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Some statements by Luck and Mehta [Phys. Rev. E 48,

3988 (1993)] drawn from their analysis of the \exact" one-

dimensional model of a bouncing ball system are either mis-

leading or incorrect. In particular, in agreement with previ-

ous theoretical and experimental studies, the bouncing ball

system does exhibit chaotic orbits for a wide range of experi-

mentally accessible parameters. The \sticking solutions" with

long transients analyzed by Luck and Mehta are also observed

and usually easily distinguished from the chaotic orbits.
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Several researchers have studied one-dimensional mod-

els of the bouncing ball system which include the coef-

�cient of restitution (0 � � � 1), and many have also

noted the existence of the large class of eventually peri-

odic orbits known as \sticking solutions" [1]. More refer-

ences can be found in Ref. [2]. All these models|which

are equivalent to the dynamical equations described by

Luck and Mehta|have been termed the \exact" one-

dimensional model of the bouncing ball system [2]. The

phrase \one-dimensional" refers to the number of degrees

of freedom the ball moves in and not to the dimension of

the phase space model.

To �x a notation which allows an easier comparison

with experiments, recall that the dynamics of the bounc-

ing ball system can be found by solving the (implicit)

nonlinear coupled algebraic equations known as the phase

map,
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and the velocity map,
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are the phase and velocity of

the k-th impact between the ball and oscillating table, A

and ! are the table's amplitude and angular frequency,

� is the coe�cient of restitution, and g is the gravita-

tional acceleration. The implicit phase map and explicit

velocity map constitute the exact model of the bouncing

ball system. Earlier experimental studies showed an ex-

cellent correspondence between the exact model and the

dynamics of an experimental bouncing ball system, all

the major bifurcations predicted by the exact model oc-

curred within the experimental system [3]. Observations

between the model and experiment agreed to within %2

with no �tted parameters. A public domain program, the

Bouncing Ball Simulation System, has also been available

since 1986 which simulates the exact model [2]. We use

this program to obtain the results presented here.

Experiments illustrating chaos in the bouncing ball

system usually proceed along the following lines. The

amplitude the table driving the ball is slowly increased

while monitoring the dynamics of the bouncing ball

through an experimental impact map, which is similar

to a next return map [2]. In essence, an experimental

bifurcation diagram is created. The coe�cient of resti-

tution can be changed from around 0.2 to 0.8 by using

di�erent materials for the ball (eg., wood, plastic, steel).

Experimentally, it is observed that a chaotic invariant

set is seen at the end of the period doubling cascade,

but for a further increase in the driving amplitude, the

strange attractor is destroyed by a crisis. The dynamics

of the ball after this crisis can result in motion which

can quickly approach a periodic sticking solution (gen-

erally speaking, for smaller values of �), or can exhibit

long transients|sometimes called `transient chaos' [5]|

following the \shadow of the strange attractor" (gener-

ally speaking, for larger values of �). It is the dynamics

of this transient chaos when � is close to one that Luck

and Mehta analyze [6].

Direct simulation of the \exact" model exhibits a sim-

ilar behavior. Figure 1 presents a bifurcation diagram

showing a period doubling route to chaos for � = 0:5.

Note that this strange attractor is approached in exactly

the same way as it would be in an experiment, namely,

by slowly scanning the amplitude until the end of the

period doubling cascade is reached and a non-periodic

orbit is observed. In simulations (A = 0:012) the strange

attractor is found to be stable for over 10

6

impacts. Be-

tween A = 0:0121 and A = 0:0122 a crisis occurs which

destroys this strange attractor. For A > 0:0122 the orbit

follows the shadow of the strange attractor for a number

of impacts but eventually converges to a sticking solu-

tion (typically after 10

2

to 10

3

impacts). In both experi-

ments and simulations, the pre-crisis (chaotic) dynamics

and post-crisis (eventually periodic) dynamics are usually

easy to distinguish because the range of impact phases
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explored by the ball suddenly widens after the crisis. In

the simulation shown in Figure 1, the chaotic dynamics is

con�ned to a phase between �0:1 < �=2� < 0:3 where as

the post-crisis dynamics explores almost the entire range

of phases available. This feature provides a nice signa-

ture to distinguish the pre- and post-crisis dynamics in

both experiments and simulations.

This general scenario of period-doubling, chaos, crisis,

and sticking solutions (possibly with transient chaos) is

not con�ned to a few selected parameter values but is

generally observed for a wide range of �. For instance,

Fig. 2 shows this same scenario for � = 0:1, and Fig. 3

for � = 0:8. Figure 3, though, also illustrates that the

amplitude range where a strange attractor is observed

shrinks as � approaches one, which is perhaps the reason

why Luck and Mehta did not notice this scenario, espe-

cially if they con�ned their simulations and analysis to

the regime where � � 1.

We conclude by stating that in our opinion earlier the-

ory and experiments did not take a \rather cavalier" atti-

tude toward models including a �nite coe�cient of resti-

tution, but that when presenting results of earlier experi-

ments [3,7] the experimenters where fully aware of the co-

existence of strange attractors and sticking solutions, and

how to experimentally distinguish both types of invariant

sets. Further, while we agree that one-dimensional maps

are in general a good qualitative �rst step in modeling

dynamical systems which are inherently two-dimensional,

we must also disagree with the statement that the com-

pletely inelastic (� = 0) model is \a good qualitative

indicator for the dynamics of the ball with �nite restitu-

tion up to values close to 1." Rather, our experiments

and simulations show signi�cant new behavior in the ex-

act model which is not predicted by the completely in-

elastic model for moderate inelasticity (say, � = 0:5).

Finally, we �nd that a strange attractor is easy to ob-

serve in both experiments and simulations for realistic

and experimentally accessible parameter values.

In a future communication we will actually use topo-

logical methods to \prove" the existence of a chaotic in-

variant set in the exact one-dimensional model of the

bouncing ball system [8].
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FIG. 1. Bifurcation diagram for the exact one-dimensional

model of the bouncing ball system with damping � = 0:5.

The table amplitude (A) is measured in centimeters. Diagram

generated with the Bouncing Ball Simulation System. For

more details about the program see Ref. [2].

FIG. 2. Bifurcation diagram for the exact one-dimensional

model of the bouncing ball system with damping � = 0:1.

Diagram generated with the Bouncing Ball Simulation System

[2].

FIG. 3. Bifurcation diagram for the exact one-dimensional

model of the bouncing ball system with damping � = 0:8.

Diagram generated with the Bouncing Ball Simulation System

[2].
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Figure 1.  Tufillaro: Comment on ‘‘Bouncing ball with finite restitution: Chattering, locking, and chaos’’
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Figure 2.  Tufillaro: Comment on ‘‘Bouncing ball with finite restitution: Chattering, locking, and chaos’’
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Figure 3.  Tufillaro: Comment on ‘‘Bouncing ball with finite restitution: Chattering, locking, and chaos’’


