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Sudden Collapse of a Granular Cluster
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Single clusters in a vibro-fluidized granular gas in N connected compartments become unstable
at strong shaking. They are experimentally shown to collapse very abruptly. The observed cluster
lifetime (as a function of the driving intensity) is analytically calculated within a flux model, making
use of the self-similarity of the process. After collapse, the cluster diffuses out into the uniform
distribution in a self-similar way, with an anomalous diffusion exponent 1/3.

PACS numbers: 45.70.-n, 05.45.-a, 02.60.Lj

One of the key features of a granular gas, making it
fundamentally different from ordinary molecular gases,
is its tendency to spontaneously separate into dense and
dilute regions [1]. This clustering originates from the
dissipative nature of the particle collisions. It is an un-
wanted effect in many applications where granular mate-
rial is brought into motion. Therefore we study (within a
simple geometry) how declustering occurs. We find that
the breakdown of a cluster can be very abrupt, making
declustering very different from clustering in reverse time
order.

The experimental system (see Fig. 1) consists of a row
of N equal compartments, separated by walls of height
h = 25.0 mm and filled with a few hundred steel beads of
diameter 3.0 mm. We start out with all the particles in
the middle compartment and bring them into a gaseous
state by shaking the system vertically. For weak shaking
the cluster is stable: after some initial spilling, a dynami-
cal equilibrium is established between the outflux of slow
particles from the cluster and the influx of fast particles
from outside [2, 3, 4]. For sufficiently strong shaking,
however, the cluster breaks down.

Two different regimes are observed: (i) At very strong
shaking the breakdown occurs immediately, and the clus-
ter spreads out over the boxes with its profile widening
as t1/3 (instead of the standard t1/2 diffusion law). (ii)
At less violent shaking, the cluster seems to remain sta-
ble for a long time, showing only a small leakage to its
neighbors. But suddenly it collapses and subsequently
diffuses over all boxes. The sudden death of the cluster
is depicted in Fig. 1.

One thing this figure shows is that the breakdown of a
cluster is strikingly different from the reverse process of
cluster formation, which is known to take place gradually
and (for all N ≥ 3) via transient states showing clusters
in several boxes [3, 4]. This lack of time-reversibility is
yet another consequence of the dissipation in the system.

The abruptness of the collapse allows us to define a
cluster lifetime τ (via n̈cl(τ) = 0, see Fig. 1e). In Fig. 2
the measured lifetimes are plotted as a function of the
inverse shaking strength B̃ (Eq. 2) for various values
of N . The data lie on a universal envelope curve, until

FIG. 1: Four images from a 5-box experiment, at driving

parameter B̃ = 8.2. The cluster is clearly present until t = 42
s, then suddenly collapses, leaving no trace one second later.
Plot (e) shows the time evolution of the cluster fraction ncl(t),
evaluated from the flux model.

at some critical value B̃c,N (which grows with N) they
diverge.

All the above experimental observations can be ac-
counted for quantitatively by means of the flux model of
refs. [2, 3, 4]. At the heart of this model is a flux function
F (nk), describing the outflow from the kth box to each of
its neighbors. It is a non-monotonic function of nk (the
particle fraction in the box): F (nk) first increases with
nk, but beyond a certain value of nk it decreases again,
as the increasingly frequent inelastic collisions slow the
particles down, so that they cannot make it over the wall
to the neighboring compartments anymore. The precise
form of F (nk) is not very critical, as long as it is a one-
humped function. We will use Eggers’ flux function [2]

F (nk) = C
√

B̃n2
ke

−B̃n2

k , (1)

with

B̃ ∝
ghr4(1 − e)2P 2

S2(af)2
. (2)

http://arxiv.org/abs/cond-mat/0204275v1


2

FIG. 2: (a) Lifetime τ vs driving parameter B̃, determined
from experiments with N = 3, 5 boxes (dots with error
bars), and from numerical evaluation of the flux model with
N = 3, 5, 10, 20, 40, 80 boxes (empty symbols). The solid
curves are analytical solutions for N = 3 [9] and for the enve-

lope curve, which goes roughly as exp((3/2)B̃) (cf. Eq. 13).
(b) Enlargement of (a), showing the experimental results for
N = 3 and N = 5 in more detail. Every point is based on
15 repetitions of the experiment; the vertical error bars de-
note the maximal deviation from the average τ measured, the

horizontal ones represent the accuracy in B̃. (c) Bifurcation

diagram for N = 5, showing the critical value B̃c,5. Declus-
tering occurs to the left of this value.

