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Abstract The shape of an electronic droplet in the quantum Hall effect is sensitive
to gradients of the magnetic field, even if they are placed outside the
droplet. Magnetic impurities cause a fingering instability of the edge
of the droplet, similar to the Saffman-Taylor fingering instability of an
interface between two immiscible phases. We discuss the fingering in-
stability and some algebraic aspects of the electronic states in a strong
nonuniform field.
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1. Aharonov-Bohm effect and the shape of
electronic droplets in a magnetic field

1.1 Introduction

The Aharonov-Bohm effect is a striking manifestation of interference
in quantum processes. It has been observed in a number of quantum me-
chanical and mesoscopic systems and proved to be an important element
of our understanding of quantum physics.

In this notes we discuss yet another (so far just theoretical) realization
of the Aharonov-Bohm effect, now, in a strong magnetic field. The
discussion is based on the recent paper written in collaboration with O.
Agam, E. Bettelheim and A. Zabrodin [1].

Electrons confined in a plane in a strong magnetic field form incom-
pressible droplets trapped by an electrostatic potential. The area of
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Figure 1. A schematic illustration of the shape of an electronic droplet in a strong
magnetic field when some additional magnetic fluxes placed outside of the droplet.
Electronic droplet is stratified by semiclassical orbits. The area bounded by each
orbit is πNℓ

2

the droplet is quantized and is equal to πNℓ2, where N is a number of
electrons in the droplet and ℓ is a magnetic length. If N is large, the
droplet is well described in a semiclassical manner. It has a sharp edge
distributed over a length ℓ.

If magnetic field is uniform, the shape of the droplet is determined
by an equipotential line of the electrostatic landscape. In the case of
symmetric potential and a uniform magnetic field the droplet is a disk.

Let us now change magnetic field somewhere away from the droplet in
a manner that the magnetic field stays uniform in the area of the droplet.
For example we can do this by putting some number of Aharonov-Bohm
fluxes or any sort of magnetic impurities. As electrostatic potential, gra-
dients of magnetic field remove the degeneracy of the Landau level and,
therefore, affect the shape of the droplet. However, the ways electrostatic
and magnetic forces shape the droplet are different.

Electrostatic potential affects the quantum droplet only if it is placed
inside the droplet. Its effect decays exponentially with the distance
from the droplet. On the contrary, gradients of the magnetic field, even
being placed away from the droplet will strongly affect the shape of the
droplet. Their effects decay slowly, as a power law in the distance from
the droplet.

Moreover, in the situation when potential landscape is negligibly flat,
Aharonov-Bohm fluxes placed outside of the droplet cause a fingering
instability - an unstable pattern of fingers which grow with increasing
the area of the droplet (Fig. 1). A very similar instability is known in
non-equilibrium processes driven by diffusion [2].

The effect of magnetic impurities is even more dramatic. Almost
any gradient of magnetic field at sufficiently large area of the droplet
curves the edge so strongly that segments with the curvature of the
order of inverse magnetic length appear inevitably. At these segments
the semiclassical description of the droplet and its edge states is no longer
valid.
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1.2 Electronic droplet in the Quantum Hall
regime.

Consider first N spin-polarized electrons on a plane in a uniform,
perpendicular magnetic field B0 > 0, in the lowest Landau level:

H =
1

2m
(−i~~∇− e

c
~A)2. (1)

Degenerate states, written in the symmetric gauge, have the form f(z)e−
|z|2

2ℓ2 ,
where f(z) is a holomorphic function. Let us confine electrons in a
flat symmetric potential well of large radius R, well exceeding ℓ

√
N

(ℓ =
√

2~c/eB0 is a magnetic length). The potential well lifts the de-
generacy of the level such that a state with higher angular moment n
acquires a higher energy. Near the origin the wave functions are close
to the degenerate lowest Landau level wave functions with given orbital
momentum. Their orthogonal basis is:

ψ
(0)
n+1 =

1√
πn!

zn

ℓn+1
e−|z|2/2ℓ2 . (2)

We say that N particles form a droplet, when all first N orbitals, n =
0, 1 . . . , N − 1 are occupied [3]:

Ψ(0)(z1, · · · , zN ) = detψ(0)
n (zm)

∣

∣

n,m<N

=
1

√

N !τ
(0)
N

∆(z)e−
1

2ℓ2

∑

n |zn|2 . (3)

Here ∆(z) =
∏

n<m≤N (zn − zm) = det (znm+1)
∣

∣

0≤n,m<N
is the Vander-

monde determinant and the normalization factor (N !τ
(0)
N )−1/2 =

∏

0≤n<N h
(0)
n

is the product of the normalization factors (2) of one-particle states

h
(0)
n = (

√
πn!ℓn+1)−1.

