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Abstract. A remarkably quantitative understanding of the electrical and mechan-
ical properties of metal wires with a thickness on the scale of a nanometer has been
obtained within the free-electron model using semiclassical techniques. Convergent
trace formulas for the density of states and cohesive force of a narrow constriction
in an electron gas, whose classical motion is either chaotic or integrable, are de-
rived. Mode quantization in a metallic point contact or nanowire leads to universal
oscillations in its cohesive force, whose amplitude depends only on a dimensionless
quantum parameter describing the crossover from chaotic to integrable motion, and
is of order 1nN, in agreement with experiments on gold nanowires. A linear stability
analysis shows that the classical instability of a long wire under surface tension can
be completely suppressed by quantum effects, leading to stable cylindrical config-
urations whose electrical conductance is a magic number 1, 3, 5, 6,... times 2e2/h,
in accord with recent results on alkali metal nanowires.

1 Introduction

In 1971, Gutzwiller’s trace formula [1] expressing the quantum density of
states of a classically chaotic system as a Feynman sum over classical periodic
orbits gave birth to the field of quantum chaos. In the subsequent decades,
the trace formula was generalized, and applied to a wide variety of physical
systems [2,3]. Of particular interest here are trace formulas for systems with
continuous symmetries [4,5] and broken symmetries [6,7]. One of the most
important successes of this semiclassical approach has been the description
of shell effects in finite fermion systems [3,8]. In this article, we discuss the
application [9,10,11,12] of trace formulas to describe quantum-size effects
in a particular class of open quantum systems: metallic nanocontacts and
nanowires.

In the past eight years, experimental research on atomically-thin metal
wires has burgeoned [13,14,15,16,17,18,19,20,21,22]. In a seminal experiment
[14] carried out in 1995, Rubio, Agräıt and Vieira simultaneously measured
the electrical conductance and cohesive force of an atomic-scale gold con-
tact as it formed and ruptured (see Fig. 1). They observed steps of order
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FIG. 1. Representative simultaneous recording of the mea-
Fig. 1. Left: Simultaneous measurements of (a) the conductance and (b) the cohe-
sive force of a gold nanowire during elongation at room temperature, from Ref. [14].
Right: Transmission electron micrographs of an atomic-scale gold contact breaking,
from Ref. [19]. The measured electrical conductance of the contact is (d) G ≃ 2G0,
(e) G ≃ G0

G0 = 2e2/h in the conductance, which were synchronized with a sawtooth
structure with an amplitude of order 1nN in the force. Similar results were
obtained independently by Stalder and Dürig [15]. For comparison, electron
micrographs by Ohnishi et al. [19] illustrating the atomic-scale structure of
a gold nanocontact breaking are also shown in Fig. 1.

Conductance steps of size G0 were first observed in quantum point con-
tacts (QPCs) fabricated in semiconductor heterostructures [23], and are a
rather universal phenomenon in metal nanowires [13], even being found in
contacts formed in liquid metals [17]. The precision of conductance quantiza-
tion in metal nanocontacts is poorer than that in semiconductor QPCs due
to their inherently rough structure on the scale of the Fermi wavelength λF ,
which causes backscattering [24], and due to the imperfect hybridization of
the atomic orbitals in the contact, especially for multivalent atoms [18]. As
we shall see in the following, the sawtooth structure in the cohesive force can
be considered a mechanical analogue of conductance quantization [25].

A remarkable feature of metal nanowires is the fact that they are stable
at all. Fig. 2 shows electron micrographs by Kondo and Takayanagi [16] illus-
trating the formation of a gold nanowire. Under electron beam irradiation,
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FIG. 1. Transmission electron micrographs showing the for-

Fig. 2. Transmission electron
micrographs showing the for-
mation of a gold nanowire,
from Ref. [16]: (a) an image
of Au(001) film with closely
spaced nanoholes, the initial
stage of the nanowire; (b) a
nanowire four atoms in diam-
eter, resulting from further
electron-beam irradiation

the wire becomes ever thinner, until it is but four atoms in diameter. Almost
all of the atoms are at the surface, with small coordination numbers. The
surface energy of such a structure is enormous, yet it is observed to form
spontaneously, and to persist almost indefinitely. Even wires one atom thick,
such as that shown in Fig. 1(e), are found to be stable for days at a time
[19,20]. Naively, such structures might be expected to break apart due to
surface tension [26,27,28], but we shall show that quantum-size effects can
stabilize arbitrarily long nanowires [12].

