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HADRON PHYSICS AND THE STRUCTURE OF NEUTRON STARS∗)
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ul. Radzikowskiego 152, 31-342 Kraków, Poland

Abstract:

The equation of state of hadronic matter in neutron stars is briefly reviewed. Uncer-

tainties regarding the stiffness and composition of hadronic matter are discussed. Impor-

tance of poorly known short range interactions of nucleons and hyperons is emphasized.

Condensation of meson fields and the role of subhadronic degrees of freedom is considered.

Empirical constraints on the equation of state emerging from observations of neutron stars

are discussed. The nature of the remnant of SN1987A is considered.

1. Introduction

Neutron stars are the final stage of evolution of massive stars, M > 8M⊙. They are

born in supernova explosions which terminate hydrostatic evolution when heavy elements

up to iron are synthesized in the core. When the mass of still growing iron core reaches

the Chandrasekhar limit, the core looses stability and collapses to a neutron star. It is an

open question what is the maximum mass of stars which leave neutron star after the core

collapse. I shall briefly mention some recent ideas regarding this problem.

The main subject of this lecture is the equation of state (EOS) of hadronic matter

which determines properties of neutron stars, in particular their internal structure. Before

discussing in some detail the physics governing the EOS, I first review the observational

parameters of neutron stars. Then I discuss currently considered possibilities regarding

the nature of the neutron star EOS. In the last section the empirical constraints on the

∗) Lecture given at the Meeting of Astrophysics Commission of Polish Academy of Arts

and Sciences, Cracow, June 1996.
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EOS are discussed. As particularly relevant, the nature of the remnant of SN1987A is

discussed.

2. Empirical parameters of neutron stars

Neutron stars have very small radii, on order of 10km, and cool rather quickly after

birth in supernova explosion. These are principal reasons making the flux of thermal

photons emitted by neutron stars practically invisible. Only young neutron stars which

are sufficiently hot radiate X-ray flux which can be registered by satellite-born detectors.

Isolated neutron stars which rotate fast enough and possess strong magnetic field

are observed as radio pulsars. At present ∼ 1000 pulsars are known and this number

continuously increases. Neutron stars are also found in binaries. These accreting matter

from the companion are observed as X-ray pulsars, when they have strong magnetic field,

or as X-ray bursters in case of weak magnetic field. Of particular importance are binary

pulsars with the companion neutron star as they allow one to measure precisely the neutron

star masses. At present six such double neutron star binaries are known.

Physical parameters of neutron stars most relevant to constraining the EOS are the

mass, the radius, the surface temperature and the age. Simultaneous determination of all

these parameters would very tightly constrain the neutron star EOS. Unfortunately, these

parameters are not easily accessible to observations.

Period of rotation and the magnetic field of pulsars could also provide important

information about the internal structure of the stars. In particular, pulsar timing is a

powerful means of probing neutron stars.

2.1 NEUTRON STAR MASSES

Presently, masses of about 20 neutron stars in binary systems are determined. Among

them are six double neutron star binaries, PSR B1913+16 [1], PSR B1534+12 [2], PSR

B2303+46 [3], PSR B2127+11C [4], PSR B1820-11 [5] and PSR J1518+4904 [6]. For three

of them, PSR B1913+16, PSR B1534+12 and PSR B2127+11C, precise measurements

of mass of both neutron stars are available. The masses are found to be M1 = 1.44M⊙

and M2 = 1.39M⊙ (PSR B1913+16), M1 = 1.34M⊙ and M2 = 1.34M⊙ (PSR B1534+12)

and M1 = 1.35M⊙ and M2 = 1.36M⊙ (PSR B2127+11C). All masses lie in a rather

narrow interval, 1.3M⊙ < M < 1.5M⊙. Masses of neutron stars in X-ray pulsars are also

consistent with these values although are measured less accurately. The measured masses
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of neutron stars apparently do not exceed the maximum mass which is about 1.5M⊙. We

shall discuss possible implications of this upper limit in the last section.

2.2 NEUTRON STAR RADII

Radii of neutron stars are not directly observable. One can infer, however, some

plausible values from model calculations of X-ray bursters which are of the order of 10km.