In the semiclassical limit N ≫ 1, this wave function describes a cir-
cular shaped droplet of the radius ℓ

√
N . In this limit all arguments zn

obey the saddle point equation

N
∑

m6=n

2ℓ2

zn − zm
= z̄n, (4)

and are uniformly distributed within a disk of the area πNℓ2. The wave
function decays exponentially if zn is found outside the droplet.

Now consider the following arrangement (Fig. 1): the magnetic field
remains uniform in the area which includes the droplet (a disk with
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the radius greater than ℓ
√
N). Away from the droplet, the magnetic

field is perturbed B(x, y) = B0 + δB, in a manner that the nonuniform
part does not carry flux

∫

δBdxdy = 0. Since δB = 0 in the area
of the droplet, the potential V (z) defined as ∆V (z) = −δB/2B0 is
harmonic. The gauge potential is deformed by a harmonic function1:
A = Ay − iAx = z̄

ℓ2
− 2 ∂

∂zV (z).
Let us set the parameters tk to be the harmonic moments of the

deformed magnetic field:

tk =
1

πk

∫

δB(z)

B0
z−kd2z, (5)

For example, in the case of a few thin solenoids with fluxes Φa < π
added at points ζa, the harmonic moments are tk = 1

2B0

∑

aΦaζ
−k
a . The

harmonic potential then is

V (z) = Re
∑

k≥1

tkz
k.

A nonuniform part in the magnetic field perturbs the wave function
by a “singular gauge transformation”

Ψ(z1, · · · , zN ) =
1√
N !τN

∆(z)e−(
∑

n
1

2ℓ2
|zn|2−V (zn)). (6)

The saddle point equation (4) is transformed accordingly

N
∑

m6=n

2ℓ2

zn − zm
= z̄n − 2ℓ2

∂

∂z
V (z). (7)

This result holds in the limit when the radius of the confining potential
is very large. In this case the energy splitting of the lowest Landau level
due to the confining potential is less than the energy splitting caused by
gradients of the magnetic field.

The solution of this equations at large N has been studied in Refs.
[4]. The result is as follows: all zn are uniformly distributed with the
density (πℓ2)−1in a domain characterized by the following data,

- the area of the domain is πNℓ2;

- the harmonic moments of the exterior of the domain

tk = − 1

πk

∫

z−kd2z, k = 1, 2, . . .
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(the integral runs over the exterior of the domain) are equal to the
harmonic moments of the nonuniform part of the magnetic field
(5).

If the boundary of the domain is smooth and single connected, these
data determine the domain.

We see that gradients of magnetic field (say, Aharonov-Bohm fluxes)
placed away of the semiclassical orbits affect the shape of the droplet.
The effect of the gradients dies slow with the distance between the
droplet and the position of the gradients. Indeed, if L is a typical dis-
tance between the droplet and the gradients, then tk ∼ L2−k decay
slowly with L. In particular, the quadrupole moment t2 of the magnetic
field is transferred to a droplet from an arbitrary distance. The third
moment severely disturbs the shape of the droplet. Its effect decays with
the distance as 1/L.

In the next paragraph we argue that the distortion of the droplet
caused by a generic gradient of the magnetic field (magnetic impurities)
not only strong, but unstable. The magnetic impurities cause a fingering
instability. Afterwards, we discuss the origin of the Eq. (7).

1.3 Laplacian growth problem.

Consider a process where the area of the droplet πt = πNℓ2 grows,
while the gradients of the magnetic field δB remains intact. This can
be achieved by increasing the number of electrons N (by changing the
gate voltage, for example), or by decreasing the uniform part of the
magnetic field. In this process the moments tk are fixed. This leads to
the following geometrical problem:

- find the dynamics of a domain while its area increases while har-
monic moments tk remain fixed.

This problem has been discussed in the context of pattern formations in
non-equilibrium processes when a front between two immiscible phases
advances with the normal velocity proportional to the gradient of a har-
monic field - a mechanism often referred as Laplacian growth (for a
review see, e.g., [2]).