2 Free electron model

We investigate the simplest possible model [25,29] for a metal nanowire: a
free (conduction) electron gas confined within the wire by Dirichlet boundary
conditions. A nanowire is an open quantum system, and so is treated most
naturally in terms of the electronic scattering matrix S. The Landauer for-
mula [30,31] expressing the electrical conductance in terms of the submatrix
S12 describing transmission through the wire is

G =
2e2

h

∫

dE
−∂f(E)

∂E
Tr
{

S†
12(E)S12(E)

}

, (1)

where f(E) is the Fermi-Dirac distribution function. The conductance of a
metal nanocontact was calculated exactly in this model by Torres et al. [32].
The appropriate thermodynamic potential to describe the energetics of such
an open system is the grand canonical potential Ω, whose derivative with
respect to elongation gives the cohesive force F :

Ω = − 1

β

∫

dE g(E) ln
(

1 + e−β(E−µ)
)

, F = −∂Ω

∂L
. (2)

Here β is the inverse temperature, µ is the chemical potential of electrons
injected into the nanowire from the macroscopic electrodes, and g(E) is the
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Fig. 3. Electrical conduc-
tance and cohesive force of a
nanowire, modeled as a nar-
row neck in a free-electron
gas, calculated from Eqs.
(1)–(3) at zero temperature.
The S-matrix was calcu-
lated using the adiabatic and
WKB approximations, fol-
lowing Ref. [25]. For compar-
ison, the contribution to the
force from the surface ten-
sion and curvature energy is
shown as a dashed line. Note
that εF /λF = 1.7nN in gold

electronic density of states (DOS) of the nanowire. The DOS of an open
system may be expressed in terms of the scattering matrix as [33]

g(E) =
1

2πi
Tr

{

S†(E)
∂S

∂E
−H.c.

}

. (3)

This formula is also known as the Wigner delay. Note that in Eqs. (1) and (3),
a factor of 2 for spin degeneracy has been included. Thus, once the electronic
scattering problem for the nanowire is solved, both the conductance and force
can be readily calculated [25,29,24], as shown in Fig. 3. One sees that there
is an almost quantitative agreement with the experimental results shown in
Fig. 1: for example, the force necessary to break the last conducting channel
is approximately εF /λF (=1.7nN in gold), where εF is the Fermi energy.

3 Weyl expansion

In order to separate out the mesoscopic sawtooth structure in the force,
associated with the opening of individual conductance channels, from the
overall (macroscopic) trend of the contact to become stronger as its diameter
increases, it is useful to perform a systematic semiclassical expansion [2,3] of
the DOS, g(E) = ḡ(E) + δg(E), where ḡ is a smooth average term, referred
to as the Weyl contribution, and δg(E) is an oscillatory term, whose average
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is zero. For the free electron model with Dirichlet boundary conditions, the
Weyl term is [3]

ḡ(E) = E−1

(

k3EV

2π2
− k2EA

8π
+

kEK

6π2

)

, (4)

where kE =
√
2mE/h̄, V is the volume of the wire, A its surface area, and K

the integrated mean curvature of its surface. Inserting Eq. (4) into Eq. (2),
one finds the following semiclassical expansion at zero temperature:

Ω

εF
= −2k3FV

15π2
+

k2FA

16π
− 2kFK

9π2
+

δΩ

εF
. (5)

One can show [10] that interaction effects are higher order in h̄. In the same
spirit, a semiclassical expansion for the conductance G = (2e2/h)GS + δG
may be derived, where the corrected Sharvin conductance is [32]