2.3 SURFACE TEMPERATURE OF NEUTRON STARS

The X-ray flux from about 14 pulsars has been detected [7]. The spectrum of photons

is more difficult to obtain. If measured, it is often not consistent with the thermal emission

but is rather dominated by hard component due to magnetospheric activity. Only for four

pulsars, PSR 0833-45 (Vela), PSR 0630+18 (Geminga), PSR 0656+14 and PSR 1055-52,

softer blackbody component corresponding to surface thermal emission is determined.

2.4 THE AGE OF PULSARS

Pulsar ages are estimated by measuring their spin down rates. Pulsars spin down due

to conversion of rotational energy into radiation. A simple spin down relation is assumed,

ν̇ = Kνn, where ν is the rotation frequency, and n is the braking index. The constant

K for magnetic braking is proportional to d2/I, where d is the magnetic moment of the

star and I is the moment of inertia. If the energy loss is through radiation from a dipolar

magnetic field, the braking index is n = 3. The spin-down age of pulsar is then τ = −ν/2ν̇.

The spin-down age with n = 3 is commonly used for pulsars. Its applicability, however,

is questioned by recent measurement of the braking index of the Vela pulsar [8], which gives

n = 1.4± 0.2. This value implies that previous estimate of the age of Vela pulsar should

increase by a factor ∼ 3.

2.5 MAGNETIC FIELDS OF NEUTRON STARS

Magnetic fields of radio pulsars are inferred from the spin down relation assuming

dipolar magnetic field. A striking feature is the bimodal distribution of pulsar magnetic

fields. Usual pulsars have strong magnetic field, B ∼ 1012 − 1013G, whereas millisecond

pulsars possess much weaker fields, B ∼ 108− 109G. For some X-ray pulsars the magnetic

field is measured directly, by observation of absorption features interpreted as cyclotron

3



lines [9]. The values are in the range found for normal pulsars. It should be noted that

neutron stars in the X-ray bursters have, if any, still weaker fields, B < 108G.

Magnetic field of neutron stars could also serve as a probe of the neutron star EOS if

its presence is determined by the properties of dense matter. The bimodal distribution of

pulsar magnetic fields strongly suggests existence of a magnetic phase transition in neutron

star matter [9]. There is a possibility, however, that some component of the magnetic field

of a neutron star is inherited from the progenitor.

3. The EOS and structure of neutron stars

Before turning to the structure of neutron stars, let us make a more general remark

as to the place of neutron stars among stable astrophysical objects which include planets,

normal stars, white dwarfs and neutron stars. These four types of stable objects differ in the

nature of material whose pressure supports them. There are, however, striking similarities

as to the physical nature of the pressure between normal stars and white dwarfs, on one

hand, and between planets and neutron stars, on the other hand. In the former case, the

source of pressure is, respectively, the kinetic energy of thermal plasma and degenerate

electron gas, whereas in the latter case the source of pressure is the interaction energy of,

respectively, atoms and hadrons.

The EOS for both plasma and the electron gas is that of an ideal gas with Boltzmann

and Fermi statistics, respectively. Pressure as a function of density and temperature is

p ∼ ρkBT , for plasma, and p ∼ ρ5/3 for electron gas. Simplicity of these formulae is due to

the fact that the contribution of Coulomb interactions is dominated by much higher kinetic

energies. The situation is opposite for condensed atomic matter in planets and condensed

hadronic matter in neutron stars. In both systems, the interaction energy between par-

ticles dominates, with kinetic energy playing a lesser role. This makes calculation of the

EOS a rather difficult task. For atomic matter, the interactions are in principle known

and problems with calculating the EOS are mainly of technical nature. For condensed

hadronic matter in neutron stars the situation is more challenging. The relevant interac-

tions between hadrons in dense matter are only roughly known, a fact which is reflected

in large uncertainty of the neutron star EOS.

3.1 HADRONIC MATTER OF THE CORE OF NEUTRON STARS

For physically relevant neutron stars with M ∼ 1.4M⊙ the core comprises most of
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the mass. The neutron star core is the interior part of the neutron star, below the crust,

with densities exceeding the nuclear saturation density, n0 ≈ 0.16fm−3. Properties of the

neutron star crust matter will not be considered here. The crust is composed of a crystal,

which is similar to that in white dwarfs. In the inner crust neutrons gradually fill in the

space between nuclei.