The driving parameter B̃ depends on the total number
of particles P and their properties (radius r, restitution
coefficient e of the particle collisions), on the geometry of
the system (height h of the walls, ground area S of each
box), and on the frequency f and amplitude a of the
shaking. The factor C only determines the absolute rate
of the flux, and can be incorporated in the time scale.
The equation of motion for the fraction in box k is [5]

dnk

dt
= F (nk−1)− 2F (nk) + F (nk+1), (3)

where k = 1, 2, .., N . Here we assume a nearest neigh-
bor interaction, and a cyclic arrangement of the boxes
(k = N + 1 equals k = 1). We further impose particle
conservation,

∑
k nk = 1.

The numerical results shown in Fig. 1e and Fig. 2 have
been obtained using the above flux model, starting out
with all particles in one box (labeled cl). They quanti-
tatively agree with the experimental observations. The
decaying cluster goes through three different stages:

The starting stage is a very short one, in which both
ncl and F (ncl) display a jump compared to ni and F (ni)
in the surrounding boxes, i = 1, 2, .. (we have to consider
one side only because of the symmetry in the system).
In the second stage, the flux has become continuous

but the particle fraction remains discontinuous. How-
ever, its low-density counterpart n0 (defined by F (n0) =
F (ncl)) does continuously connect to n1. We will use
this fact later in the analysis of the envelope curve. The
flux gradually grows, and eventually F (ncl) reaches its
maximum value. This is accompanied by rapid density
changes and the sudden death of the cluster at the life-
time τ .
In the third and last stage, both ncl and F (ncl) fit

continuously to the other boxes (see Fig. 3a). The
remains of the cluster diffuse over the whole system until
the uniform distribution is reached.

In what follows we will analytically solve the flux
model. First we focus on the third stage. We rewrite the
problem into its continuum version, by setting n(x, t) ≡
nk(t) (x = kw by definition, where the box width w will
be incorporated in the x-scale). Eq. 3 then becomes:

∂tn = ∂xxF
(
n(x, t)

)

= C
√
B̃∂xx

(
n(x, t)2e−B̃n(x,t)2

)
,

(4)

and the conservation condition takes the form∫
∞

−∞
n(x, t)dx = 1.

For very strong shaking (regime (i), where τ is van-
ishingly small) the diffusive stage sets in almost immedi-

ately. Here B̃ → 0, and Eq. 4 reduces to

∂tn = C
√
B̃∂xx(n

2) = 2C
√
B̃((∂xn)

2 + n∂xxn), (5)

which is known as the porous media equation [6, 7]. The
decay of the cluster in this limit is depicted in Fig. 3a. It
is self-similar: all curves in Fig. 3a fall onto a single curve
if we properly rescale the axes (Fig. 3b). The original
partial differential equation (PDE) can thus be brought
back to an ordinary differential equation (ODE) in terms

of the self-similarity variable η = x/(CB̃1/2t)1/3. With

n(x, t) = H(η)/(CB̃1/2t)1/3, Eq. 5 now takes the form:

∂ηη(H
2) +

1

3
∂η(ηH) = 0. (6)

Its symmetric solution is H(η) = H0 − (1/12)η2 (with
the constant H0 = (31/3)/4 ≈ 0.361 determined by∫
∞

−∞
H(η)dη = 1). This inverted parabola, depicted in

Fig. 3b, represents in one curve all the stages of Fig. 3a.
The scaling of the axes shows that the height of the clus-
ter decreases as t−1/3, and its width grows as t1/3. This
anomalous diffusion (with exponent 1/3) is also found
in porous media [6, 7]. The slowed down diffusion of
the front originates from the quadratic n-dependence in
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FIG. 3: (a) The diffusing profile at successive times t (in

the limit B̃ = 0). (b) The function H(η) onto which all the
curves in plot (a) collapse by a proper rescaling of the axes

(H ∝ nt1/3 and η ∝ xt−1/3).