GS =

(

kFD
∗

4

)2(

1− 4

kFD∗

)

. (6)

Here D∗ is the narrowest diameter of the nanowire.
When the wire is elongated, the atoms rearrange themselves, but the vol-

ume per atom remains essentially constant [10,29]. Thus, when differentiating
Eq. (5) to calculate F , the first term on the r.h.s. gives zero:

F = −∂Ω

∂L
= −σ

∂A

∂L
+ γ

∂K

∂L
+ δF. (7)

The cohesive force is given by surface tension plus a small curvature correction
(the sum of which is indicated by a dashed curve in Fig. 3), combined with
an oscillatory quantum term.

4 Trace formulas

The oscillatory contribution δg(E) to the DOS may be approximated as a
Feynman sum over classical periodic orbits à la Gutzwiller [2,3]. Since we are
interested in modeling nanowires which may possess axial and/or transla-
tional symmetries, however, we can not in general utilize Gutzwiller’s original
trace formula [1], which describes systems whose periodic orbits are isolated,
but must instead employ a generalization due to Creagh and Littlejohn, de-
scribing a system with an f -dimensional Abelian symmetry [5]:

δg(E) =
2

πh̄

1

(2πh̄)f/2

∑

Γ

TΓVΓJ
−1/2
Γ

| det M̃Γ − 1|1/2
cos

(

SΓ

h̄
− σΓπ

2
− fπ

4

)

, (8)

where the sum runs over f -dimensional families Γ of degenerate periodic or-
bits, TΓ is the period of an orbit in Γ , VΓ is the f -dimensional volume spanned
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by Γ , SΓ is the action of the orbit, and σΓ is a phase shift determined by the
singular points along the classical trajectory. The quantity M̃ is the so-called
monodromy matrix, characterizing the stability of the orbit with respect to
perturbations. It describes as a Poincaré map the linearized motion of small
perturbations from the periodic orbit in a surface of section perpendicular to
the orbit in phase space: an initial variation of momentum and position in
the surface of section (δr, δp) is related to the mismatch (δr′, δp′) after one
period by

(

δr′

δp′

)

= M̃

(

δr
δp

)

. (9)

Finally, the factor JΓ = | det(∂r′/∂p)|.
We shall also need to consider the breaking of continuous symmetries,

which is elegantly described in terms of semiclassical perturbation theory
[6,7], wherein the cosine in the trace formula is replaced by

cos(SΓ /h̄+ θΓ ) → Re
{

ei(SΓ /h̄+θΓ )
〈

ei∆SΓ /h̄
〉

Γ

}

, (10)

where

〈ei∆SΓ /h̄〉Γ = V −1
Γ

∫

dµ(g)ei∆SΓ (g)/h̄ (11)

is an average over the measure of the broken symmetry group.

4.1 A 2D example

Before treating the three-dimensional problem of interest, it is instructive
to consider a two-dimensional analogue, which is much simpler, but already
contains the essential elements of the problem. To be specific, we consider a
QPC whose width varies as

D(z) = D∗ + z2/R, z ∈ [−L/2, L/2] (12)

along the wire (see Fig. 4). For a finite radius of curvature R, there is only
a single unstable periodic orbit (plus harmonics), which moves up and down
at the narrowest point of the neck. The monodromy matrix M̃ppo of the
primitive periodic orbit is given by

M̃1/2
ppo =





∂r′

∂r
∂r′

∂p

∂p′

∂r
∂p′

∂p





∣

∣

∣

∣

∣

∣

1

2
ppo

=

(

1 +D∗/R D∗(1 +D∗/2R)/p

2p/R 1 +D∗/R

)

, (13)

with eigenvalues

e±χ = 1 +D∗/R±
√

(1 +D∗/R)2 − 1, (14)
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(a) (b)

R

D
*

D
*

Fig. 4. Point contact (a) and straight wire (b) as limiting cases of a nanowire. The
point contact is characterized by the diameter D∗ and radius of curvature R of
the neck. For the straight wire, R → ∞. A periodic orbit is sketched with a solid
line, other orbits (dotted lines) are not periodic. The classical motion in the point
contact (a) is in general chaotic, while the straight wire (b) possesses integrable
classical motion