The material, from which the neutron star core is built of, is condensed hadronic

matter, essentially in the ground state. Just below the crust, the core matter is composed

mainly of neutrons with some admixture of protons, electrons and muons. This matter

is condensed since the Fermi energy of electrons is much higher than the thermal energy,

EF >> kBT . Thermal energy of particles in the neutron star is below 1MeV , except

of first few minutes after formation. The temperature of a newly born neutron star is

kBT ∼ 30MeV . The star cools to kBT ∼ 1MeV in a few minutes. The electron Fermi

energy in the core is EF ∼ 100MeV .

Weak interactions ensure that the neutron star matter relaxes to β-equilibrium with

neutron, proton and electron chemical potentials satisfying the condition

µN = µP + µe. (1)

When the electron chemical potential exceeds the muon rest mass, µe ≥ mµ = 106MeV ,

muons appear in the matter with the chemical potential µµ = µe.

The neutron star matter is locally charge neutral, with the lepton (electrons + muons)

density equal to the proton density,

ne + nµ = nP . (2)

3.1.1 Neutron star matter at density n0

Properties of neutron star matter of saturation density can be inferred from empirical

parameters of nuclear matter which are obtained from nuclear mass formulae. The em-

pirical value of nuclear symmetry energy, Es = 31 ± 4MeV allows one to fix the proton

fraction by using Eq.(1) and (2). The proton fraction, x = nP /n, of β-stable nucleon

matter of saturation density is

x(n0) ≈ 0.05. (3)
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The surface layer of the neutron star core, of density n0 ≈ 0.16fm−3, is the only part

of the core whose composition is determined quasi-empirically. The value of the proton

fraction, ∼ 5%, is known with accuracy determined entirely by the empirical error of the

nuclear symmetry energy.

3.1.2 Neutron star matter beyond the saturation density

Investigation of deeper layers of the neutron star requires extrapolation of hadronic

matter properties away from empirically accessible domain. The lack of sufficient knowl-

edge of hadronic interactions at short distances makes this extrapolation uncertain.

To obtain properties of neutron star matter at higher densities, n > n0, one has to

employ a model of nucleon (hadronic) interactions which allows one to calculate the energy

density of neutron star matter, ǫ, as a function of baryon density, n, ǫ ≡ ǫ(n).

The pressure as a function of mass density, p ≡ p(ρ), a relation referred to as the

EOS, is determined by the energy density,

ǫ(n) = ǫkin + ǫint, (4)

where the kinetic energy density is

ǫkin =
2

(2π)3
[

∫ kN

0

d3k
√

k2 +m2
N +

∫ kP

0

d3k
√

k2 +m2
P ]. (5)

Here we use such units that h̄ = c = 1 and the mass density, corresponding to baryon

density n, is ρ(n) ≡ ǫ(n). Pressure is p = n2∂(ǫ/n)/∂n.

Insufficient knowledge of hadronic interactions results in uncertainty of the interaction

energy density, ǫint(n), which grows with increasing density. Various model calculations

give predictions which span quite a wide range. Discrepancy of energy per particle for

various EOS’s exceeds a factor of 2 at the same baryon density. This translates into still

higher discrepancy of pressure at a given mass density.

Astrophysical implications of such an uncertainty in the EOS can be best illustrated

on the plot of the density profile of a neutron star of fixed mass M = 1.4M⊙. As one

can see in Fig.1, various EOS’s give the radius of the star between 7km and 15km. The

radius of the neutron star is thus known with a 50% uncertainty. Also, as discussed below,

considerable uncertainty exists as far as the internal structure of the star is concerned.

The uncertainty of the EOS affects our knowledge of the fundamental quantity of

neutron star physics, the maximum mass of neutron star. Various EOS’s give values in
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the range 1.5M⊙ ≤ Mmax ≤ 2.8M⊙. The measured masses of neutron stars require that

the maximum mass for any EOS is Mmax > 1.44M⊙.

We now turn to address the question of hadronic interactions and their influence on

the neutron star EOS.

3.2 HADRON INTERACTIONS AND THE EOS

The decisive factor for deriving the EOS of neutron star matter for densities n ≤ 3n0 is

the interaction of nucleons. According to the theory of strong interactions, the Quantum

Chromodynamics, the nucleon-nucleon interaction is some residual interaction between

composite objects, whose structure is determined by the primary QCD interactions. Nu-

cleon interactions are not derivable at present from the underlying theory. In this situation

one must resort to phenomenological methods.

