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Abstract

A nearly-massless, slowly-rolling scalar field φ may provide most of the energy

density of the current universe. One potential difficulty with this idea is that

couplings to ordinary matter, even if suppressed by the Planck scale, should

lead to observable long-range forces and time dependence of the constants of

nature. I explore the possibility that an approximate global symmetry serves

to suppress such couplings even further. Such a symmetry would allow a

coupling of φ to the pseudoscalar Fµν F̃µν of electromagnetism, which would

rotate the polarization state of radiation from distant sources. This effect is

fairly well constrained, but it is conceivable that future improvements could

lead to a detection of a cosmological scalar field.
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And yet, to me, what is this quintessence of dust?

– Hamlet, Act II, Scene ii.

Recently a number of pieces of evidence, especially studies of the Hubble diagram for

Type Ia supernovae [1], have lent support to the idea that the universe is dominated by a

smooth component with an effective negative pressure, leading to an accelerating expansion.

While the most straightforward candidate for such a component is the cosmological constant

[2], a plausible alternative is dynamical vacuum energy, or “quintessence” [3,4].

A number of models for quintessence have been put forward, the most popular of which

invoke a scalar field in a very shallow potential, which until recently was overdamped in its

evolution by the expansion of the universe. For generic potentials the requisite shallowness

implies that excitations of the field are nearly massless, mφ ≡
√
V ′′(φ)/2 ≤ H0 ∼ 10−33 eV.

To provide the necessary energy density, the present value of the potential must be ap-

proximately the closure density of the universe, V (φ0) ∼ (10−3 eV)4, so the field itself will

typically be of order φ0 ∼ 1018 GeV ∼ MP l = (8πG)−1/2, where MP l is the reduced Planck

mass. (These estimates can be dramatically altered in models with more complicated dy-

namics [5].)

The exchange of very light fields gives rise to forces of very long range, so it is interesting

to consider the direct interaction of the quintessence field φ to ordinary matter. Although

it is traditional to neglect (or set to zero) the couplings of this light scalar to the standard

model, we expect that our low-energy world is described by an effective field theory obtained

by integrating out degrees of freedom with momenta larger than some mass scaleM , in which

case it is appropriate to include non-renormalizable interactions suppressed by appropriate

inverse powers of M . For example, φ can couple to standard-model fields via interactions of

the form

βi
φ

M
Li , (1)

where βi is a dimensionless coupling and Li is any gauge-invariant dimension-four operator,
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such as FµνF
µν or iψ̄γµDµψ. In the absence of detailed knowledge about the structure of

the theory at high energies, the couplings βi are expected to be of order unity.

The mass parameter M , meanwhile, represents the energy scale characterizing the phe-

nomena which we have integrated out to obtain the low-energy description. We cannot

specify it with precision, but it should not be higher than the scale where quantum gravity

becomes relevant – not only may there be new particles at this energy, but exotic effects

such as wormholes and virtual black holes become relevant [6]. With this in mind, the limits

in this paper will be quoted in terms of the reduced Planck mass MP l ∼ 1018 GeV, but cases

could be made for values as high as the traditional Planck mass G−1/2 ∼ 1019 GeV or as low

as the unification scale Munif ∼ 1016 GeV (for example, in the phenomenologically attractive

regime of M-theory compactified on an interval [7]).

The scalar force mediated by φ will not obey the Equivalence Principle (which is only

compatible with forces mediated by spin-two fields), and hence is constrained by Eötvös-

type experiments. Su et al. [8] have found that the differential acceleration of various test

bodies, in the direction of the Sun, is less than 10−12 times the strength of gravity. Such

limits can be translated into constraints on the dimensionless couplings βi; for example, we

may calculate the charge on a test body due to a coupling βG2(φ/M) Tr(GµνG
µν), where

Gµν is the field strength tensor for QCD (cf. [9]). Although it is difficult to compute QCD

matrix elements to high precision, the Su et al. results can be used to place a conservative

upper limit

|βG2| ≤ 10−4

(
M

MP l

)
. (2)

Similar considerations constrain other couplings, although typically not quite as well (see

e.g. [10]).

A related phenomenon is the time variation of the constants of nature. For the dynamical

nature of φ to be relevant today, we expect a change in φ of order MP l over cosmological

timescales t0 ∼ H−1
0 . In that case, a coupling such as βF 2(φ/M)FµνF

µν will lead to evolution

of the fine-structure constant α. Various observations constrain such variation. For example,
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isotopic abundances in the Oklo natural reactor imply that |α̇/α| < 10−15 yr−1 over the past

two billion years [11]; this leads to the limit

|βF 2| ≤ 10−6

(
MH0

〈φ̇〉

)
, (3)

where 〈φ̇〉 is the average rate of change of φ in the last two billion years. (There has also

been a claimed detection of a difference between the fine structure constant today and at a

redshift z ≥ 1 [12]; given the preliminary nature of the claimed detection, it is safest to rely

on the limit (3).) Again, changes in other couplings are also constrained.