Viscous or Saffman-Taylor fingering is one of the most studied insta-
bilities of this type. It occurs at the interface between two incompressible
fluids with different viscosities when a less viscous fluid is injected into
a more viscous one in a 2D geometry (typically, the fluids are confined
in the Hele-Shaw cell – a thin gap between two parallel plates - or in
porous media [5]).
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In a thin cell, the local velocity of a viscous fluid is proportional to
the gradient of pressure: ~v = −~∇p. Incompressibility implies that the
pressure p(z) is a harmonic function of z = x+ iy with a sink at infinity:

∇2p(z) = 0, p(z) → −1

2
log |z|, |z| → ∞ (8)

If the difference between viscosities is large, the pressure is constant in
the less viscous fluid and, if the surface tension is ignored, it is also
constant (set to zero) on the interface. Thus on the interface

p(z) = 0, vn = −∂np(z). (9)

If less viscous liquid is supplied through the origin with a constant rate,
the area πt of the less viscous fluid grows linearly with time t.

A simple consequence of the growth process defined by these equations
(8, 9) is that harmonic moments of the viscous fluid domain,

tk = − 1

πk

∫

z−kd2z, k = 1, 2, . . .

where the integral runs outside of the droplet, do not change in time
[11]. They are initial data of evolution. Indeed,

d

dt
tk =

1

πk

∮

interface
z−k∂np(z)|dz| = 0

since the pressure is a harmonic function and is a constant on the inter-
face. Conservation of the harmonic moments is an equivalent formula-
tion of Laplacian growth, where surface tension is ignored (9).

We conclude that the growth of the semiclassical electronic droplet
in a strong magnetic field is equivalent to the propagation of a ”wa-
ter” drop (less viscous liquid) in ”oil” (more viscous fluid). This result
is not surprising: both dynamics are determined by the condition of
incompressibility.

1.4 Fingering instability, finite-time
singularities and destruction of edge states.

The Saffman-Taylor problem has been intensively studied experimen-
tally and analytically. It has been found that a small (almost arbitrary)
deviation from a circular form of the initial shape of the droplet is un-
stable. The droplet forms a pattern of growing fingers whose shapes
become complex as the area of the droplet increases [2]. Infact, the sit-
uation is even more dramatic. It is known that some fingers develop
cusp-like singularities within a finite time of growth [6], i.e., when the
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area of the droplet is finite. In other words, fingers growing with Nℓ2,
become thinner, and reach the atomic/molecular scale at the finite area
of the droplet.

Similarly, one can cause a fingering instability of the quantum Hall
droplet by changing the gradients of the magnetic field at fixed area.
Fingers will be driven to a cusp-like singularity by adiabatically chang-
ing any of the harmonic moments tk. When this occurs, the Laplacian
growth equations (8,9) are no longer valid. At this point corrections
obtained from the Navier-Stokes equations must be taken into account.
They introduce a microscale in the form of the surface tension, that
stops the curvature of the interface. Another mechanism to cure the
singularities is the discretization of the liquid. In this case one assumes
that the ”water” domain consists of small particles of non-vanishing size
[7].

The quantum Hall effect may be considered as a quantum version of
the Laplacian growth problem [1]. It also provides an attractive mecha-
nism of regularizing cusp-like singularities on the scale of the magnetic
length, as it will become apparent in the following.

For the electronic droplet, a singularity means that, by increasing the
number of particles at fixed gradients of magnetic field, the curvature
of some segments of the droplet becomes so large that the semiclassical
description is no longer valid. The electronic states of a sharp segment
of the edge of the droplet are not separated from the bulk. They enjoy
universal conformal properties that are very different from the conformal
properties of edge states on a smooth part of the edge.

It is important that a singularity occurs inevitably.

1.5 Quantization of a singularity.

Summing up, at some point on a quantum Hall plateau, the edge of the
droplet becomes very sharp and does not obey the standard semiclassical
description. It cannot be described by a conformal field theory. Edge
states at the cusp-like singularity of the classical edge seem important
in tunneling processes and in the transitions between plateaus.

Analysis of the singularity is equally important for Laplacian growth
problem. Quantum Hall effect provides a ”quantized” version of the
Laplacian growth where no singularity is possible on a scale less than
magnetic length. Quantization may be seen as yet another regularization
of singularity. The study, which we do not present here, shows that
the states at the singularity enjoy universal scaling features, depending
only on the qualitative character of the singularity. The analysis of the
scaling behavior at the singularity is technically involved. Its algebraic



8

aspects are similar to the universal scaling behavior of random surfaces,
intensively studied in the context of 2D quantum gravity at c < 1, the
so-called double scaling limit (for a review, see [8]). Physics of the states
on a sharp edge is a subject of current studies of the author.

