equations to write the power spectrum as convolution of two-point functions of the
sources, but there the added complexity requires the use of the full unequal time correlation
functions.

4.2 Non-coherence

In general, the source term will “drive” the other matter components, and temporal phase
coherence will be only as strong as it is within the ensemble of source terms. An illustration
of this appears in Fig 4. In many active models the sources are sufficiently decoherent that no



Figure 3: The r.m.s. value of δr evaluated at decoupling (η⋆) for a passive model (solid) and an
active model (dashed). This is Fig 2 from ref [2] where the details are presented.

oscillations appear in the power spectrum (see for example the dashed curve in Fig 3).

4.3 Coherence regained

The source evolution is a highly non-linear process, so from the point view of a single wavenum-
ber the source may be viewed as a “random” force term. At first glance it may seem impossible
for such random force term could induce any temporal coherence, but here is how temporal
coherence can occur: The source term only plays a significant role in Eqns [1-3] for a finite

period of time. This is somewhat apparent in Fig 4. (The y-axis of Fig 4 shows a quantity
specially chosen to indicate the significance of the source in Eqns [1-3].) In the limit where this
period of significance is short compared to the natural oscillation time of δr (and happens at the
same time across the entire ensemble) the ensemble of source histories can be phase coherent.
The tendency for a given active model to produce oscillations in the power spectrum depends
on the how “sharply peaked” the significance of the source term is in time.

Note added:It is also the case that on scales larger than RH there are “squeezing” mech-
anisms at work, even for active perturbations. (The gravitational instability is, after all, still
present.) In [?] a Green function method is developed which clearly illustrates how the active
case involves a competition between squeezing effects, which tend to produce oscillations in
the power spectrum, and the randomizing effect of the nonlinear source evolution. In extreme
cases, where the “randomizing” effects are minimized it is even possible to have active models
with mimic an inflationary signal[9, 10, 11].

4.4 Current Status

So far, we are just beginning to learn the degree of coherence which is present in the most
popular active models. Much of the work makes use of the “high coherence limit” in which a
single solution to Eqns [1-3] is meant to represent the RMS value. This only makes physical
sense for the “sharply peaked” sources discussed in the previous subsection[3], but allows one
to use code designed for passive perturbations with only minor changes.



Figure 4: Active perturbations: Evolution of δr(k) and the corresponding source Θ00 during
the tight coupling era (ΘD is not shown). Two members of the ensemble are shown, with
matching line types. Due to the randomness of the source, the ensemble includes solutions
with a wide range of values at η⋆. Unlike the inflationary case (Figure 1) the phase of the
temporal oscillations is not fixed. The y axis is in arbitrary units, and the source models are
the same as for figure 2. The factor ηa/ȧ allows one to judge the relative importance (over
time) of the Θ00 term in Eqn 2.

The question of coherence has been most aggressively pursued in the cosmic string case[2, 3,
4, 13], and every indication is that cosmic strings give a highly decoherent ensemble. However,
there will still be room for some degree of skepticism until the production of gravity waves and
small loops is incorporated in some realistic way ([14], see also the methods of[15]). Most of
the work on cosmic texture models has not dealt quantitatively with the question of evidence
for coherence in the microwave sky although it is pretty clear that textures should have more
coherence than the cosmic strings. In [8] the “high coherence” limit was used for calculating
the microwave sky, but numerical simulations were used to illustrate some coherent behaviour
in the tight coupling era. In other calculations the high coherence limit has been used for
convenience, and these papers have simply not claimed to treat the question of coherence.
Recent simulations by Turok [15] are the sort which can in principle address the coherence
question for a large number of active models, but the author is not willing to claim conclusive
results until a large dynamic range is achieved.

5 Conclusions

The Sakharov oscillations (or secondary Doppler peaks) in the angular power spectrum of
CMB anisotropies signify a high degree of coherence in the primordial perturbations. These
oscillations are a certain prediction of all passive models (which includes all inflation based



models) and can not be adjusted away4. As such, this prediction represents probably the most
clear-cut opportunity to falsify all scenarios in which the perturbations have an inflationary
origin. On the other hand the observation of substantial Sakharov oscillations in the data
would have an enormous impact on the active models, ruling out all be a very special subset
of these. I conclude that the search for Sakharov oscillations in the CMB sky represents an
opportunity to gain very deep insights into the origin of the primordial perturbations. Every
effort should be made to make sure that the experiments are able to achieve conclusive results
on this matter[16].
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