∂xxn
2 (Eq. 5). In the context of our granular model this

reflects that particles only diffuse to neighboring boxes
through 2-particle collisions: In the strong shaking limit
the absence of particles slows down further diffusion, the
presence enhances it.
For non-zero B̃ (regime (ii), where the diffusive stage

has to wait until after the sudden death) we have an

additional dimensionless variable χ = B̃/C(t − τ).
Its influence diminishes with time and the solutions
converge to the inverted parabola of the case B̃ → 0.

Next we turn to the second, semi-continuous stage. For
moderate shaking, B̃ ≈ B̃c,N , this stage can take quite

a long time. At the critical point B̃c,N the lifetime τ
even diverges to infinity and the cluster becomes stable.
Starting out from the initial ..,0,0,1,0,0,.. distribution,
the system first very slowly approaches a distribution in
which ncl is close to the cluster density at the saddle-node
bifurcation (see Fig. 2c) and all other boxes contain equal
fractions nk = (1−ncl)/(N−1). Only when it has passed
this phantom equilibrium (i.e., when ncl is below the level
of the saddle-node bifurcation), the system quickens its
pace and the sudden collapse occurs.
This means that τ is the time it takes to pass the

phantom equilibrium. It can be calculated either
numerically or analytically (by integrating the Taylor

expansion of Eq. 3), with the result τ ∝ (B̃c,N − B̃)−1/2.
So τ diverges as the inverse square root of the distance
to the critical point, which is the common (mean field)
power-law behavior near a second order phase transition
as we have here for τ [8].

Finally, we calculate the lifetime away from the crit-
ical point, i.e., for B̃ considerably smaller than B̃c,N .
This will give us an analytical expression for the enve-
lope curve in Fig. 2a. For these B̃ values, the collapse
occurs before the particles leaking out of the cluster have
had time to fill the outermost boxes to any significant
level. Therefore, the behavior does not depend on the
value of N : The system does not feel its finite size dur-
ing the cluster’s lifetime, so the number of boxes can be

taken to be infinite.
The time-evolution of the cluster is described by Eq. 3,

with F (n−1) = F (n1):

dncl

dt
= −2F (ncl) + 2F (n1) = −2F (n0) + 2F (n1). (7)

This equation contains n1, which is governed by a simi-
lar equation of motion (Eq. 3) containing n2, etc. So we
have to deal with an infinite number of coupled nonlin-
ear ODE’s [9]. This is a problem that cannot be solved
directly, so we attack it in five steps.
Step 1 : We first rewrite the problem into its continuum

version, and replace the cluster density ncl by its low-
density counterpart n(0, t) ≡ n0(t) ≈ nclexp(−B̃n2

cl/2).
Thus, without influencing the fluxes (since F (n0) =
F (ncl)) we make n(x, t) continuous in x = 0. The density
n(x, t) obeys Eq. 4, plus a conservation condition saying
that the increase of material into the rest of the system
equals the influx from x = 0:

∂t

∫
∞

0

n(x, t)dx = −(∂x
(
F
(
n(x, t)

))
x=0

. (8)

Step 2 : The cluster-equation Eq. 7 now becomes:

dncl

dt
= 2

(
∂xF

(
n(x, t)

))

x=0

= 2F ′
(
n(0, t)

)(
∂xn(x, t)

)
x=0

.
(9)