In the rest of these notes, we review some algebraic aspects of the
dynamics of the electronic droplet in a nonuniform magnetic field and
its relation with the Laplacian growth.

2. Algebraic aspects of electronic states in the
quantum Hall regime and Laplacian growth.

2.1 Laplacian growth as an evolution of
conformal maps.

The Laplacian growth can be conveniently reformulated as a problem
of evolutions of conformal maps.

Let w(z, t) is a conformal map of the exterior of the droplet to the
exterior of the unit disk |w| ≥ 1 in such a manner that the source at
z = ∞ is mapped to infinity. In terms of the conformal map the pressure
is p = −1

2 log |w(z, t)| and the complex velocity in the viscous fluid is

v(z) = vx − ivy = 1
2∂z logw(z). On the interface, it is proportional to

the harmonic measure:

vn(z, t) =
1

2
|w′(z, t)|. (10)

The complex velocity is conveniently written using the Schwarz function,
S(z): this is an analytic function in the domain containing the contour
such that S(z) = z̄ on the boundary [10]. The complex velocity is
expressed in terms of this function by ∂tS(z). The equation (identity)

∂tS(z) = ∂z logw(z).

describes the evolution of the droplet under the condition that all pa-
rameters tk are kept fixed.

One may be interested in the evolution of the droplet under a change
of some particular tk if the area and all other moments are kept fixed.
This has been studied in Ref.[4]. For references we list the result here.
The evolution reads:

∂tkS(z) = ∂zH
(k)(z), k = 1, 2, . . . (11)

were the k-th Hamiltonian is a nonnegative part of the k-th power ofthe

inverse conformal map z(w). They are Hk =
(

zk(w)
)

+
+ 1

2

(

zk(w)
)

0
.

The symbols (f(w))± mean the truncated Laurent series where only
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terms with positive (resp. negative) powers of w are kept, while (f(w))0
is the constant term (w0) of the series. The derivatives in the last equa-
tions are taken at fixed z.

In refs.[4], the set of equations (11) was identified with the disper-
sionless limit of the integrable Toda lattice hierarchy. The compatibility
of these equations give a set of nonlinear equations which describe the
evolution of conformal maps under a deformation of the domain. For
example, the first equation of the hierarchy is written for the conformal
radius r = 1

2πi

∮

dz
w(z) and u = − 1

2πir

∮

w(z)dz. They are dispersionless

limit of Toda equation and Kadomtzev-Petviashvili (KP) equations:

∂t1∂t̄1 log r
2(t) = ∂2t r

2(t) (12)

3∂2t2un + ∂t1(−4∂t3un + 12un∂t1un) = 0. (13)

We will not develop this aspect further. See refs. [4] for the details.

2.2 The wave function in a nonuniform magnetic
field.

We now return to the problem of the electronic droplet in a nonuni-
form magnetic field. Since the magnetic field is uniform inside the
droplet, the one-particle wave functions in this area are obtained by
linear combinations of the wave functions (2) times the gauge factor
eV (z). They have the form

ψn+1(z) = Pn(z)e
− |z|2

2ℓ2
+V (z), (14)

where Pn is a holomorphic polynomial of the degree n.
There are two equivalent ways for finding the polynomials. One uses

the fact that the deformed wave functions are still orthogonal. There-
fore the holomorphic polynomials are bi-orthogonal with the measure

e−
|z|2

ℓ2
+2V (z). This condition uniquely determines the polynomials. Their

explicit form is known [13]. It is given by a multiple integral

Pn(z) = κ−1
n

∫

∆(ξ)
∏

i≤n

(z − ξi)e
− |zi|

2

2ℓ2
+V (zi)d2ξi (15)

where the normalization factor κ2n = n!(n + 1)!τnτn+1 and τn is the
tau-function:

τN =
1

N !

∫

|∆(ξ)|2
∏

n

e−
|ξi|

2

ℓ2
+2V (ξi)d2ξn . (16)
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In the case of a uniform magnetic field the integrals are computed ex-

actly: P
(0)
n (z) = 1√

πn!
zn

ℓn+1 .

Computing the Slater determinant det(ψn+1(zm)), we obtain the mul-
tiparticle wave function (6) (we used the fact that detPn(zm) = 1√

τN
∆(z),

where 1/
√
τN is the product of the coefficients of the highest monomi-

als of Pn(z)). The formula of the tau- function (16) follows from the
normalization condition for the wave-function.

