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Abstract

Cosmological theories for the origin and evolution of structure in the Universe are

highly predictive of the form of the angular power spectrum of cosmic microwave back-

ground fluctuations. We present new results from a comprehensive study of CMB obser-

vations which provide the first measurements of the power spectrum all the way down to

angular scales of ∼ 10 arcminutes. On large scales a joint likelihood analysis of the COBE

and Tenerife data fixes the power spectrum normalisation to be Qrms−ps = 21.0 ± 1.6µK

for an initially scale invariant spectrum of fluctuations. The combined data are consistent

with this hypothesis, placing a limit of n = 1.3± 0.3 on the spectral slope. On intermedi-

ate scales we find clear evidence for a ‘Doppler’ peak in the power spectrum localised in

both angular scale and amplitude. This first estimate of the angular position of the peak

is used to place a new direct limit on the curvature of the Universe, corresponding to a

density of Ω = 0.7+1.0
−0.4. Very low density open Universe models are inconsistent with this

limit unless there is a significant contribution from a cosmological constant.

1 Introduction

Observations of the Cosmic Microwave Background (CMB) radiation provide information about
epochs and physical scales that are inaccessible to conventional astronomy. In contrast to tra-
ditional methods of determining cosmological parameters, which rely on the combination of
results from local observations[31], CMB observations provide direct measurements[5, 48] over
cosmological scales, thereby avoiding the systematic uncertainties and biases associated with
conventional techniques. Assuming that the fluctuations conform to a random Gaussian field,
then all of the statistical properties are contained in the angular power spectrum and con-
sequently tracing out the form of the CMB power spectrum is a key goal of observational
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cosmology[5, 3, 4, 40, 22, 24, 33]. CMB observations on different angular scales are probing
different physical effects (see White et al. 1995 [48] and Scott et al. 1995 [40] for comprehen-
sive reviews). On scales >

∼2
◦, which is the size of the horizon at last scattering of the CMB

photons, the gravitational redshifting of the CMB photons through the Sachs-Wolfe effect is
the dominant process. The presence of either a background of primordial gravity waves and/or
mass fluctuations at recombination, would lead to fluctuations in the CMB. The scalar mass
density fluctuations lie outside the horizon and are predicted by inflationary theory to have a
scale-invariant flat power spectrum i.e. n = 1. In Section 2 we use the combined large scale
COBE and Tenerife observations to delimit the spectral slope n and to fix the power spectrum
normalisation Qrms−ps.

On scales of ∼ 0.2◦ − 2.0◦ the scattering of the CMB photons during acoustic oscillations
of the photon-baryon fluid at recombination [13] is expected to imprint characteristic ‘large’
amplitude peaks into the CMB power spectrum. The position lp of the main peak reflects the
size of the horizon at last scattering of the CMB photons and is determined almost entirely by
the geometry of the Universe. As a result one finds that [22, 23] lp depends directly on the
density of the Universe according to lp ∝ 1/

√
Ω. The height of the peak is directly proportional

to the fractional mass in baryons Ωb and also varies according to the expansion rate of the
Universe as specified by the Hubble constant H0; in general [22] for baryon fractions Ωb

<
∼0.05,

increasing H0 reduces the peak height whilst the converse is true at higher baryon densities.
Consequently by measuring the amplitude of the intermediate scale CMB fluctuations relative
to the CMB fluctuations resulting from scalar density perturbations on large scales we can trace
out the CMB power spectrum and hence directly estimate Ω, Ωb and H0 from the position and
amplitude of the main peak. In Section 3, we use current CMB observations, including new
data from the CAT, Tenerife and COBE experiments to build up a conservative and consistent
picture of the CMB power spectrum on large and intermediate scales and hence to obtain a
first estimate of both the position and amplitude of the Doppler peak.

2 Joint likelihood analysis of COBE and Tenerife observations

Both the COBE satellite observations [2] and the ground-based observations from the Tenerife
experiments [11] are on sufficiently large angular scales that they probe fluctuations that are
beyond the horizon scale at recombination and are hence still in the linear growth regime. Such
data can therefore be used to investigate the spectral slope of the initial primordial fluctuation
spectrum generated in the early Universe. Numerous attempts [42, 19, 20, 45, 2, 16] have been
made to determine both the slope and normalisation of the power spectrum at small multipoles.
The approach detailed in Hancock et al. [19] and reviewed here differs from previous analyses in
that for the first time the COBE and Tenerife data have been used together taking into account
all correlations between the two data sets. This method, developed in collaboration with Max
Tegmark, uses a direct brute force calculation of the likelihood function for the combined data.