There is clearly good evidence against the existence of a nearly-massless scalar field

coupled to the standard model via nonrenormalizable interactions with strength of order

1/MP l. It would be premature, however, to conclude that the idea of quintessence is ruled

out, as we may consider imposing symmetries which prevent the couplings considered thus

far. An exact continuous symmetry of the form φ → φ + const is clearly not appropriate,

as it would not allow for a nontrivial potential V (φ). An alternative possibility is a discrete

symmetry, for example of the form φ → −φ; this would forbid terms linear in φ, and

could arise from spontaneously broken gauge symmetries [13]. However, in the case at hand

discrete symmetries appear to be ineffective, as they themselves are spontaneously broken.

(The field φ is expected to be displaced from the fixed point of the symmetry, so an effective

linear term will be unsuppressed.)

We are therefore left with the possibility of approximate global symmetries of the form

φ → φ+ const . Indeed, such symmetries are invoked in pseudo-Goldstone boson models of

quintessence [4], as an explanation for the naturalness of the small mass mφ: in the limit

as the symmetry is exact, this mass goes to zero. This same effect could explain the small

values of the dimensionless couplings βi. In this sense, the PGB models are more likely

than those based (for example) on moduli fields; in the latter set of theories, the scalar field

represents a flat direction which typically does not generate any symmetry, with a potential

generated solely by nonperturbative effects. There is no apparent reason for the βi’s to be

small in such models.
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An objection to this scenario is that quantum-gravity effects do not respect global sym-

metries. It is known, for example, that there are no unbroken global symmetries in string

theory [14]. Furthermore, the induced interactions mentioned above from wormholes and

virtual black holes are constrained solely by gauge symmetries [6]. These symmetry-breaking

effects have been suggested as problems for axion and texture theories [15].

Nevertheless, although our current understanding of quantum gravity and string theory

leads us to believe that global symmetries are generically violated, it is insufficient to say

with confidence that the resulting violations are in some sense large (in our context, that the

parameters βi are of order unity). For example, although string theory has no exact global

symmetries, it does have axion-like fields with an approximate Peccei-Quinn symmetry. It

may also be the case that pure quantum gravity effects are nonperturbative and suppressed

by e−S, where the action S can be large in specific models. Kallosh et al. investigated this

possibility in the context of axions in the presence of wormholes [16]. They found that the

action was sensitively dependent on the structure of spacetime on small scales, and there

could be sufficient suppression of global-symmetry violating effects to salvage axions as a

solution to the strong CP problem (which is a much greater suppression than that necessary

to satisfy the bounds on the βi’s above).

Evidently it is hard to estimate reliably the degree to which an approximate global

symmetry can consistently be invoked in a world with gravity. Given the tentative character

of our current understanding, we should take seriously the possibility that the quintessence

field has avoided direct detection because the couplings considered above are suppressed by

such a symmetry.

An important consequence of this viewpoint is that interactions which are invariant under

φ→ φ+ const — that is, derivative couplings of φ — should be present with couplings βi of

order unity. The derivative term of lowest dimension that could multiply an arbitrary gauge-

invariant scalar operator would be gµν∇µ∇νφ; however, we would expect this dimension-

three term to be divided by M3 and hence lead to negligible effects. The other possibility

is to couple φ/M to a total derivative, which after integration by parts is equivalent to a
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coupling to ∂µφ. The only allowed term in the standard model is

β
F F̃

φ

M
FµνF̃

µν =
β

F F̃

M
[−(∂µφ)Kµ + ∂µ(φKµ)] , (4)

where Fµν is the electromagnetic field strength tensor, F̃ µν = 1
2
ǫµνρσFρσ is its dual, and

Kµ = 2AνF̃
µν . The divergence term on the right hand side of (4) contributes a surface term

to the action, which vanishes for fields which fall off at infinity. Therefore this interaction

does represent a derivative coupling, and respects the symmetry φ→ φ+ const .

Such a coupling can lead to potentially observable effects. Since FµνF̃
µν is a pseu-

doscalar quantity, it does not accumulate coherently in a macroscopic test body, and hence

does not give rise to appreciable long-range forces (although one can consider tests using

polarized bodies [17]). However, a spatially homogeneous but slowly-varying φ field would

rotate the direction of polarization of light from distant radio sources [18]. The disper-

sion relation for electromagnetic radiation in the presence of a time-dependent φ becomes

ω2 = k2±(β
F F̃
/M)φ̇k, where +/− refer to right- and left-handed circularly polarized modes,

respectively. If we define χ to be the angle between some fiducial direction in the plane of

the sky and the polarization vector from an astrophysical source, then in the WKB limit

where the wavelength of the radiation is much less than that of φ, the difference in group

velocity for the two modes leads to a rotation ∆χ = (β
F F̃
/M)∆φ.