Another way is to obtaine the orthogonal set of one-particle states as
an overlap between N + 1- and N -particle states (6):

ψN+1(z) =

∫

Ψ(z, ξ1, . . . , ξN )Ψ(ξ1, . . . , ξN )
∏

n≤N

d2ξn. (17)

This prompts the Eqs.(14,15).

2.3 Semiclassical states.

At large N , one may treat the formulas (6,16) in the semiclassical
approximation. This immediately yields Eq.(4), and to the shape of the
droplet described after this equation. It is interesting to go one step
further to find a semiclassical form of the wave function in a nonuniform
magnetic field characterized by the harmonic moments tk (5). The result
is sketched below (Ref.[1]).

A semiclassical state is characterized by the orbit - a smooth, closed
and single connected loop with the area πnℓ2 and a given harmonic mo-
ments tk. We recall that they are the moments of the nonunoform part
of the magnetic field (5). The semiclassical form of the wave function of
this orbit (14) is found to be

ψN (z) ≃
( w′(z)

2πℓ
√
π

)1/2
e−

1

ℓ2
A(z,z̄)eiΦ(z)

Here w(z) is a conformal map of the exterior of the orbit to th exterior
of the unit disk, a geometrical phase 2πΦ(z)/πℓ2 is the area of a sector
bounded by a ray argz and some reference axis. The action A(z, z̄) =
1
2 |z|2 − ReΩ(z), where Ω(z) is defined such that ∂zΩ(z) = S(z) is the
Schwarz function of the domain. The action is positive in the vicinity of
the contour and everywhere in the exterior domain. Its variation normal
to the orbit reads

A(z + δnz) = |δnz|2 −
1

3
κ(z)(δnz)

3 + . . . ,

where δnz is a normal deviation from a point z of the orbit and κ(z) is
the curvature of the orbit.
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A semiclassical state is localized at the minimum of A(z), where the
amplitude has a sharp maximum. All orbits have the same harmonic
moments tk and are differed by the area. The holonomy of the state is
2πN .

This result is easy to understand. The wave function (17,2.3) is a
matrix element of the vertex operator at the edge of the quantum Hall
state. The edge states are conformal invariant. Therefore the vertex
operators on the edge of a circular droplet (in a uniform magnetic field)
and a perturbed droplet (in a nonuniform magnetic field) differ by the
conformal transformation: ψ(z) → (w′(z))hψ(z) where h is a dimension
of the vertex operator. In the integer Hall effect the edge excitations are
free fermions: h = 1/2. Similar calculations for the semiclassical limit
of Laughlin’s FQHE-1/(m) states are expected to give the prefactor in
(2.3) equal (w′(z))1/2m.

In the classical approximation the amplitude of the wave function
reads

|ψN |2 ≃ 1

2π
|w′(z)|δ(z), (18)

where the δ-function is localized on the orbit.

2.4 Integrable structure of QHE states.

An integrable structure for the dynamics of the semiclassical droplet
(evolution of conformal maps) suggests that the electronic states in quan-
tum Hall regime may also obey an integrable nonlinear equations. This
is, indeed, true.

Let us vary magnetic field and follow an evolution of the matrix ele-
ments of electronic operators. They evolve according to the Toda lattice
hierarchy. A precursor of the integrability has been found in Refs.[12].
There, the operator content of QHE was identified with the W+∞ alge-
bra. We will address this issue in details elsewhere (see also [4, 14] and
references therein). Below we will write the major formulas.

The polynomials (15) represent the coherent states of the opera-
tor of magnetic translations Z = ℓ2(−2∂z̄ + Ā) in the arrangements
where nonuniform field is located outside of the droplet, i.e., when
A − ℓ−2z̄ = −2 ∂

∂zV (z) is a holomorphic function. This operator an-
nihilates all wave functions (14) of the first Landau level Zψn(z) = 0
and acts as a multiplicator on the polynomials ZPn(z) = zPn(z). The
Hermitian conjugated operator Z̄ = ℓ2(2∂z +A) differentiates the poly-

nomials Z̄ψn = e−
1

ℓ2
|z|2+V (z)ℓ2∂zPn(z). In terms of these operators the
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Hamiltonian (1) is H = 1
2mℓ4

(ZZ̄ + Z̄Z). Obviously

[Z̄, Z] = 2ℓ2. (19)

As on operator acting on polynomials, Z is a lower triangular matrix
with the upper adjacent diagonal. The operator Z̄ is a lower diagonal
matrix

ZnmPm(z) = zPn(z), Znm = 0 at m > n+ 1. (20)

Z̄nmPm(z) = 2ℓ2∂zPn(z), Z̄nm = 0 at m ≥ n. (21)

Their matrix elements depend on the magnetic field and are parametrized
by tk.