We apply the likelihood analysis to the COBE two-year [1] data and the Tenerife dec +40◦

scan [19, 20], assuming a power law model with free parameters n and Qrms−ps. The COBE
Galaxy-cut two-year map consists of 4038 pixels, whilst the Tenerife Galaxy cut (RA 161◦−230◦)
scan contains 70 pixels, requiring a 4108 × 4108 covariance matrix for a joint likelihood analysis
of the data. We arrange the pixels in a 4108-dimensional vector ∆T = (∆T1,∆T2, ...∆T4108)
and compute the likelihood function L(n,Qrms−ps) ∝ exp−(∆TTV−1∆T) as in Tegmark and
Bunn 1995 [45] by Cholesky decomposition of the 4108 × 4108 covariance matrix V at a
dense grid of points in the (n,Qrms−ps)-parameter space, marginalizing over the four “nuisance
parameters” that describe the monopole and dipole. The covariance matrix consists of three



parts: a 70 × 70 block with the covariance between the Tenerife pixels, a 4038 × 4038 block
with the covariance between the COBE pixels, and off-diagonal 4038×70 blocks containing the
covariance between the Tenerife and COBE pixels. In this way, we fully account for intrinsic
correlations due to the CMB structure and correlations due to sampling with the different
instruments. Additionally in forming the likelihood function we have intrinsically incorporated
the effects of cosmic and sample variance for the two data sets, plus random noise and the
interdependence of the model parameters.

The resulting normalised joint likelihood function depicted in Figure 4 of Hancock et al.

(submitted [19]) thus provides an accurate description of the constraints placed on n and
Qrms−ps by the joint data set. The likelihood is seen to peak at n = 1.37, Qrms−ps = 16.1µK,
with a 68% confidence region (uniform prior) encompassing 0.90 to 1.73 in n for Qrms−ps in
the range from 12.1 to 22.9 µK. Margenalising over Qrms−ps one finds n = 1.3 ± 0.3, whilst
conditioning on n = 1, one finds a power spectrum normalisation of Qrms−ps = 21.0 ± 1.6.
These results using COBE 2-year and Tenerife dec +40◦ data are comparable to those obtained
using the COBE 4-year data [2], for which n = 1.2± 0.3 and Qrms−ps = 18± 1.6µK for n = 1.
The joint analysis of the COBE 4-year data plus a significantly extended Tenerife sky area is
in progress and is expected to improve on these limits. However, it is clear that the current
Tenerife and COBE results offer a consistent picture on large scales and do not favour values
of n less than unity. In the case of power law inflation, such large values of n do not allow
for a significant contribution from tensor modes, giving us confidence in normalising the scalar
power spectrum to the large scale anisotropy data. In the following, we will assume that this is
the case and will proceed to compare the large and intermediate scale anisotropy measurements
to test for the presence of a Doppler peak.

3 The CMB Power Spectrum

Reconstructing the CMB power spectrum over large and intermediate angular scales requires
the simultaneous use of data from a number of different experiments, all with their own
classes of uncertainties. At the time of writing, there are numerous CMB experiments op-
erating worldwide, and it is appropriate here to restrict ourselves to the subset of experiments
which have produced conclusive evidence for the detection of CMB anisotropy. Clear detec-
tions have now been reported by a number of different groups, using observations from satel-
lites (COBE[42, 2]), ground-based switching experiments (Tenerife[19],[20], Python[36], South
Pole[17], Saskatoon[30]), balloon mounted instruments (ARGO[12], MAX[44], MSAM[6, 7])
and more recently ground-based interferometer telescopes (CAT[41]). Given the difficulties in-
herent in observing CMB anisotropy, it is possible and indeed likely, that some of these results
are contaminated by foreground effects[35]. Determining the form of the CMB power spectrum
in order to trace out the Doppler peak requires a careful, in-depth consideration of the CMB
measurements from the different experiments within a common framework as presented in Han-
cock et al. (submitted [21]); the full details including a discussion of foreground contamination
are presented in Rocha et al. (in preparation[35]). In this paper and the following contribu-
tion [34], we present our principal findings. We consider all of the latest CMB measurements,
including new results from COBE, Tenerife, MAX, Saskatoon and CAT, with the exception of
the MSAM results and the MAX detection in the Mu Pegasi region which is contaminated by
dust emission[14]. On the largest scales corresponding to small l, new COBE [2] and Tenerife
[19] results improve the power spectrum normalisation, whilst significant gains in knowledge at
high l are provided by new results from the Saskatoon and CAT experiments. The full data set
spans a range of 2 to ∼ 700 in l, sufficient to test for the main Doppler peak out to Ω = 0.1.



Figure 1: The experimental window functions Wl.

