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Primordial Magnetic Fields that Last?∗
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Abstract

The magnetic fields we observe in galaxies today may have their
origins in the very early universe. While a number of mechanisms have
been proposed which lead to an appreciable field amplitude at early
times, the subsequent evolution of the field is of crucial importance,
especially whether the correlation length of the field can grow as large
as the size of a protogalaxy. This talk is a report on work in progress,
in which we consider the fate of one specific primordial field scenario,
driven by pseudoscalar effects near the electroweak phase transition.
We argue that such a scenario has a number of attractive features,
although it is still uncertain whether a field of appropriate size can
survive until late times.

∗Based on a talk at the 33rd Rencontres de Moriond: Fundamental Parameters in

Cosmology, 17-24 January, 1998, Les Arcs, France; NSF-ITP/98-072, astro-ph/9807159.
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1 Introduction

Observations clearly indicate that galaxies typically possess magnetic fields

of strength B ∼ 10−6 Gauss which are coherent over length scales comparable

to the size of the galaxies [1]. At this point it is unclear whether these fields

originate in astrophysical processes operating during the epoch of galaxy

formation and afterward, or can be traced back to a primordial mechanism

in the early universe. If a primordial mechanism is responsible, it is necessary

to generate a field of amplitude B ∼ 10−9 G over a comoving scale λ ∼ 106 pc

(the comoving size of a region which condenses to form a galaxy); such a

field can be amplified during the process of condensation to the amplitudes

observed today.

There are a number of requirements such a scenario must satisfy. First,

it is necessary to generate a field of significant size in the early universe,

as the field will tend to decay as B ∝ R−2 as the universe expands. (This

simple scaling will be modified when we take into account plasma effects, but

the need for a large initial field will only become more acute.) Second, the

fields must not be significantly damped in between their formation and the

condensation of protogalaxies. Damping can take different forms, including

ordinary Ohmic dissipation (the exponential decay of electromagnetic fields

in plasmas of finite conductivity) and “Silk” damping of MHD modes by

photon and neutrino viscosity. Third, it is necessary to boost the coherence

length of the fields, which are typically formed with much smaller length

scales than those of galaxies. For example, the comoving horizon size at the

electroweak scale (which sets an upper limit to the correlation length of any

field generated by a causal mechanism at the electroweak phase transition) is

smaller by a factor of 10−10 than the comoving length scale associated with

a protogalaxy.

With these requirements in mind, we will examine the prospects of a

particular scenario for primordial field generation. Similar arguments will
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apply to other possibilities, although we will see that this scenario has a

number of attractive features.

2 Magnetic Fields from Pseudoscalars

Consider a pseudoscalar field φ which couples to electromagnetism via an

interaction Lagrange density

L = φFµνF̃
µν , (1)

where the dual field strength tensor is defined by F̃ µν = 1

2
ǫµνρσFρσ. Such an

interaction leads to a modified form of Maxwell’s equations, given by

− ∂tE+∇×B = 4πJ− φ̇B+∇φ×E (2)

∇ ·E = 4πρ−∇φ ·B (3)

∂tB+∇×E = 0 (4)

∇ ·B = 0 . (5)

(For simplicity we are working in flat spacetime, but the generalization to

Robertson-Walker universes is straightforward.) In a conducting plasma we

will also have Ohm’s Law, J = σE, where σ is the conductivity.

We assume that the pseudoscalar is spatially homogeneous, so ∇φ can be

neglected. We also drop ρ, assuming there is no net charge density, and ∂tE,

as time variations in the electric field will be small. Under these assumptions

we derive an equation for the magnetic field in Fourier space,

∂tB = −
1

4πσ
(k2B+ iφ̇k×B) . (6)

This equation can be analyzed by decomposing B into orthonormal modes

perpendicular to the wavevector k, B(k) = b1u1 + b2u2. In fact, it is most

convenient to work with circularly polarized modes, b± = b1 ± ib2. We can
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then solve explicitly for the time evolution:

b±(t,k) = b±(0,k) exp

[
−

k

4πσ

(
kt±

∫
φ̇ dt

)]
. (7)

We see that the b− modes can grow exponentially if φ̇ > k, with maximum

growth for k = 1

2
φ̇.

The existence of such an exponentially growing mode suggests that such

a pseudoscalar could generate large field strengths in the early universe. It

remains to specify an identity and dynamics for the φ field itself. A scenario

along these lines was proposed by Turner and Widrow [2], who noted that

the axion was a particle with appropriate couplings, but did not analyze the

possibility in detail. Garretson, Field and Carroll [3] considered a generic

pseudo-Goldstone boson evolving during inflation, and found that it was

not possible to generate fields which were both of sufficient strength and

interestingly large length scales. More recently, Joyce and Shaposhnikov [4]

note that a chemical potential for right-handed electron number, generated

by processes at the grand unification scale, interacts with electromagnetism

in an equivalent fashion, if we simply identify the chemical potential with φ̇.

(See also the work of Cornwall [5] and Son [6].)

The Joyce and Shaposhnikov scenario, which involves only standard elec-

troweak physics once the chemical potential is generated, is less flexible than

a generic pseudoscalar boson and accordingly more predictive. For definite-

ness we will consider the fate of the magnetic fields generated by such a

mechanism, although other pseudoscalars would have very similar effects.

Joyce and Shaposhnikov estimate that their scenario can lead to magnetic

fields of order B ∼ 1022 G on a length scale λ ∼ 10−8H−1

EW , where HEW is the

Hubble parameter at the electroweak scale. As this is 18 orders of magnitude

smaller than the desired comoving length scale, we must seek a mechanism

for increasing the coherence length of the field.
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3 The Inverse Cascade

A well-known property of ordinary hydrodynamical turbulence is the cascade

of energy, injected at a certain length scale, down to smaller scales. In

MHD, however, magnetic energy can both cascade to small scales and inverse

cascade to large scales. This phenomenon was investigated numerically and

analytically in the 1970’s and 1980’s by Pouquet and collaborators [7], and

has been advocated as an important factor in the evolution of primordial

magnetic fields by Brandenburg, Enqvist and Olesen [8].