For calculating the neutron star EOS two main approaches are used. In the first ap-

proach which is purely phenomenological, the nucleon-nucleon interaction is parametrized

in the form of a nonrelativistic potential vNN . This potential is fit to reproduce the

scattering data and the properties of the deuteron [10]. The second approach is based

on one-boson exchange (OBE) model of nucleon scattering. The scattering amplitude is

calculated assuming the exchange of the lowest mesons, whose coupling to nucleons is ad-

justed to fit the data [11]. Usually a simple Yukawa coupling of meson fields to nucleons

is used.

EOS’s obtained in both approaches differ considerably. In fact one obtains two dis-

tinct classes of EOS depending on the way in which the nucleon-nucleon interaction is

constructed.

The energy per particle as a function of density,

E(n) =
1

n
(ǫkin + ǫint), (6)

in either case is obtained by solving many-body theory with a given model interaction.

Any realistic EOS should reproduce empirical parameters of nuclear matter, which

include the saturation density, n0 = 0.16± 0.015fm−3, the binding energy, E(n0) −m =

−16 ± 0.2MeV , the compressibility modulus, KV = 220 ± 30MeV and the symmetry

energy, Es = 31± 4MeV .

Despite the fact that realistic nuclear interactions reproduce the above saturation

properties, they give different predictions at higher densities. Of particular importance
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for neutron star physics are such high density properties of the EOS as the stiffness and

the proton content. One can identify the components of the nuclear potential responsible

for these quantities, which are, respectively, the central potential, vc(r), and the isospin

potential, vτ (r). Retaining only these components, the nucleon-nucleon potential is

vNN (r) = vc(r) + vτ~τ1~τ2 + ... (7)

The short-range behaviour of the central potential, vc(r), governs mainly the stiffness

of the equation of state at high densities. At short distances, the nucleon potential possesses

a repulsive core. The harder the core, the stiffer is the EOS.

The isospin potential, vτ , determines the proton fraction of neutron star matter at high

densities. For many phenomenological potentials, such as Reid’s potential [12], Urbana

v14 [10], Argonne v14 [13], the isospin potential is negative, vτ < 0, and decreases at short

distances. In this case, the potential (7) between proton and neutron is more repulsive than

between two neutrons. Consequently, it is energetically favourable for protons to disappear

at high densities [14,15,16]. In Fig.2 we show the isospin potential vτ (r) corresponding to

some of the above interactions.

Models based on the OBE potentials, on the other hand, predict positive isospin

potential, vτ > 0, which increases at short distances. In this case, the potential (7)

between proton and neutron is less repulsive than that for a pair of neutrons. We thus

expect an increase of the proton fraction of neutron star matter at high density.

In Fig.3 we show the proton fraction of neutron star matter for both classes of models.

A general tendency is that models of dense matter based on phenomenological potentials,

which have vτ < 0, predict the proton fraction of the order of a few percent which decreases

at high densities [14,15,16]. Models employing the OBE interactions predict the opposite

behaviour, the proton fraction monotonically increases with density [16,17]. It is obvious

that one class of models is wrong, however, at present we are not able to discriminate

between them. The empirical way to do so would be to device an experiment sensitive to

the short range proton-neutron interaction.

3.3 NEW DEGREES OF FREEDOM

At densities above ∼ 3n0 one must consider possibility that new degrees of freedom

appear in the system. These include heavier baryons (hyperons) and condensates of meson

fields. At still higher densities a phase transition to quark matter could also occur.
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3.3.1 Hyperons

Possibility that hyperons become abundant in the neutron star matter stems from the

fact that at high enough density the neutron Fermi energy can exceed the rest mass of

hyperon Λ, which is mΛ = 1116MeV and at still higher density the mass of hyperon Σ,

mΣ = 1190MeV .

The Fermi sea of a given neutral hyperon species starts to be populated at the thresh-

old density, nth, when the neutron chemical potential for the first time becomes equal to

the hyperon chemical potential in the neutron star matter,

µN (nth) = µH(nth, nH = 0). (8)

The threshold condition for negatively charged hyperons is

µN (nth) + µe(nth) = µH(nth, nH = 0). (9)

In these formulae the hyperon density at the threshold is nH = 0.

