arXiv.cond-mat/0204371v1l [cond-mat.dis-nn] 17 Apr 2002

Statistics of finite-time Lyapunov exponents in a random tine-dependent potential
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The sensitivity of trajectories over finite time intervaldo perturbations of the initial conditions can be
associated with a finite-time Lyapunov exponganbbtained from the elementd;; of the stability matrixi/.
For globally chaotic dynamica tends to a unique value (the usual Lyapunov exponep} ast is sent to
infinity, but for finite ¢ it depends on the initial conditions of the trajectory and ba considered as a statistical
guantity. We compute for a particle moving in a random tinepehdent potential how the distribution function
P(\;t) approaches the limiting distributiaR(\; 00) = §(A — As). Our method also applies to the tail of the
distribution, which determines the growth rates of positivoments of\/;;. The results are also applicable to
the problem of wave-function localization in a disordereg-aimensional potential.

PACS numbers: 05.45.-a, 05.40.-a, 42.25.Dd, 72.15.Rn

I. INTRODUCTION wave lengths (for a recent application see Reffs| [22, 23]).
Moreover, they have shifted into the focus of attention due

In this work, we give a uniform description of the complete to recent advances i? the understahndin_g of the role of the
asymptotic statistics of the finite-time Lyapunov exporfent ~ Lyapunov exponents for quantum-chaotic wave propagation
a gart?cle moving in a random time-deger?dent potzntial. ThéR4, 25.[26[2]7[ 28] 29, BOI: It has been observed that under
Lyapunov exponent.. characterizes the sensitivity of trajec- Certain conditions the Lyapunov exponent can be extracted
tories to small perturbations of the initial conditions aniays ~ from the decay of the overlap of two wavefunctions which
a fundamental role in the characterization of systems whici@'€ propagated by two slightly different Hamiltonians (soe
display deterministic chao§|[1]. The Lyapunov exponent iscalled Loschmidt echo). Since the overlap s studied asefun
defined in the joint limits of vanishing initial perturbatiand ~ tion of time, the distribution of the finite-time Lyapunovyx
infinitely large times. In a hyperbolic Hamiltonian systamy ~ nent is directly relevant for these investigations. Thiteags
may be obtained from any non-periodic trajectory, becanise f also to related semiclassical time scales, like to the Hasen
arbitrarily long times the trajectories uniformly explotiee ~ time ~ (log%)/A, which is a semiclassical estimate of the
complete phase space. diffraction time of wave packets due to the chaotic cladsica

A widely studied generalization of is the finite-time dylnartr;]lcsi' + of infinite time ¢ the distribution funct
fi4,[15,[1b[ ). Whgh]qsﬂﬂn%dﬁfog fEiE S'%Iegl;egl(t%e in-£(A; ) in a completely chaotic phase space tends to the limit-
tervalt) of trajectories (generalizations to finite perturbationsing form P(}; 00) = §(A— ). Forlarge butfinite the bulk
also exist[[1B]). The sensitivity of the dynamics to initosr- of the distribution function can be approximated by a Gaus-
turbations is given by the stability matrix map, which isthe ~ Sian centered arount, with the width vanishingx ¢~/2
linearization of the map of initial coordinates to final cdier ~ @St — oo. However, many of the properties determined by
nates. In terms of elementd;; of M, the (complex) finite- P(A;t) (like the generalized entropy and dimension spectra)
time Lyapunov exponent may then be defined as cannot be calculated from the Gaussian bulk of the distribu-
tion function ).

In this paper we investigate for a particle moving in a one-
dimensional random time-dependent potential hByA; ¢)

. ] ) approaches the limiting distribution functioR(\;c0) =

In contrast toA.., A is not a unique number independent s\ _ ) ) for large times. Our approach uniformly applies

of the initial conditions, but a fluctuating quantity with 4 poth to the bulk as well as to the far tail > A, of the

tribution functionP(A; ¢) (defined by uniformly sampling all  gjstribution function. We find that the cumulant-genergtin
initial conditions in phase space). This distribution fiee  f,nction of P(\; 1),

