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Abstract

For the complex Ginzburg-Landau equation on a large periodic interval,

we show that the transition from defect- to phase-turbulence is more accu-

rately described as a smooth crossover rather than as a sharp continuous

transition. We obtain this conclusion by using a powerful parallel computer

to calculate various order parameters, especially the density of space-time

defects, the Lyapunov dimension density, and the correlation lengths of the

field phase and amplitude. Remarkably, the correlation length of the field

amplitude is, within a constant factor, equal to the length scale defined by

the dimension density. This suggests that a correlation measurement may

suffice to estimate the fractal dimension of some large homogeneous chaotic

systems.
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Recent advances in laboratory technique [1] and in computer simulation [2–5] have

opened up the study of boundary-independent spatiotemporal chaos in large homogeneous

sustained nonequilibrium systems [6]. Many fundamental questions remain unanswered

about such chaotic systems, e.g., what different states can occur, how transport depends on

different states, and what kinds of bifurcations separate one state from another. An espe-

cially interesting question is whether ideas from statistical mechanics might be applicable

to chaotic nonequilibrium systems in the thermodynamic limit of infinite system size [7–9].

A significant step towards understanding some of these questions was recently reported

by Shraiman et al [2]. These researchers studied different spatiotemporal chaotic states of

the one-dimensional complex Ginzburg-Landau equation

∂tu(x, t) = u+ (1 + ic1)∂
2
xu− (1− ic3)|u|

2u, x ∈ [0, L], (1)

on a large periodic interval of length L = 1024, which they assumed to be large enough to

approximate the thermodynamic limit of infinite system size. Here the variables t and x

denote time and position respectively, the complex-valued field u(x, t) = ρeiφ has magni-

tude ρ(x, t) and phase φ(x, t), and the parameters c1 > 0 and c3 > 0 are real-valued. Eq. (1)

is an important model of spatiotemporal chaos because it is simple, experimentally relevant

[10] and universal [9]: spatially extended systems that undergo a supercritical Hopf bifur-

cation from a static to oscillatory homogeneous state reduce to Eq. (1) sufficiently close to

the onset of the bifurcation. Interesting dynamics are predicted and are observed beyond

the Newell line c1c3 = 1 since all plane wave solutions of Eq. (1) are linearly unstable to the

Benjamin-Feir instability for c1c3 > 1 [9].

Shraiman et al summarized their simulations in the form of a phase diagram in the

c1-c3 parameter plane (Fig. 3 of Ref. [2]). Based mainly on calculations of the density of

space-time defects nD [11], this diagram showed continuous and discontinuous transition

lines (analogous to second- and first-order phase transitions) separating defect-turbulent

from phase-turbulent states [11]. Of special interest to us is the continuous chaos-to-chaos

transition line L1 in their Fig. 3, which occurs for c1 ≥ 1.8. It is somewhat mysterious why
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the density nD decreases to zero at an L1 line that is distinct from the Newell line: in the limit

of infinite system size and of infinite time, what prevents defects from forming anywhere to

the right of the Newell line (c3 > 1/c1)? The mystery of the L1 line can be partly appreciated

by trying to reason by analogy to equilibrium statistical physics. Assuming that the chaotic

fluctuations of Eq. (1) act as a finite-temperature ergodic noise bath and observing that

the derivatives in Eq. (1) represent short-ranged interactions between different parts of the

field u, we would not expect distinct phases at finite temperature in one-space dimension

[12].

Because so little is known about possible critical phenomena of large homogeneous

nonequilibrium systems and because Eq. (1) is such an important model, we have tried

to characterize more carefully the dynamics near the L1 line for the fixed parameter

value c1 = 3.5. By calculating various order parameters over length scales as large as

L ≤ 106 and over time scales as large as T ≤ 107, we are able to show below that the

change from defect- to phase-turbulence near the L1 line is more accurately described as

a smooth crossover rather than as a sharp continuous transition with power-law scaling of

order parameters [2]. It is then a possibility that phase turbulence (i.e., a chaotic state

with nD = 0 in the thermodynamic limit) does not exist although we can not settle this

with our present computer resources. Our calculations also confirm several points predicted

by Shraiman et al and by other researchers [13], e.g., that the spatial correlation function

of the phase should decay exponentially inside the phase-turbulent regime. We have also

studied whether the dimension density δ (Lyapunov fractal dimension per unit volume) is a

useful order parameter for characterizing changes in spatiotemporal chaotic states [9,3,14].

The dimension density defines a dimension correlation length ξδ = δ−1/d [9] which is the

characteristic size of dynamically independent subsystems of spatial dimensionality d [3]. A

comparison of ξδ with other characteristic length scales as a function of the parameter c3

gives the remarkable result that ξδ is, up to a constant factor, equal to the spatial correlation

length of the field magnitude, ξρ, from the Newell line to beyond the L1 line.