2χ being the Lyapunov exponent of the primitive periodic orbit. There is
no continuous symmetry present (f = 0), so the original Gutzwiller trace
formula [1] may be used to find [10]

δg0(E) =
2mD∗

πh̄2kE

∞
∑

n=1

cos(2nkED
∗)

| sinh(nχ)| . (15)

In the limitR → ∞, the Lyapunov exponent χ → 0, and Eq. (15) diverges.
In this limit, the wire acquires translational symmetry (f = 1), and Eq. (8)
may be used to find

δg1(E)

L
=

2mD∗

πh̄2

∞
∑

n=1

cos(2nkED
∗ − π/4)√

πnkED∗
. (16)

The classical motion is integrable in this limit.
For large but finite radii of curvature, one can employ semiclassical per-

turbation theory in R−1:

〈ei∆Sn/h̄〉z =
1

L
√
D∗

∫ L/2

−L/2

dz D(z)1/2e−i2nk(E)[D∗−D(z)]. (17)

Ignoring the 1/R-dependence of the prefactor, one finds

〈ei∆Sn/h̄〉z =
C(
√

nk(E)L2/Rπ) + iS(
√

nk(E)L2/Rπ)
√

nk(E)L2/Rπ
, (18)

where C and S are Fresnel integrals. This leads to a DOS

δgpert(E) =
2mD∗

πh̄2kE

∞
∑

n=1

C
(

2nkED
∗ − π

4 ,
√

nkEL2

πR

)

n
√

D∗/R
, (19)
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(a)

(b)

R

D*
z

y

x

0

1

2

3

4

5
G

[2
e2 /h

]

0.5 1 1.5 2

D
*

[ F]

3.0

3.2

g(
E F

)/
A

[E
F-1

F-2
]

Fig. 5. (a) Conductance G
and (b) DOS g(EF ) for 2D
nanocontacts with α ≈ 5
versus the contact diame-
ter D∗. g is normalized to
the area A of the region.
Solid curves: semiclassical
results based on the inter-
polation formula; crosses
with error bars: numeri-
cal results obtained by a
recursive Green’s function
method [24]. Lower curves
in (a) and (b): R ≈ λF ;
upper curves (offset verti-
cally): R ≈ 170λF

where we have defined the function

C(x, y) ≡ cos(x)C(y) − sin(x)S(y). (20)

The Gutzwiller formula (15) may be expanded in a Taylor series around
R = 0, while the perturbation formula (19) gives a Laurent series around
R = ∞. Combining the two, an interpolation formula valid for arbitrary R
can be constructed [10]:

δgint(E) =

√
8mD∗

πh̄2kE

∞
∑

n=1

C
(

2nkED
∗ − π

4 ,
√

nkEL2

πR

)

| sinh(nχ)| . (21)

The crossover from integrable to chaotic behavior in Eq. (21) is controlled by
the dimensionless parameter

α(E) = L/
√

λER, (22)

where λE = 2π/kE is the de Broglie wavelength of an electron of energy
E. We refer to α as the quantum chaos parameter: for α ≪ 1 the DOS is
indistinguishable from that of an integrable system, while for α ≫ 1, the
DOS is that of a chaotic system.

In Fig. 5, the DOS calculated from Eq. (21) plus the 2D Weyl term is
compared to the result of a numerical solution of the Schrödinger equation.
Remarkably, the semiclassical result is seen to be quantitatively accurate even
in the extreme quantum limit D∗ ∼ λF , R ∼ λF .
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...

(2,1) (3,1) (4,1)

(4,2) (5,2) (6,2)

...