Such a rotation is potentially observable, as distant radio galaxies and quasars often have

a well-defined relationship between their luminosity structure and polarization structure [19].

In the wake of a claim that a dipole pattern of rotations (in contrast to the monopole pattern

expected from a homogeneous scalar field) was present in existing data [20], it was pointed

out that more recent observations provide a stringent upper limit on any such effect [21,22].

It is a straightforward exercise to use these same data to place upper limits on the magnitude

of a direction-independent pattern of rotations. As an example, Figure One shows the data

given by Leahy [21] for ∆χ, plotted as a function of redshift.
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FIGURES

FIG. 1. Rotation of polarization vector vs. redshift.

Simply taking the mean value all of the points (for which the minimum redshift is z =

0.425) yields 〈∆χ〉 = −0.6◦ ± 1.5◦. This implies a bound

|β
F F̃

| ≤ 3 × 10−2

(
M

|∆φ|

)
, (5)

where ∆φ is the change in φ between a redshift z = 0.425 and today. From the figure, it is

evident that the single source 3C 9 at a redshift z = 2.012 (originally analyzed in [23]), with

∆χ = 2◦ ± 3◦, provides an interesting limit on any substantial rotation at high redshifts.

Does Eq. (5) constitute a good limit? We expect ∆φ to be of order MP l, so the factor

M/|∆φ| is likely to be less than or of order unity. However, while 3 × 10−2 is less than

one, it is not remarkably less; we might imagine that dimensionless constants conspire to

make β
F F̃

naturally smaller than this value even without suppression by some symmetry.

For example, couplings of the form (4) can arise through triangle graphs in ordinary field

theories (i.e., even disregarding the possibility of exotic quantum gravitational effects); such

graphs lead to β
F F̃

= Nα/4π, where α is the fine structure constant and N is a dimensionless

factor which depends on the field content of the model. Since α/4π ∼ 6 × 10−4, it is by
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no means implausible that the interaction under consideration could exist but have evaded

detection thus far. This raises the exciting possibility that improvements in the limits from

radio galaxy polarization measurements could lead to a detection of quintessence. Since

the relevant observed quantity is an angle, it is hard to imagine significant contamination

by systematic errors, so the observation of a large number of sources can be expected to

improve these limits substantially.

Unfortunately, the existence of a potentially detectable coupling of the form (4) can

be avoided in certain models. This follows from noting that the analogous term for the

strong interactions, β
GG̃

(φ/M) Tr(GµνG̃
µν), is not invariant under φ→ φ+ const due to the

existence of topologically nontrivial field configurations. The surface term which could be

neglected in electromagnetism would receive contributions from QCD instantons, leading to

a mass for φ proportional to β
GG̃

(Λ2
QCD/M) (just as for the QCD axion). As this mass is

likely to be much larger than the desired value mφ ∼ 10−33 eV, it is incompatible with the

desired properties of quintessence. In a grand unified model for which both electromagnetism

and the strong interactions derive from a single simple gauge group, any gauge-singlet field

which couples to FµνF̃
µν should also couple to Tr(GµνG̃

µν) [24]. In the minimal SU(5) grand

unified theory, for example, the appropriate lowest-dimension gauge-invariant operator to

which φ could couple is Tr(VµνṼ
µν), where Vµν is the SU(5) field strength. After spontaneous

symmetry breakdown this term includes a unique linear combination Tr(GµνG̃
µν)+ 4

3
FµνF̃

µν

with which φ could interact. Since the coupling to the QCD term must be suppressed, the

electromagnetic coupling will be suppressed as well.

This argument undoubtedly diminishes the aura of inevitability surrounding a coupling

of the form (4), but by no means precludes its existence. A simple way out is to imagine

that SU(3) and U(1) are not unified in a simple gauge group, in which case there is no

necessary relationship between the QCD and electromagnetic couplings. Such a scenario

may be natural in string theory, where low-energy gauge fields come from compactifica-

tion as well as the original gauge symmetry in higher dimensions. Another way is to in-

clude a coupling of φ to higher-dimensional gauge-invariant operators through interactions
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such as (φ/M2) Tr(ΣVµνṼ
µν), where Σ is the adjoint Higgs which breaks SU(5). If the

mass scale v is comparable to M , such an interaction could cancel the QCD term from

Tr(Vµν Ṽ
µν), leaving an unsuppressed coupling to electromagnetism. However, the interac-

tion (φ/M2) Tr(ΣVµνṼ
µν) is not invariant under φ → φ + const, so it may be noticeably

suppressed.

In conclusion, the absence of observable interactions of quintessence with the fields of the

standard model implies the existence of a symmetry which suppresses such couplings. Such a

symmetry leaves open the possibility of a coupling to electromagnetism, which is potentially

observable in polarization studies of distant radio sources. Such a coupling is not inevitable,

however, so we may have to rely on conventional cosmological tests to determine whether

slowly rolling scalar fields play an important role in the dynamics of the present universe.
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