An important resource for the advances reported below was a CM-5 parallel computer
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[15], which facilitated the study of much larger space-time and parameter regions than

were previously conveniently accessible. Our numerical methods for integrating Eq. (1)

and for calculating related order parameters are similar to previous methods [2] except for

modifications of algorithms and codes to take advantage of the CM-5’s scalable parallel

architecture [3]. For most of our simulations, we used a time step ∆t = 0.05 and a spatial

resolution of two Fourier modes per unit length; this space-time resolution was dictated

by the need to detect isolated space-time defects when estimating the density nD [2]. Our

initial condition for most runs was u(x, t = 0) = 0.4+η where η was a uniformly distributed

δ-function correlated random variable in the interval [−0.02, 0.02]. We typically averaged

over 64 or more random initial conditions spanning an integration time of 2 × 105 so that

the total effective integration time was perhaps as long as 64 × (2 × 105) = 1.3 × 107 time

units.

Before discussing our results, we note that for c1 = 3.5, for an integration time of

T = 105, and for a periodic interval of length L = 1024, Shraiman et al argued the existence

of the L1 line using two key observations [2]: (1), that the density nD vanished as a power

law nD ∝ (c3 − c̄3)
α with exponent α ≈ 2 and with c̄3 ≈ 0.77 > cNewell

3 = 1/c1 = 0.286;

and (2), that the correlation time τ of phase fluctuations [16] diverged as a power law

also at c̄3, as the inverse of the defect density, τ ∝ 1/nD. For c3 < c̄3, Shraiman et al

observed a less-disordered phase-turbulent regime with nD empirically equal to zero and

with slower-than-exponential decay of temporal correlations [2]. If defects do not occur in

the thermodynamic limit, a perturbation theory in the small quantity ǫ = c1c3 − 1 yields a

simpler description of phase turbulence near the Newell line, ǫ → 0. In that limit, Eq. (1)

reduces to the Kuramoto-Sivashinsky (KS) equation [17,9]

∂tφ = −ǫ ∂2
xφ−

1

2
c21(1 + c23) ∂

4
xφ− (c1 + c3) (∂xφ)

2, ǫ = c1c3 − 1, (2)

and the amplitude ρ becomes an algebraic function of a spatial derivative of the phase,

ρ ≈ 1−
c1
2
∂2
xφ. (3)
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Some of our calculations below provide the first quantitative comparisons of phase turbulence

as described by Eqs. (2) and (3) with phase turbulence as empirically observed in Eq. (1).

For the parameter value c1 = 3.5, for a system size L = 4096, and for an effective

integration time of T = 107 (after allowing transients of duration 104 to decay), we find in

Fig. 1 that nD is finite substantially to the left of the L1 line as calculated in Ref. [2]. Far to

the right side of the L1 line, our data in Fig. 1(a) approximately reproduce the previously

reported [2] power-law scaling with exponent α ≈ 2. Closer to the L1 line, a least-squares fit

of the three-parameter expression a(c3− c̄3
′)α to the nine left-most points gives a much larger

exponent α ≈ 6.8, with an onset of phase turbulence (nD = 0) at c̄3
′ = 0.74 < c̄3 = 0.77.

Assuming equal errors bars on all data points, we find the chi-square value for the fit to be

χ2 = 4.6×10−12. The increase in the exponent with increased space-time resolution suggests

that a power-law scaling is inappropriate. As shown in Fig. 1(b), we find a better fit of the

same data with the functional form

nD = a exp
(

−b/ (c3 − c̄3
′′)

α
)

, (4)

which is the expected behavior for thermodynamic Gaussian fluctuations of the phase gra-

dient ∂xφ if large values of the latter are the reason for defect nucleation [2]. If we set α = 1,

a least-squares fit of Eq. (4) to the nine left-most data points yields the three parameter

values a = 0.66, b = 0.98, and c̄3
′′ = 0.70 < c̄3

′ = 0.74 with a χ2 = 8.1 × 10−13. If we set

c̄3
′′ = cNewell

3 = 0.286 to test whether Eq. (4) is consistent with the onset of phase turbulence

at the Newell line, a least-squares fit (again to the nine left-most points) gives the parameter

values a = 0.018, b = 0.017, and α = 8.8 with a substantially poorer χ2 = 8.2× 10−11. Our

data spanning the crossover region evidently lie too far to the right of the Newell line to

determine whether the defect density goes to zero before or at this line.