Fig. 6. Periodic orbits of an electron
in the narrowest cross-section of the
neck, labeled (v, w), where v is the
number of vertices and w the wind-
ing number. The length of an orbit
is Lvw = vD∗ sinφvw, where φvw =
πw/v is the angle of incidence at a
vertex

0 10 20 30
GS

-10

0

10

20

30

D
(E

F)

D/L0=2.0
D/L0=0.5
D/L0=0.1

Fig. 7. DOS at the Fermi
energy for axially sym-
metric 3D nanowires of
parabolic shape versus the
Sharvin conductance GS.
The different curves repre-
sent contacts with various
ratios of D/L0 (indicated in
the inset), where D is the
asymptotic diameter of the
constriction and L0 its ini-
tial length

4.2 3D nanowire with axial symmetry

For an axially-symmetric three-dimensional nanocontact, the periodic orbits
(see Fig. 6) occur in one-dimensional families which fit into the narrowest
cross-section of the contact. This problem was first investigated by Balian and
Bloch [4], who derived the axially-symmetric analogue of Eq. (15). We can
follow the procedure outlined in Sec. 4.1 to derive an interpolation formula
describing the crossover from a long nanowire (f = 2) to a short nanocontact
(f = 1) [10]:

δg(E) =
m

h̄2

∞
∑

w=1

∞
∑

v=2w

fvwL
3/2
vw C

(

kELvw − 3vπ/2, α(E)
√
v sinφvw

)

v2| sinh(vχvw/2)|
√
πkE

, (23)

where fvw = 1 + θ(v − 2w) counts the discrete symmetry of the orbit under
time-reversal, the Lyapunov exponent χvw is given by

eχvw = 1 +
Lvw sinφvw

vR
+

√

(

1 +
Lvw sinφvw

vR

)2

− 1, (24)
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Fig. 8. Force oscillations δF versus the minimum contact diameter D∗: dashed
curve: limα→0{δF}; solid curve: limα→∞{αδF}. The result for α ≫ 1 is consistent
with the WKB calculation shown in Fig. 3, while the result for α → 0 (integrable
limit) agrees with the result [9] for a straight wire

and the remaining terms are defined in the caption of Fig. 6. Eq. (23) is
plotted in Fig. 7. Note the rounding of the peaks in the DOS in short contacts.

5 Universal force oscillations

The characteristic amplitude of the sawtooth structure in the cohesive force of
a gold nanocontact was found to be of order 1nN, independent of the contact
area or shape [14,15]. To what extent is the amplitude of the force oscilla-
tions universal? To calculate the force from Eq. (2), we need to make some
assumptions regarding how the shape of the contact scales under elongation.
First, we assume that the deformation occurs primarily in the thinnest sec-
tion, which implies D∗2L ≈ const. Second, we assume that R ∝ L2, which
implies α = L/

√
λFR ≈ const. Inserting Eq. (23) into Eq. (2), and taking

the derivative, we find [10]:

δF ≃
α≫1

− εF
L

∞
∑

w=1

∞
∑

v=2w

√

Lvw

λF

fvw sin(kFLvw − 3vπ/2 + π/4)

v2 sinh(vχvw/2)
, (25)

δF ≃
α≪1

− 2εF
λF

∞
∑

w=1

∞
∑

v=2w

fvw
v2

sin(kFLvw − 3vπ/2). (26)

rms δF =
εF
λF

×
{

0.58621, α ≪ 1,
0.36208α−1, α ≫ 1.

(27)

From Figs. 1 and 2, one sees that α < 1 for a realistic geometry, implying
that indeed rms δF ∼ εF /λF .
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6 Quantum suppression of the Rayleigh instability

Fig. 9. Artist’s conception of
a propagating Rayleigh insta-
bility, from Ref. [28]

A cylindrical body longer than its circumference is unstable to breakup
under surface tension [26,27] (see Fig. 9). How then to explain the durabil-
ity of long gold nanowires [c.f. Fig. 2(b)], the thinnest of which have been
shown [22] to be almost perfectly cylindrical in shape? Let us calculate the
quantum corrections [12] to the classical stability analysis. Classically, only
axially-symmetric deformations lead to instabilities. Any such deformation
of a cylinder may be written as a Fourier series