determines, e. g., the generalized entropy and dimensam sp

tra of dynamical system:ﬂ[l], and more practically the weak- - - SN
localization correction to the conductange][19] and thet-sho 7€) = In {exp(€tN)) = 3 ((\"))
noise suppressiof [2D,]21] in mesoscopic systems. Finite-t . oot
Lyapunov exponents also determine the wavefront stalfity (where the averagg) is over initial conditions ang(-)) de-
acoustic and electromagnetic wave propagation through-a ranotes the cumulants), takes the asymptotic form

dom medium, in the ray-acoustics/ray-optics regime of shor (€)= u(€)t/t. + O(1°), 3)

with ©(€) a universal function (within the statistical model)
and

1
A= ? In Mij. (1)
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a system-specific time-scale which can be determined from), and the Hamiltonian given by

the infinite-time-Lyapunov exponent and the consjaft = )

dp/d€|e=o (by definition,dn/d¢|c—o = Asot). The function g=2 4 V(z,t) + Exi’_ (5)

(&) is given by the leading eigenvalue of a second-order dif- 2m 2

ferential equation in whiclf appears as a parameter. This Here /(2. ¢) is a time-dependent potential andis a mass.

eigenvalue can be calculated perturbatively ivhich gen- e also allow for an additional static potential with curvat

erates the cumulants of. The values ofu at integer¢ de- v, acting in the background of the random potential (this po-

termine the asymptotic growth ratgls/t) ln<M§j> =u(§)/tc  tentialis repulsive fol;, < 0 and attractive fois > 0).

of positive moments of elements of the stability matrix. We We introduce the magF, which propagates initial condi-

find that these values are given by the leading eigenvalue afons (z;, p;) over a time intervak to the final coordinates

finite-dimensional matrices. (zf,pf) = Fe(zs,pi). The stability matrixV/ is the lineariza-
A random time-dependent potential is often considered ation of the map#; and describes the sensitivity of the final

a statistical model for the ergodic properties of hypeiboli coordinates to a small perturbation of the initial condisp

chaotic motion, in the spirit of the early work of ChirikdviB

The time dependence of the potential may be considered to M = ANag ps) _ < My M ) ) (6)

mimic the dependence of the potential in the eigentime along © O(wi,pi)  \ M2 Mz

the trajr?ctor%/. In ;he cpnc}_ext of fmﬁe-nme L_ya_pu:wov_ €XPO- Area preservation of the dynamics in phase space entails the
nents there have been indications that a statistical ST oo or 17 — 1 of the stability matrix.

'ﬁsuaﬂl}( valid for the c.f]laoélc papkground of.|ts (_j|str|b|urt We are interested in the evolution of the stability matrix
[L§], while system-specific deviations may exists in some EXith given initial conditions and increasing time interval

ce t|0\rl1va;1l_lcasr?s even in tlhe b(;ml( of th% d'Sg'.bUt'hQ” f“"‘:k“F’ According to Hamilton’s equations of motion the stabilitgm
[8]. While the statistical model considered in this wor 'Sérix fulflls the differential equation

tailored to a specific class of Hamiltonian systems, it can b

modified straightforwardly to other classes of chaoticeyst dM KM, K — ( 0 m! ) )
(this is briefly described at the end of this paper). dt ’ o 0 ’
The problem of finite-time Lyapunov exponents in the ran- . _ o
dom time-dependent potential is equivalent to the problenyvhere the functiom(z) in the matrix i’ is given by
of wave-localization in a random one-dimensional poténtia &2V
B3, B3, [3.[35[36], because the equations of motion for v=—-Vy — Tz . (8)
(z,p)=(zs,pr)

the matrix elements/;; are formally equivalent to the corre-
sponding Schrodinger equatiqn][{0] 37]. Indeed, the Fekke 11is gifferential equation is supplemented by the initiahe

Planck equation employed in this work is based on the phas@ﬁtions
formalism described, e.g., in Ref [3B,] 49] 40]. Hence, the

asymptotic statistics of the finite-time Lyapunov exponent M(0) = diag(1,1), 9
presented in this work directly is of interest and can bestran ) ) o o ]
ferred to this field of research. A number of additional area$orresponding to the identification of the initial and finat ¢
of application of our method come into scope if one considerrdinate systems far=0. _ N
the vast arena of problems which can be analyzed by products In order to study the statlgtlcal behavior of the St[ﬁblht&-m
of random matrices, since the finite-time Lyapunov expasent(fix we now assume that(t) is a randomly fluctuation func-
are a valuable way to characterize the eigenvalues of thedion equivalent to Gaussian randareorrelated noise,
productsIp]. - | (w(t) = =Va,  (o(tr)o(ta)) = 2D3(t —t2).  (10)