In order for an inverse cascade to be operative, two requirements must be

met: an injection of turbulence into the medium, and a nonvanishing expec-

tation value for some pseudoscalar quantity. Turbulence, which is needed to

transfer energy between disparate length scales, can arise from (for example)

bubble collisions during a first-order electroweak phase transition. We will

assume that this is the case, although little is known about the order of the

electroweak transition in the real world. The necessity of a nonvanishing

pseudoscalar can be seen by considering the time variation of the magnetic

field, which satisfies ∂tB(k) ∼ k × E. To obtain exponential growth in B

at a wavenumber k, we require E(k) = α(k)B(k), where α is a manifestly

pseudoscalar coefficient. Numerical simulations by Pouquet et al. [7] have

verified the existence of an inverse cascade if and only if the configuration

possesses significant magnetic helicity, HM =
∫
A ·B d3x.

The pseudoscalar mechanism discussed in the previous section creates a

field with maximal magnetic helicity. The circularly polarized modes b± are

of opposite helicity, and one will be suppressed while the other is amplified as

φ evolves; the resulting field is maximally helical. Hence, such a field should

have magnetic energy transferred to larger scales, while we would not expect

such behavior in a generic situation.

The transfer of energy to large scales is typically very efficient; numerical

simulations indicate [7] that the scale increases linearly by a factor ∆t/tturb,
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where the turbulence timescale tturb can be taken (somewhat optimistically)

to be T−1

EW
∼ 10−15H−1

EW
. Since the naive picture of linear growth would

increase the coherence length beyond the Hubble distance, we can assume

that the growth would saturate at that point. In the (once again optimistic,

but not implausible) assumption that the field strength is undiminished by

this process, we are therefore left with a field of amplitude B ∼ 1022 G and

a length scale λ ∼ H−1

EW
(a comoving scale of 10−4 pc).

4 Subsequent Evolution

A potentially important role in the evolution of the field from the electroweak

scale to today can be played by the damping of MHD modes by photon and

neutrino viscosity [9]. This damping can dramatically decrease the amplitude

of primordial magnetic fields before they have a chance to form galactic fields.

However, these modes do not necessarily represent oscillations around a zero-

field configuration, but around a force-free field, for which J × B = 0. For

the situation under consideration, such damping will not be important, as

numerical simulations [7] (as well as experiments in tokamaks [10]) indicate

that the result of an inverse cascade is a force-free field configuration.

This leaves us with the question of whether the length scale of the mag-

netic field can be expanded to the dimensions of a protogalaxy. Presumably

an inverse cascade mechanism cannot be very helpful, as there is likely to

be no source of turbulence subsequent to the electroweak phase transition.

A pessimistic scenario would imagine that the field is frozen in and expands

with the universe, redshifting as R−2. We would then be left with a field

amplitude B ∼ 10−8 G on a scale of 10−4 pc today. To estimate the am-

plitude on galactic scales, we can consider the incoherent superposition of

fields in uncorrelated domains. Since the resulting field goes like one over

the square root of the number of domains, which in turn goes as the volume
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of the region under consideration, the field on megaparsec scales is

B(Mpc) ∼

(
1 Mpc

10−4 pc

)−3/2

B(10−4 pc) ∼ 10−23 G . (8)

This is much less than the sought-after amplitude 10−9 G, so it is necessary

to imagine a more active mechanism for increasing the coherence length.

In fact, the coherence length will certainly grow faster, as uncorrelated

domains come into causal contact and magnetic field lines smooth themselves

out [11]. At this point we do not have a reliable estimate of the rate at

which this happens, nor of the potential dilution of the field strength during

this process. Instead, we can proceed under optimistic assumptions to see

whether there is any prospect of generating the required field.

The optimistic expectation we consider is that the field rearranges itself

at the Alfvén speed,

vA =

(
ρB
ρtot

)1/2

, (9)

which has the value vA ∼ 10−2 during the radiation dominated era (for

the parameters used above) and 10−2T (eV) during matter domination. The

correlation length will then obey

dλ

dt
= Hλ+ vA , (10)

representing the separate effects of Hubble expansion and Alfvén rearrange-

ment. Plugging in the appropriate numbers, we find that the Alfvén speed

dominates until the time of matter-radiation equality, after which the Hubble

expansion is most important (so that the comoving length remains constant).

It so happens that the Hubble size at matter-radiation equality, which will

characterize the correlation length of the magnetic field under these assump-

tions, corresponds to a comoving scale of 1 Mpc, nicely consistent with the

size of a protogalaxy.
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Under our optimistic scenario, then, we are able to generate fields of the

appropriate length scale, but no larger. Under the additional optimistic as-

sumption that the amplitude of the field remains undiminished as it smooths

out, we obtain B(1 Mpc) ∼ 10−8 G, just as required for the primordial

scenario.

The fact that we are only able to achieve this result under such optimistic

conditions is somewhat discouraging. A more realistic calculation would in-

clude both the fact that viscosity will act to retard the Alfvén rearrangement,

and that dissipation will act to diminish the amplitude of the field. At this

point we are not confident in our understanding of the magnitude of these ef-

fects; work in this direction is in progress. While the prospects for primordial

mechanisms for magnetic field generation do not seem hopeful in light of this

analysis, there is still a chance that a more careful examination will reveal

that our optimistic assumptions are actually warranted. The importance of

this topic justifies a concerted effort to understand whether this possibility

can be realized.
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