Conditions (8) and (9) are very sensitive to interactions of the hyperon with neutrons.

The hyperon chemical potential at the threshold can be written as

µH ≈ mH + ENH
int (nth), (10)

where the last term represents the interaction energy of a single hyperon with the neutron

star matter.

Sometimes a misleading argument is used to show that hyperon component is present

at high density. A simple estimate of the threshold density can be obtained if one ignores

the interaction term in Eq.(10). With this assumption the condition (8) can always be

satisfied at some density, as the neutron chemical potential monotonically increases with

density. However, such an estimate can be meaningless, as the the interaction term cannot

be neglected.

Our knowledge of hyperon interactions in high density matter is insufficient to con-

clude that hyperon Fermi sea is present in the neutron star matter. The strength of the

hyperon-neutron interaction relative to the neutron-neutron interaction will decide whether

hyperons appear in the neutron star matter or not. In terms of the short-range potentials,

if the neutron-hyperon interaction is more repulsive than the neutron-neutron one,

vNH > vNN , (11)
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no hyperons appear in dense matter at any density [14]. If the opposite relation is true at

short distances,

vNH ≤ vNN , (12)

there can exist a threshold density, above which the hyperons appear in the matter [18].

The situation here is analogous to that for protons discussed above where also the

relative strength of proton-neutron and neutron-neutron interaction determines the proton

content at high densities.

3.3.2 Meson condensates

Attractive interactions of light mesons with nucleons in the neutron star matter can

lower their effective mass sufficiently enough that formation of the Bose condensate could

be energetically favourable. Negatively charged mesons, π− and K−, can be formed when

their chemical potentials become equal to the electron chemical potential,

µπ− = µe, µK− = µe. (13)

The meson chemical potential is the lowest eigenstate of the meson in the matter.

Once the threshold condition (13) is satisfied, the lowest mode becomes macroscopically

populated.

The possibility of pion condensation was extensively discussed in the literature [19].

The p-wave pion-nucleon interaction results in a spatial modulation of the condensate.

Presence of the pion condensate strongly affects cooling of neutron stars. Because of

additional binding, the EOS of pion condensed matter is softer.

Recently possibility of the kaon condensation in neutron star matter has been consid-

ered [20]. The kaon-nucleon interaction is mainly s-wave and the condensate is uniform

[21]. Neutron star matter with kaon condensation has rather soft equation of state. A very

interesting feature of this EOS is the fact that maximum neutron star mass calculated for

cold matter, after the neutrinos trapped in the newly born neutron star are radiated away,

is lower than the one with trapped neutrinos [21].

3.3.3 Quark matter

It is expected that quarks which are constituents of hadrons become liberated at high

densities. The simple argument is of geometrical nature: Hadrons are extended objects
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which at high densities must overlap deconfining the quarks. The deconfinement density

is strongly model dependent. Estimates give the deconfinement phase transition in the

range 4−10n0. Maximum quark core corresponds to the continuous phase transition from

nucleon matter to quark matter [22].

This picture of hadron to quark phase transition may be somewhat naive in view

of recent lattice QCD calculations. At high densities and/or temperatures QCD predicts

restoration of chiral symmetry. It is important for our picture of dense matter in neu-

tron star which transition occurs first. Common assumption is that the deconfinement

occurs at lower densities than the restoration of chiral symmetry [23,24]. Quark matter

relevant to neutron stars with broken chiral symmetry can develop spatially modulated

chiral condensate [23,24].

Recently a different scenario of hadron to quark transition has been considered by G.

Brown et al.[25] who propose that at high temperatures and/or densities hadrons become

first massless and the color deconfinement occurs at much higher temperature and/or

density.

3.4 UNCERTAINTY OF EOS AND THE STRUCTURE OF NEUTRON STARS

Theoretical models of dense matter discussed above constrain weakly stiffness of the

EOS which is the most important property of the neutron star EOS.

3.4.1 Stiffness of EOS and the maximum mass of neutron star

Stiffness is a global property of the EOS which measures how fast the pressure increases

with increasing mass density. In Sect.3.2 we discussed the influence of the repulsive core in

nucleon-nucleon potential on the stiffness. Also presence of hyperons and meson conden-

sates in the neutron star matter affects stiffness of EOS, which becomes softer. A similar

softening of the EOS occurs when the quark phase is present.