The plan of this paper is as follows: In Se@. Il we for-
mulate the problem of finite-time Lyapunov exponents in theThe condition of a vanishing mean of the time-dependent part
one-dimensional random time-dependent potential. In@c. of v corresponds to the observation that the incidence of pos-
we show how the cumulant-generating function can be relatetive and negative curvature of the potential landscapego
to the parameterized eigenvalue of a second-order diffieten typical chaotic trajectory should be identical. Téunction
equation, and that the cumulants can be calculated systemagtorrelations are valid if the correlation time of the fludiaas
cally. Positive moments af/;; are calculated in Seg.]JlV. We is smaller than the mean free transport time in the random po-
close the paper with discussion and conclusions il%ec. V. tential. The constanb (similar to a diffusion constant, but
not identical with conventional diffusion constants of ioat
in phase space) can be related to the strength of the temporal
fluctuations of the potentidl (x, ¢t). However, bothD as well
as the mass: can be eliminated from the subsequent analysis
by rescaling quantities in the following way:

II.  FORMULATION OF THE PROBLEM
A. Statistical model
t=t.t, v=(D/m)t, Vo = (D/m)t.Vy

Let us consider a time-dependent Hamiltonian system with ~ Mi2 = (te/m)Miy, My = (m/tc) My,
one degree of freedom (canonically conjugated coordingtes My = My, My = M. (12)
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Here we defined the characteristic time scale Note that the evolution equation efdecouples from: and
2/3 —1/3 can be interpreted as a Langevin equation. Hence the distrib
te =m™"D ‘ (12)  tion P(z;t") can be calculated from a Fokker-Planck equation,

[In the course of our analysis we will see that this time scalevhich was considered before in the context of wavefunction

also can be found from EJ](4).] The rescaled (primed) quanlocalization [3p[40],
tities fulfill Egs. (7). [), [1P) withD = m = 1. Also note

Y — Y
that the rescaling leaves the propettg M = 1 invariant. OvP(z:t) = LoP(2t), (17a)
L.-=0.(2+V{+0.) -.  (17b)
B. Relation to one-dimensional localization For larget’ the distribution functionP(z;t") approaches the

stationary solution[[3d, 39, k0]

The set of linear first-order differential equatioﬁs (7) ban

decoupled by converting them into second-order diffeegnti Pyl z) = N/ dy K(y, 2), (18a)
equations. It is useful to note (as mentioned in the intreduc —oo

tion) that the equations for the elemerit, and M, are K(y,z) = e®—=)/3+Vi(v=2) (18D)
equivalent to the Schrodinger equation, at endrgy V2 /m, N = 7 2[AR(=V)) + BE(—V))"L. (18c)

of a particle of mas#?/2 in a one-dimensional random po-
tential (v + V2)/m (of vanishing mean), witft playing the  ere i andBi are Airy functions. The normalization con-

role of the spatial coordinate, stant is directly related to the integrated density of state
2M v 2M v the localization problem[[3g, B9, ¥0]. Féf = 0, N =
dt211 = M, T;z = M, (13)  35/62-1/37=1/2/[T'(1/6)]. Becauselu/dt = z/t. it is clear

) ) ) [@] that the infinite-time Lyapunov exponent can be obtdine
while the other matrix elements are directly related to them  fom oo = (z% this relation will be demonstrated ex-
plicitely in Sec.
My = mdjftu . Moy = mdjgtu- (14) The Fokker-Planck equation for the joint distribution func
tion P(u, z; t') is given by
The problem of finite-time Lyapunov exponents hence is
closely related to the problem of one-dimensional localiza OpP = —20,P+ L,P. (19)
tion in a random potential, in which the Lyapunov exponent
corresponds to the inverse decay length of the wave functionThis Fokker-Planck equation with; = 0 has been derived
in Ref. ] for the autonomous chaotic scattering of a parti
cle from a dilute collection of scatterers (with more tham® on
lll.  CUMULANTS OF THE FINITE-TIME LYAPUNOV degree of freedom).
EXPONENT The joint distribution functior”(u, z; t') does not approach
a stationary limit because runs away to infinitely large val-
We now solve the problem of finding the probability distri- ues. In order to analyze the behavior of the distributiorcfun
bution function of matrix elements/,; within the statistical ~ tion P(u, z;¢') for large times we convert the Fokker-Planck
model of chaotic dynamics, defined by the evolution equatiorequation [[19) into an eigenvalue problem which discrinesat
(@) for M, with initial condition ($), and the statistical proper- between the different time scales involved in this evohutio
ties (1D) of the random functian For the sake of definiteness For this purpose, we introduce into ER.](19) the ansatz
we will consider in this section the statistics of the uppagd i -
onal elemenf\/;;. The results directly carry over to the other N d¢ ,
elements of\/, as is discussed in S¢c. 1Y C. Plu, ) = / 3 2 Pt = &) fu(, 2). (20)