3.1 The flat bandpower approximation

The competing models for the origin and evolution of structure predict[5, 22], the shape and
amplitude of the CMB power spectrum and its Fourier equivalent, the autocorrelation function
C(θ) =< ∆T (n1)∆T (n2) > where n1 · n2 = cos θ. Expanding the intrinsic angular correlation
function C(θ) in terms of spherical harmonics one obtains: C(θ) =

∑∞
l≥2(2l+1)ClPl(cos(θ))/4π,

where low order multipoles l correspond to large angular scales θ and large l-modes are equiva-
lent to small angles on the sky. The different experiments sample different l-modes according to
their window functions Wl, as shown in Figure 1 : for a detailed discussion of window functions
see [47, 46]. The observed power in CMB fluctuations as seen through a window Wl is given by

Cobs(0) =
(

∆Tobs

T

)2

=
∞
∑

l≥2

(2l + 1)ClWl/4π. (1)

The Cl are predicted by the cosmological theories and contain all of the relevant statistical
information for models described by Gaussian random fields[5]. Given Wl, then for the Cl’s
corresponding to the theoretical model under consideration it is possible to obtain the value
of ∆Tobs one would expect to observe using the chosen experiment. This value can then be
compared to the value actually observed to test the cosmological model.

We take the reported CMB detections and convert them to a common framework of flat
bandpower results[3, 4] as given in Table 1 of the contribution by Rocha and Hancock (this
volume). In order to use the observed anisotropy levels to place constraints on the CMB
power spectrum one must in general know the form of the Cl under test. However, in most
cases the form of Cl can be represented by a flat spectrum Cl ∝ C2/(l(l + 1)) over the width

of a given experimental window, so that the bandpower is ∆Tl/T =
√

Cobs(0)/I(Wl), where

we define I(Wl) according to Bond (1995)[3, 4] as I(Wl) =
∑∞

l=2(l + 0.5)Wl/(l(l + 1). This
bandpower estimate is centred on the effective multipole le = I(lWl)/I(Wl). In many instances
experimenters now report results directly for a flat spectrum and when this is not so we have
converted the quoted power in fluctuations into the equivalent flat band estimate. Each group
has obtained limits on the intrinsic anisotropy level using a likelihood analysis (see e.g. Hancock
et al. 1994[20]), which incorporates uncertainties due to random errors, sampling variance[39]
and cosmic variance[38, 37]. The form of the likelihood function is not necessarily Gaussian, and



Figure 2: The data points from Table 1 (see [34]) are shown compared to the best fit analytical
CDM model. The dotted and dashed lines show the best fit models which are obtained when
the Saskatoon calibration is adjusted by ±14%. The data points from the MAX experiment
are shown offset in l for clarity

strictly one requires a method that will utilise the full likelihood functions from all experiments
consistently. However, given the relatively large error bars on most of the reported data points
it is sufficient for our purposes here to approximate all likelihood results as originating from a
Gaussian distribution, giving the one-sigma error bounds in column three of Table 1 (see [34])
by averaging the difference in the reported 68% upper and lower limits and the best fit ∆Tl.
This bias introduced by this averaging is discussed in [35].

Results from the MSAM experiment are not included here, because they do not provide an
independent measure of the power spectrum since their angular sensitivity and sky coverage
are already incorporated within the Saskatoon measurements. Netterfield et al. [30] report
good agreement between the MSAM double difference results and Saskatoon measurements,
although the discrepancy with the MSAM single difference data is yet to be resolved.

3.2 Estimating the parameters of the Doppler Peak

The data points from Table 1 (see [34]) are plotted in Figure 2, in which the horizontal bars
represent the range of l contributing to each data point. There is a noticeable rise in the
observed power spectrum at l ≃ 200, followed by a fall at higher l, tracing out a clearly defined
peak in the spectrum. In the past several groups [40, 24, 33] have attempted to determine
the presence of a Doppler peak, but only now are the data sufficient to make a first detection
and to put constraints on the closure parameter Ω. As a first step, we adopt a simple three
parameter model of the power spectrum, which we find adequately accounts for the properties
of the principal Doppler peak for both standard Cold Dark Matter (CDM) models [10, 13] and
open Universe (Ω < 1) models [24]. The functional form chosen is a modified version of that



used in Scott, Silk & White [40] — we choose the following:

l(l + 1)Cl = 6C2

(

1 +
Apeak

1 + y(l)2

)

/

(

1 +
Apeak

1 + y(2)2

)