R(z) = R0 +

∫ ∞

−∞

dq b(q)eiqz , (28)

where R(z) is the radius of the cylinder at z and R0 the unperturbed radius.
The constant volume constraint leads to the condition

b(0) = − 1

R0

∫ ∞

0

dq |b(q)|2. (29)

In the Weyl approximation, the energy cost of the deformation is

∆Ω̄/εF =

(

− 8

15
k3FR0 +

π

4
k2F

)

b(0)

+

∫ ∞

0

dq

[

−8k3F
15

+

(

πk2FR0

4
− 8kF

9

)

q2
]

|b(q)|2. (30)

For the unperturbed cylinder, Eq. (8) yields

δg(E) =
mL

πh̄2

∞
∑

w=1

∞
∑

v=2w

fvwLvw

v2
cos(kELvw − 3vπ/2). (31)

The effect of the deformation may be treated with semiclassical perturbation
theory:

〈ei∆Svw(z)/h̄〉z =
1

LR0

∫ L

0

dz R(z) ei∆Svw(z)/h̄, (32)
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0.0

0.1

0.2
g/

V
[k

F3 /E
F]

3 6 9
kF R0

-3

-2

-1

0

/V
[E

F
k F

4 ] Fig. 10. Density of
states g(EF ) of a
cylindrical wire (upper
diagram) and stability
coefficient α (lower dia-
gram) versus the radius
R0 of the unperturbed
wire. The wavevector
of the perturbation is
qR0 = 1. Dashed curve:
Weyl contribution to α

where

∆Svw(z)

h̄
= 2v sinφvwkE

∫ ∞

−∞

dq b(q)eiqz . (33)

Expanding δg up to second order in b(q) gives

∆{δg(E)} =
4m

h̄2

∞
∑

w=1

∞
∑

v=2w

fvw sinφvw

v

[

b(0)(cos θvw − kELvw sin θvw)

− kELvw

R0

∫ ∞

0

dq |b(q)|2
(

sin θvw +
kELvw

2
cos θvw

)]

, (34)

where θvw(E) = kELvw − 3vπ/2.
Combining Eqs. (30) and (34), and using the constraint (29), one finds

that the change of the DOS is of second order in b, and contributions with
different q decouple. The energy integral (2) yields

Ω[b] = Ω[0] +

∫ ∞

0

dq α(q)|b(q)|2 +O(b3), (35)

where the stability coefficient α(q) depends implicitly on R0 and temperature.
If α(q) is negative for any value of q, then Ω decreases under the deformation
and the wire is unstable.

Fig. 10 shows the stability coefficient and DOS at the classical stability
threshold qR0 = 1 as a function of R0. The quantum correction destabilizes
the wire where the DOS is sharply peaked; but what is more surprising, it
stabilizes the wire in the intervening intervals. With these results, we can con-
struct a stability diagram for the wire. For a given temperature, the stability



Cohesion and Stability of Metal Nanowires 13

10
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(a) T=0
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8
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G/G0 = 17

0 3 6 9
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S
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(b) T=0.05TF

Fig. 11. Stability
diagram for cylin-
drical nanowires at
two different tem-
peratures. White
areas are stable, grey
unstable to small
perturbations. The
quantized electrical
conductance values G
of the stable configu-
rations are indicated
by bold numerals in
(a), with G0 = 2e2/h.
Right vertical axis:
corrected Sharvin
conductance GS. Dot-
ted curve: stability
criterion in the Weyl
approximation

problem is now determined by two dimensionless parameters: qR0 and kFR0.
In Fig. 11, regions of instability, where α(q) < 0, are shaded grey, while stable
regions are shown in white. Note that many of the white regions of stability
persist all the way down to q = 0, indicating that an infinitely long wire is
a true metastable state if its radius lies in one of the windows of stability.
The quantized conductance values of the stable cylindrical configurations are
indicated by bold numerals in Fig. 11(a). Our stability analysis is consistent
with recent experimental results for alkali metal nanowires [21].
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