211

—100 n=0

(The integration contour along the imaginary axis corresiso

A.  Cumulant-generating function as an eigenvalue to an inverse Laplace transformation.) It follows that thed-
tions f,, fulfill the differential equation
We introduce the quantities
/ Mnfn(gaz) = (€Z+£z)fn(§7z)7 (21a)
/ J\/IQI
u=InMy, z=—=, (15) . . .
My, in which u,, and¢ appear as parameters. However, in order to

obtain a meaningful probability distribution functidﬂZ@e
have to impose boundary conditions (¢, z) atz — +oc.

It is convenient to express these boundary conditions by the
requirement

where the relatiom. = At to the finite-time Lyapunov expo-
nent\ is established by Eq[l(l) [note thaf;; = M7, in the
rescaling Eq.[(11)]. According to Eqq] (7) arfd](1&)and =
fulfill the differential equations

du _ dz _ o P/OO dz ful(€, 2)2 < co. (21b)
i z, i v — 2% (16) .



Here P denotes the principal value with respect to the inte-In terms of the bare quantities of the statistical model,

gration boundaries atoo. Condition [21p) follows from the D 1/s

behaviorz ~ (#' — t._)~* of the solution of the differential Moo = ) DY3m =213, (28)

equation [(16) close to time$ ~ t_ where|z| — oo (and

hencev’ can be ignored). In practical terms, the condition . . -
. R ; (1)

(1) guarantees that the driftofemains finite for all times.  1N€ €xpansion coefficients™ and calculate explicitely the

Egs. ) form an eigenvalue problem, since conditionprOp,Ortlonallty fa‘?t?r”(l) 2: dlé/dﬂﬁzo ”_] @)' as \{vell as
@1B) only can be fulfilled for a discrete set of numbgjs—  the first few coefficients?, 4, ..., which determine, re-
note that these eigenvalues depend on the paramelethe s_pectlve_ly, the variance and the Ieadlng non-Gauss_lqlea:{_)rr
limit of large ¢’ only the largest eigenvalugy(¢) = u(¢) tions (higher cumulants) of 'Fhe .flu.c_tuatlons of the finitadi
is relevant, because the other eigenvalues give rise to-expby@Punov exponent around its limiting valie. .
nentially smaller contributions. This eigenvalue vangshs
& — 0,i.e, u(0) = 0, because the stationary distribution of
z, Eq. (18), must be recovered for large times from £q| (20)
by integrating out:.

In the next two sections we obtain general expressions for

B. Recursion relations for the cumulants

The moments of: are given by We now show how the cumulants can be calculated from
"y Eq. ) by recursively solving a hierarchy of eqlations for
o _ R ;o n coefficients:(™ in the Taylor expansion qi(¢), Eq. (25).
() = /_Z-OO 27 oo du exp(pt’ = &u) f(E)u In analogy to Eq. @5) let us also expand the function
= lim OF exp(u(€)t') £(£). (22)  Jol&2)in powers o,
where the coefficients () = [7_dzfo(¢,2) are deter- fo(&,2) = Zg"fé")(z). (29)
mined, in principle, by the initial condition faP(u, z;t’) at n=0

r__ i - i -
f_ = 0. From Eq. ) we obtain the moment-generating func With Egs. ) and9) the eigenvalue proble@ (21) can now
1on be written order by order in powers gf'. Forn = 0 we