(2)

where y(l) = (log10 l − log10(220/
√
Ω))/0.266. In this representation C2 specifies the power

spectrum normalisation, whilst the first Doppler peak has height Apeak above C2, width log10 l =
0.266 and for Ω = 1.0 is centred at l ≃ 220. By appropriately specifying the parameters C2,
Apeak and Ω it is possible to reproduce to a good approximation the Cl spectra corresponding to
standard models of structure formation with different values of Ω, Ωb and H0. Such a form will
not reproduce the structure of the secondary Doppler peaks, but we have checked the model
against the overall form of the Ω = 1 models of Efstathiou and the open models reported in
Kamionkowsky et al. [24] and find that this form adequately reflects the properties of the
main peak. This satisfies our present considerations since the current CMB data are not yet
up to the task of discriminating the secondary peaks. Varying the three model parameters
in equation (2) we form Cl spectra corresponding to a range of cosmological models, which
are then used in equation (1) to obtain a simulated observation for the ith experiment, before
converting to the bandpower equivalent result ∆Tl[C2, Apeak,Ω](i). The chi-squared for this set
of parameters is given by

χ2(C2, Apeak,Ω) =
nd
∑

i=1

(∆T obs
l (i)−∆Tl[C2, Apeak,Ω](i))

2

σ2
i

,

for the nd data points in Table 1 (see [34]) and the relative likelihood function is formed accord-
ing to L(C2, Apeak,Ω) ∝ exp(−χ2(C2, Apeak,Ω)/2). We vary the power spectrum normalisation
C2 within the 95 % limits for the COBE 4-year data [2] and consider Apeak in the range 0 to 30
and values of the density parameter up to Ω = 5. The data included in the fit are those from
Table 1 (see [34]), which with the exception of Saskatoon include uncertainties in the overall
calibration. There is a ±14% calibration error in the Saskatoon data, but since the Saska-
toon points are not independent this will apply equally to all five points [30]. The likelihood
function is evaluated for three cases: (i) that the calibration is correct, (ii) the calibration is
the lowest allowed value and (iii) the calibration is the maximum allowed value. In each case
the likelihood function is marginalised over C2 before calculating limits on the remaining two
parameters according to Bayesian integration with a uniform prior.

4 Results and Discussion

In Fig. 3 the likelihood function obtained from fitting the model Cl spectra to the data of
Table 1 (see [21]) is shown plotted as a function of the amplitude and position (Ω) of the
Doppler peak. The highly peaked nature of the likelihood function in Fig. 3 is good evidence
for the presence of a Doppler peak localised in both position (Ω) and amplitude. In Fig. 4 we
show the 1-D conditional likelihood curve for Ω, obtained by cutting through the surface shown
in Fig. 3 at the best-fit value of Apeak. The best fit value of Ω is 0.7 with an allowed 68% range
of 0.30 ≤ Ω ≤ 1.73.

In Figure 2 the best fit model, represented by the solid line, is shown compared to the data
points, assuming no error in the calibration of the Saskatoon observations. The chi-squared
per degree of freedom for this model is 0.9, implying a good fit to the data. The peak lies
at l = 263+139

−94 corresponding to a density parameter Ω = 0.70+1.0
−0.4; the height of the peak

is Apeak = 9.0+4.5
−2.5. The dashed and dotted lines show the best fit models (Ω = 0.70+0.92

−0.37,
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Figure 3: The likelihood surface for Ω and Apeak. (The nominal Saskatoon calibration is
assumed.)

Figure 4: The 1-D conditional likelihood curve for Ω.



Apeak = 11.0+5.0
−4.0 and Ω = 0.68+1.2

−0.4, Apeak = 6.5+3.5
−2.0 respectively) assuming that the Saskatoon

observations lie at the upper and lower end of the permitted range in calibration error. These
likelihood results using the analytic form for the Cl and the results from a more detailed analysis
using exact models (see Hancock et al. submitted [21]; Rocha and Hancock, this volume) imply
that independent of calibration uncertainties in the data, current CMB data are inconsistent
with cosmological models with Ω < 0.3.

5 Conclusions

Our current results provide good evidence for the Doppler peak, verifying a crucial prediction
of cosmological models and providing an interesting new measurement of fundamental cosmo-
logical parameters. In Rocha et al. [35], a detailed comparison of the CMB data is made
with the theoretical power spectra predicted by a range of flat, tilted, reionized, open mod-
els and models with non-zero cosmological constant. The existence of the Doppler peak has
important consequences for the future of CMB astronomy, implying that our basic theory is
correct and that improving our constraints on cosmological parameters is simply a matter of
improved instrumental sensitivity and ability to separate out foregrounds. New instruments
such as VSA [26], MAP and the proposed COBRAS/SAMBA satellite [29] will provide this
improved sensitivity and should delimit Ω and other parameters with unprecedented precision.
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