The integrable hierarchy describes an evolution of the wave functions,
or, equivalently, the matrix elements of the operators Z and Z̄ as func-
tions of parameters tk:

∂tkψn(z) = H(k)
nm(z)ψm(z) (22)

The commutative set of Hamiltonians H
(k)
nm(z) are proved to be a set

matrices with zeros in the lower triangular part. They are

H(k) =
(

Zk
)

+
+

1

2

(

Zk
)

0
(23)

where (Zk
)

+
and (Zk

)

0
are upper triangular and diagonal parts of the

k-th power of the matrix Znm. In terms of operator Z the evolution
equations read

∂Z

∂tk
= [H(k), Z],

∂Z̄

∂tk
= [H(k), Z̄] (24)

These equations and the vanishing commutators among the Hamiltoni-
ans give a set of nonlinear equations for the matrix elements and coeffi-
cients of the polynomials. For example, the equation for the “quantum

conformal radius” rn = Zn,n+1 and un =
Zn,n+2

Zn,n+1
are the celebrated Toda

and KP equations:

ℓ2∂2t1 t̄1 log r
2
n = r2n+1 − 2r2n + r2n−1, (25)

3∂2t2un + ∂t1(ℓ
−2∂3t1un − 4∂t3un + 12un∂t1un) = 0. (26)

In the terminology of integrable hierarchies, the operators Z and Z̄ are
a pair of Lax operators; the wave function ψn(z) is the Baker-Akhiezer
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function; Eq. (19) is the string equation; Eqs. (22-24)) are the Lax-Sato
equation. Finally, (16) represents the tau-function of the hierarchy.

The connection with the semiclassical description is transparent. The
classical limits (ℓ2 → 0) of the operators Z and Z̄ are the coordinate of
the droplet and its Schwarz function. The classical (dispersionless) limit
of the Lax-Sato equations describe the evolution of conformal maps (11).
The Toda equation (25) is reduced to the dispersionless Toda equation
(12) for the conformal radius in the limit n → ∞ while t = nℓ2 is kept
fixed.

2.5 Random matrix representations.

The wave functions of the Quantum Hall effect are naturally related
to random matrices. The square of the amplitude of the multiparti-
cle wave function (6) can be obtained as a result of the integration of

e−
1

ℓ2
trMM†+trV (M,M†) over certain ensembles of complex matrices. Here

2V (M,M †) =
∑

k(tkM
k + t̄k(M

k)†).
One ensemble is N ×N normal matrices with a given set of complex

distinct eigenvalues z1, . . . , zN [14, 4]. We recall that the normal matri-
ces are the complex matrices with a relation [M, M †] = 0. Integration
over these matrices recovers (6) up to a factor.

Another ensemble has been pointed to the author by M. Hastings.
This is an ensemble of arbitrary complex matrices [15]. We recall this
relation briefly. Any complex matrix with distinct eigenvalues z1, . . . , zN
can be decmposed into as M = U †(diag(z1, . . . , zN ) +R)U , where U is
a unitary matrix and R is an upper triangular complex matrix. Po-
tential trV (M,M †) =

∑

n V (zn, z̄n) depends only on eigenvalues, while
the measure of the integral D[M ] = D[U ]D[R] |∆(z)|2, and trMM † =
∑

n |zn|2 +
∑

i>j |Rij |2 are factorized. The volume of the unitary group
∫

D[U ] and the gaussian integration over matrix elements Rij of the ma-
trix R contributes just numerical factors. As a result |Ψ(z1, . . . , zN )|2 ∼
∫

DMDM †e−
1

ℓ2
trMM†+trV (M,M†).

Appearance of integrable hierarchies and random matrices ties the
Laplacian growth and the dynamics of quantum Hall edge states to a
number of important problems of theoretical and mathematical physics.

Acknowledgments

Useful discussions with A. Caceres, A. Boyarsky, M. Hastings, L. Levi-
tov, M. Mineev-Weinstein, A. Cappelli, V. Kazakov, I. Kostov, L. Kada-
noff, O. Ruchayskiy, R. Teodorescu and collaboration with O. Agam, E.



14

Bettelheim and A. Zabrodin are acknowledged. The work was supported
by grants NSF DMR 9971332 and MRSEC NSF DMR 9808595.

Notes

1. We set ~= e = c = 1 hereafter.
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