To test independently the important implication of Fig. 1 that a crossover occurs (so that

phase turbulence may not be a distinct phase from defect turbulence), we have calculated

other order parameters over the same parameter range. The occurrence of a crossover is

supported by Fig. 2, which summarizes correlation times τ of the phase φ(x, t) [16] as a
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function of c3. Fig. 2(a) shows that τ does not diverge to infinity at the L1 line (as reported

in Ref. [2]) but instead is large and finite a little bit to the left of the L1 line. We find

that time correlation functions of the phase decay exponentially down to at least c3 =

0.77 but do not have a simple functional form for smaller c3 values. Recent arguments

and calculations have been made [13] that time correlation functions should decrease as a

stretched exponential for the phase-turbulent regime of Eq. (1) in which case a correlation

time can not be meaningfully defined. However, the change from exponential to stretched

exponential behavior with decreasing c3 has not yet been carefully studied. Shraiman et

al conjectured that the critical scaling of τ at the L1 line followed from the scaling of nD

with τ ∝ 1/nD. Fig. 2(b) shows that this is approximately correct to the right of the L1 line

but breaks down closer to this line since the product τnD is no longer constant: the defect

density goes to zero faster than the correlation time increases.

In Fig. 3(a), we have calculated the phase spatial correlation length ξφ [16] as a function

of c3. Shraiman et al argued that ξφ should be finite in the phase turbulent regime of Eq. (1)

and estimated its value indirectly by calculating a phase diffusion coefficient D = 1/ξφ from

phase-gradient correlations [2]. Exponential decay of spatial correlations is also expected for

phase turbulence if the latter is described at long-wavelengths by the Kardar-Parisi-Zhang

(KPZ) Langevin equation [13]. By going to quite large system sizes (L = 106) and to long

integration times, we have verified directly that the phase spatial correlation function [16]

decays exponentially well to the left of the L1-line as shown in Fig. 3(a). As the parameter c3

decreases, the quantity ξφ varies smoothly through a local maximum near the L1 line, and

then increases steadily until we can no longer estimate its value accurately with our computer

resources. The smooth variation of ξφ through the L1 region is consistent with a crossover

rather than with a sharp transition. The apparent divergence of ξφ upon approaching the

Newell line, ǫ → 0, can be understood semiquantitatively as shown in Fig. 3(a) by a scaling

argument [18] that predicts ξφ ∝ ǫ−5/2. The agreement is within about 10%.

The phase correlation length ξφ is the same as that of the field u itself [3], but there is

a separate, generally shorter, correlation length scale ξρ associated with fluctuations of the
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field amplitude ρ (also with the phase gradient ∂xφ). Fig. 3(b) compares the reciprocals of

the phase and amplitude correlation lengths with the Lyapunov dimension density δ, whose

reciprocal defines the dimension correlation length ξδ discussed above [3]. Up to constant

factor of 1.4, we find that the amplitude correlation length equals the dimension correlation

length ξδ over a substantial range of parameter c3. (An independent and related result was

also recently reported by other researchers [19].) This remarkable result suggests that the big

fractal dimension of some large homogeneous chaotic systems might be accurately estimated

by simple correlation function calculations. In work that we will discuss elsewhere [14], we

have also calculated the variation of ξδ across a nonequilibrium Ising transition in a two-

dimensional coupled map lattice [8]. Although the agreement is not quite so striking, ξδ still

matches closely the correlation length associated with fluctuations of the magnitude of the

site variables.

In Fig. 4, we make two final comparisons of how phase-turbulence, as described by

the adiabatic approximation Eq. (3) and by solutions of the KS-equation Eq. (2), agrees

with numerical solutions of Eq. (1). The dimension density δ of the KS-equation has been

calculated to be δ = 0.230 for the rescaled parameterless version of the KS-equation [20],

∂tφ = −∂2
xφ− ∂4

xφ− φ∂xφ. Restoring the original space, time, and magnitude scalings gives

the following c1 and c3 dependence of the dimension density for KS phase turbulence:

δ = 0.230

(

2(c1c3 − 1)

c21(1 + c23)

)1/2

. (5)

In Fig. 4(a), we compare Eq. (5) with our empirically determined values of δ for Eq. (1)

from Fig. 3(b). The agreement is good up to about c3 = 0.5 (ǫ = .75) and then there is an

increasing deviation of the actual solutions from Eq. (5). This deviation with increasing c3

may arise because the adiabatic approximation Eq. (3) breaks down or because higher-order

terms in the KS-equation are renormalizing the dimension density. Fig. 4(b) gives some

further insight by comparing the mean-square fluctuation of ρ from Eq. (1) with the mean-

square fluctuation of ρ as given by Eq. (3). We observe a previously unreported power-law

scaling of these amplitude fluctuations with exponent α = 4 from the Newell line to near
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the L1 line. Sufficiently close to the Newell line, an exponent of 4 is predicted by rescaling

the solutions of Eq. (2). The adiabatic approximation is satisfied over a larger range in c3

than the agreement between dimension densities.