The stiffness of the neutron star EOS determines the value of the maximum mass of

neutron star, which plays the role of Chandrasekhar mass for neutron stars. A general

rule is that the maximum mass for soft EOS is lower than that for stiffer EOS, M soft
max <

M stiff
max . Softest EOS’s, still compatible with measurements of neutron star masses, give

Mmax ≈ 1.5M⊙. Stiffest realistic EOS’s predict Mmax ≈ 2.8M⊙.

3.4.2 Structure of neutron stars
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Internal structure of the neutron star depends on its mass. Here we consider physically

relevant neutron star of mass M = 1.4M⊙. For a neutron star of a given mass the radius

for soft EOS is smaller than for stiff EOS, Rsoft < Rstiff . The central density of this star

is higher in case of soft EOS than for stiff EOS, nsoft
c > nstiff

c . Also, the crust thickness

for soft EOS is lower than for stiff EOS.

The proton fraction of neutron star matter has important consequences for magnetic

properties. If proton fraction is low, x ∼ 0.05, and does not increase with density, it is

likely that protons become localized [26,27] at high densities. Localized protons can form

a crystal lattice [28]. Neutron star matter with localized protons is unstable with respect

to spontaneous polarization [29]. This phase of neutron star matter possesses permanent

magnetization [29,30] and can contribute to the magnetic moment of the neutron star. The

same proton-neutron interactions which are responsible for low proton fraction of uniform

matter, tend to separate protons and neutrons [31] and localize the protons.

When proton fraction increases with density, it can exceed the threshold for direct

URCA process, xURCA ≈ 0.11. This would strongly enhance the cooling of neutron stars.

Available EOS’s allow us to construct various scenarios of the internal structure of

the neutron star core. Let us briefly describe two consistent possibilities, corresponding to

two classes of neutron star EOS’s, considered in Sect.3.2.

The models of EOS based on phenomenological potentials, which predict low proton

fraction, suggest the following structure. Below the solid crust there is a layer of normal

uniform matter, with proton fraction ∼ 5%. At some deeper level, where the localization

density is exceeded, proton localization occurs and neutron star matter acquires magneti-

zation [30]. There exist thus an inner shell which is magnetized. If the transition to quark

matter occurs at neutron star densities, there could exist a quark core surrounding the

center of the star.

In this scenario it is unlikely that hyperons exist in the neutron star matter as they are

expected to interact with neutrons in a similar way as do the protons. Also, the chemical

potential of electrons decreases with density making kaon condensation rather unlikely.

The class of EOS’s based on OBE potentials or relativistic mean field theory predicts

quite a different internal structure of the neutron star. The layer, just below the crust, is

the same as for phenomenological models. It is normal uniform matter containing some 5%

of protons. However, in deeper layers the proton fraction increases and hyperons appear

in the neutron star matter. In still deeper layers kaon condensate is present. It is likely in
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this scenario that the chiral symmetry is restored in the center of the star. Neutron star

matter near the center is composed of a mixture of nearly massless hadrons.

There exist a variety of neutron star EOS’s derived by astrophysicists. Clearly, some

of them are incompatible with one another. Below we discuss how the neutron star EOS

could be constrained empirically.

4. Empirical constraints on the neutron star EOS

The EOS of neutron star matter at high densities is not at present constrained suf-

ficiently by theory to allow conclusive statements as to the internal structure of neutron

stars. In view of weakness of theoretical constraints it is urgent to empirically constrain

the EOS.

4.1 LABORATORY EXPERIMENTS

Scattering of heavy ions, which is the only laboratory way to study properties of dense

matter, does not probe directly the EOS relevant to neutron stars. In nuclear collisions

highly excited hadronic matter is formed which decays quickly into stable particles. One

should perform extrapolations in order to obtain ground state properties from these data

which would involve considerable uncertainty. However, many important informations

regarding the neutron star EOS can be inferred from scattering data. In particular, in-

teractions of hyperons formed in nuclear collisions with nucleons in dense fireball can be

studied. Also, detection of quark-gluon plasma in heavy ion collisions could give valuable

information about energy density range in which one can expect deconfinement transition

in neutron star matter.