Since F ′ can be derived directly from Eq. 1, the problem
reduces to determining ∂xn(x, t) at x = 0.
Step 3 : In order to do so, we observe that changes in

n(0, t) happen on a much longer timescale than in the
surrounding boxes [10], so the cluster acts as a constant
reservoir spilling granular material. This approximation
is illustrated in Fig. 4a: the profile in the system builds
up while n0 remains constant. In fact, this build-up takes
place in a self-similar way (see Fig. 4b). So, as before,
the problem for n(x, t) can be formulated in terms of one

variable ξ = x/(n0CB̃1/2t)1/2. Setting n(x, t) = n0G(ξ),
Eq. 4 becomes an ODE for G(ξ), and also the accompa-
nying conservation condition (Eq. 8) contains ξ only:

1

2
ξ∂ξG = −∂ξξ(G

2e−βG2

),

(∂ξG)ξ=0 = −
eβ

4(1− β)

∫
∞

0

G(ξ)dξ,

(10)

where β = B̃n2
0.

Step 4 : The slope (∂xn(x, t))x=0 can now be approx-
imated by n0(t)(∂ξG(ξ))ξ=0(∂xξ)x=0, where we have re-
vived the (slow) time-dependence in n0(t). With ∂xξ =

(n0(t)CB̃1/2t)−1/2, Eq. 9 becomes:

dncl

dt
= 2

√
n0(t)√

CB̃1/2t
F ′

(
n0(t)

)(
∂ξG(ξ)

)
ξ=0

. (11)
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FIG. 4: (a) The density profile in the boxes surrounding
the cluster, at 20 consecutive (equidistant) moments in time,

within the constant n0 approximation; n0 = 0.223 and B̃ =
3.00. (b) The function G = n/n0 onto which all curves in plot

(a) collapse by a proper rescaling of the axes (ξ ∝ xt−1/2.)

All quantities on the right hand side are tractable. We
re-express n0(t) in terms of ncl(t), derive F ′ from Eq. 1,
and solve Eq. 10 to determine

(
∂ξG(ξ)

)
ξ=0

. This last

step still requires some work, because Eq. 10 does not al-
low an analytical solution and moreover contains β (and
hence n0(t)) explicitly. Since β is small, however, we may
expand G(ξ) and Eq. 10 in terms of β, and solve numer-
ically. In leading order we find

(
∂ξG(ξ)

)
ξ=0

= −K =

−0.3138. Inserting all this, Eq. 11 becomes:

dncl

dt
= −4

Kn
3/2
cl e−(3/4)B̃n2

cl

√
CB̃1/2t

(
1− B̃n2

cle
−B̃n2

cl

)
. (12)

This is an ODE for ncl in closed form, which replaces the
original problem (Eq. 7) consisting of an infinite number
of coupled ODE’s.
Step 5 : Finally, we integrate Eq. 12 over the cluster

density (dropping the suffix cl) and find an analytical
expression for the lifetime τ away from the critical points:

τ =

[∫ 1

nthr

√
CB̃1/2n−3/2e(3/4)B̃n2

dn

8K
(
1− B̃n2e−B̃n2

)
]2

. (13)

Here nthr is the value of n at which the sudden death
occurs. For the evaluation of the solid curve in Fig. 2a
we used nthr = 0.5, but this value is not too critical
(cf. Fig. 1e). The only free parameter is the constant C:
if this is adjusted properly, the analytical τ curve agrees
with the measured data over the whole range of B̃-values.
The above expression shows that τ roughly increases

as exp(B̃3/2). Recalling that B̃ is the inverse shaking
strength, this underlines the experimental observation
that even a small reduction in the shaking strength
causes a tremendous increase of the cluster lifetime.

In conclusion, in the studied compartmentalized
system clusters break down very abruptly, in contrast
to their slow formation. As clustering itself, the lack
of time reversibility originates from the dissipative
nature of the particle collisions: The breakdown of the
unstable cluster is delayed because most of the energy
input is dissipated through collisions in the cluster. The
dynamics is quantitatively described by a remarkably
simple flux model, which can be analytically solved.
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