In conclusion, we have used a powerful parallel computer to characterize more carefully

the change from defect- to phase-turbulence near the L1 line in the periodic one-dimensional

Ginzburg-Landau equation in the limit of large system size. Instead of a sharp continuous

transition with power-law scaling of order parameters [2], we found a smooth crossover with

new and anomalous structure near the L1 line, e.g., the variation of ξφ in Fig. 3(a) and the

change in slopes of dimension density and amplitude fluctuations in Fig. 4. We confirmed

recent predictions [2,13] that the phase correlation function decayed exponentially well to the

left of the L1 line, with the related correlation length being finite and large. We also found

two length scales associated with the field u, a long scale associated with phase fluctuations

and a short scale ξρ associated with amplitude fluctuations. Surprisingly, the length ξρ

equals, up to a constant factor, the dimension correlation length ξδ associated with the

dimension density. This suggests that spatial correlations of certain observables may suffice

to estimate big fractal dimensions of some large homogeneous chaotic systems.

Numerous interesting questions remain for future study. Our calculations leave open the

theoretical question of whether phase turbulence (nD = 0) exists in the thermodynamic limit.

More generally, it is still not known whether a chaos-to-chaos nonequilibrium transition

can occur in an infinite one-dimensional system. Some of our results might be tested by

experiment [10], e.g., the variation of phase correlation length (Fig. 3(a)) and the scaling of

amplitude fluctuations near the Newell line (Fig. 4(b)). It would be interesting to extend our

calculations to other parts of the c1-c3 parameter plane, e.g., to understand the hysteretic

bichaotic regime c1 < 1.8, for which defect-turbulent and phase-turbulent states evidently

coexist in parameter space [2,4]. If phase-turbulence is just a small nD limit of defect-

turbulence, it is more difficult to understand the coexistence of different states of identical

symmetry. Finally, it would be interesting to repeat similar calculations in two- and three-

space dimensions, for which the point-like space-time defects in one-space dimension are
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replaced by long-lived topological defects such as vortices and lines [13].
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FIGURES

FIG. 1. (a) Log-log plot of the space-time defect density nD versus the distance c3− c̄3
′ to the

fitted point c̄3
′ where the density goes to zero (onset of phase turbulence) for system size L = 4096,

integration time T = 105, and an average over 64 randomly specified initial conditions. The arrow

labeled “L1” indicates the position of the L1-line for parameter value c1 = 3.5 [2]. The smallest nD

value corresponds to a count of 200 defects. The two solid lines were drawn to indicate the previous

and present best estimates of the exponent α of a power-law scaling. The crosses are the data from

Ref. [2]. In (b), we find that Eq. 4 with exponent α = 1 gives a better fit of the same data, with

an onset of phase turbulence at c̄3
′′ = 0.70. The straight line is a plot of Eq. 4 over the range of

its fit.

FIG. 2. (a) Plot of the reciprocal square root of the correlation time τ (as estimated from

the asymptotic exponential decay of time correlation functions of the phase eiφ = u/|u|) versus the

parameter c3. The arrow indicates where the L1-line occurs for c1 = 3.5. We used a system size

of L = 4096, an integration time of T = 105, and an average over 64 random initial conditions.

The crosses denote the similar data from Ref. [2]. (b) For the same numerical parameters, a plot

of the product of correlation time with defect density, τnD, showing that the scaling τ ∝ 1/nD

breaks down near the L1-line.

FIG. 3. (a) Plot of the phase correlation length ξφ for solutions of Eq. 1 for system sizes of

up to L = 106, integration times of up to T = 2 × 105, and averages 64 randomly chosen initial

conditions. The crosses denote the similar data from Ref. [2]. The solid curve is the analytical

expression obtained by scaling the finite correlation length of the parameterless KS-equation [18].

(b) Plot of the Lyapunov dimension density δ [3] and the reciprocals 1/ξρ and 1/ξφ of the amplitude

and phase correlation lengths. The reciprocal length 1/ξρ (open circles) has been scaled by a

constant factor of 0.7 to emphasize the close agreement with δ. The positions of the Newell- and

L1-lines for c1 = 3.5 are denoted by the arrows labeled “N” and “L1” respectively.
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FIG. 4. (a) Comparison of the dimension density δ for solutions of Eq. (1) with the rescaled

dimension density of the KS-equation, Eq. (5), for c1 = 3.5. (b) Comparison of the mean-square

fluctuations of the amplitude ρ as calculated from the 1d CGL equation and as calculated from the

adiabatic approximation, Eq. (3), with φ determined from Eq. (1. In both (a) and (b)), the arrows

labeled “N” and “L1” denote the positions of the Newell- and L1-lines respectively for c1 = 3.5.
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