4.2 OBSERVATIONS OF NEUTRON STARS

Discovery of a sub-millisecond pulsar would severely constrain the EOS. Unfortunately,

reported observations of 0.5 ms pulsar in the SN1987A remnant [32] turned out to be

erroneous. The fastest millisecond pulsar of period 1.56 ms does not exclude any realistic

EOS.

4.2.1 X-rays from rotation-powered pulsars

Observation of thermal flux of photons from a pulsar, whose age can be estimated,

can provide information how fast the neutron star cools. Probing the cooling curve of
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neutron stars is considered to be the most profitable method to learn about the internal

composition of neutron stars.

Recent observations of thermal X-ray flux from four pulsars give promise that in near

future the cooling curve will be empirically constrained. The main objective of these

observations is to discriminate between fast and slow cooling mechanisms.

Slow cooling proceeds mainly through the modified URCA process,

n+ n → n+ p+ e− + ν̄e, n+ p+ e− → n+ n+ νe.

It is the dominating mechanism of standard cooling scenario for neutron stars whose proton

content is below the critical value, x < xURCA ≈ 0.11.

If the proton content exceeds the critical value, x > xURCA, or there exist kaon (or

pion) condensate in neutron star matter, cooling proceeds through direct URCA process,

n → p+ e− + ν̄e, p+ e− → n+ νe.

This cooling mechanism is much faster, and, correspondingly, the temperature of the neu-

tron star is lower than for modified URCA.

Recent comparison of the X-ray luminosities of four pulsars [33] is not conclusive, but

the observational data are somewhat closer to the standard cooling curve.

4.2.2 Remnant of SN1987A

Detection of neutrino flux associated with optical observation of supernova SN1987A

was the best confirmation of the theory of neutron star formation in supernova Type II

explosions. Present observations of the light curve of the remnant of SN1987A do not

confirm existence of the neutron star. Continuously decreasing luminosity of the remnant

of SN1987A suggests that Crab-like pulsar does not exist in the remnant. Also, no hot

X-ray source is observed. This lack of signature of neutron star led some authors [34] to

speculate that the neutron star formed initially in SN1987A was in a metastable state and

subsequently collapsed to black hole. Presence of a black hole in SN1987A would strongly

constrain the neutron star EOS.

Scenario of black hole formation in SN1987A is as follows. The progenitor star of

SN1987A is known to have mass 18M⊙ < M < 20M⊙. Evolutionary calculations show

[35] that this star developed an iron core of mass ∼ 1.6M⊙ which collapsed to form hot

neutron star. This neutron star existed at least for ∼ 10s, a period when the neutrino
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emission took place. After radiating away the trapped neutrinos the neutron star has lost

stability and collapsed to black hole.

This scenario requires that the EOS has some unique features. The maximum mass

corresponding to the hot neutron star matter, with trapped neutrinos, Mhot
max, has to be

higher than the mass Mns ∼ 1.6M⊙ of the neutron star formed in the collapse of SN1987A,

Mns < Mhot
max. After emitting neutrinos the neutron star looses stability which requires that

its mass is higher than the maximum mass of a neutron star corresponding to cold neutron

star matter, M cold
max < Mns. The EOS with kaon condensation can meet these constraints

[21], as we mentioned in Sect.3.3.2. The maximum mass for cold EOS is M cold
max = 1.5M⊙.

The maximum mass of neutron star of 1.5M⊙ explains in a natural way the cutoff

observed in measured masses of neutron stars. Existence of such a limit is very surprising

in view of the fact that considerable amount of material, at least a few tenths of solar

mass, is expected to fall back onto newly formed neutron star after the explosion. One

would expect many heavier neutron stars to be formed.

If the maximum mass of neutron star is Mmax = 1.5M⊙ then one can determine

maximum mass of the progenitor star, whose collapse can leave the neutron star remnant.

For an isolated star this mass is about 20M⊙. Heavier stars are expected to leave black hole

remnants. The problem of formation of many low mass black holes in Galaxy is discussed

in [36].
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Density profile of 1.4M⊙ neutron star for typical soft, medium, and stiff equations of state.
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The isospin potential of Reid, Argonne v14, and Urbana v14 nuclear potentials.
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Proton fraction as a function of density for OBE models and for phenomenological models

with isospin potential vτ < 0.
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