X (&) = {exp(€u)) = exp(u(é)t/t) f(£), (23)  recover the stationary variait {17) of the Fokker-Planakeeq

tion (19),
where we re-introduced the original time variable ¢.t’ by I )
Eq. (I}). The cumulant-generating fun_cticﬂh (2) hence takes L.f00) =0, (30)
the form of Eq. [[3), including the corrections of ord@y
n(€) = Inx(€) = u(&)t/te + In f(€). (24)  Which is solved by the stationary solutig| 0 (2) = Peal2),

o Eq. (18). Fom > 1 the differential equations are of the form
The cumulantg(\™)) of the finite-time Lyapunov exponent

are obtained by expanding the generating functionpowers (n) (n—1) = (n—1)
of ¢, see Eq.[[2). In terms of the coefficients of the Taylor ~ £=/o (2)=—=f" @+ )" @) (B
expansion =1

Let us assume that we have solved the hierarchy of equa-

W= Z e (25) tions upto ordef. — 1. In the next order. both the unknown
n=1 quantitiesf(") as well asu(™ appear. The unknowns can be
0

[which starts with the linear term i§ because:(0) — 0], ~ Separated by integrating the differential equatjor) (3®rav

given by cause of conditior{ (2}b) of the eigenvalue problem. The inte

grated right-hand side can be rearranged to givie,
(™)) = nlpM™Mt 1 L o@™). (26)

00 n—1
This equation means that within the statistical model the cu (") — / dz [zfé”’l)(z) _ Z M(l)fénfn(z)]’ (32a)
mulants are universal quantities in the leading orderimthe —o0 =1

sense that the initial conditior3(z, u; 0) only enter the next- ) . -

order corrections. The only system-specific parameterstwhi Which only involves quantities up to order — 1. Subse-
enter the cumulants are the time scaleand the (rescaled) quently,.(™ can be inserted into Ed|_(31). The function
strengthlj of the static potential. Note that ratios of cumu- z y

lants are even independent of the time sealé@and hence of fé")(z) = / dy/ dx K(y, z)

the parameter® andm of the statistical model). —oo —oo

The form (}) oft,. follows from Eq. [2) whert. is ex- (n—1) N
pressed in terms of the infinite-time Lyapunov exponkgt x [~afo (z) + ZH( )fo ()] (32b)
with help of the definition =1
Ao = lim (A) = M /t,. 27) [with the kernelK (y, ») defined in Eq.[(18)] is then obtained

t—00 by solving the resulting inhomogeneous differential emumat



with help of the partial solutionféo)(z) of its homogeneous 2.5
counterpart, Eq.@O). This inhomogeneous part of the func-
tions fé”)(z) is fixed by the requirement thﬁéo)(z) is nor-
malized to 1. Adding the homogeneous solutiorf&@(z) in

any order gives rise to additional terms in all higher orders
but these combine in such a way that they drop out of the '
calculation of the coefficients(™, which hence are uniquely
determined by Eq[(3ba).

The recursion relation§ (2) can be iterated to calculate su
cessively all cumulants of.

1 L
—
C. Explicit expressions and numerical values E{-\‘
3
N 05+ .
According to Eq. [(26), the two numbers$") and(? de-
termine mean and variance of the distribution function\pf
which then is approximated by a Gaussian. The coefficient
1Y has been obtained in Ref_J40] from the Fokker-Planck 0
equation @7) for arbitrary>. For the special casg, = 0,
the two coefficients,()) andx(2) have been obtained in Ref. 05| ]
[lL9] from the Fokker-Planck equatiop {19). However, the de- '
viations from the Gaussian distribution function are ncdlat
negligible for many chaotic systems, which is most clearly 0

displayed in their generalized dimension and entropy spect Ky
[]. As we have seen in the previous subsection|lll B, our ap- ~»
proach of reduction to the eigenvalue probldﬁZl) allows to S‘
analyze the non-Gaussian deviations by the higher cunmlant 05t il
of A. [In next sectior 1Y, we show that one can even obtain

from our analysis the positive moments/idf ; , which are de-

termined by the far taih > A\, of P(\;t), while the bulk of

the distribution is essentially irrelevant for these motsgn -1

Explicit expressions for the first few coefficients), (),
1@, andu™ result from Eq.[33a),

W0 = [z, (330)
W = [ - i), (33b)
i = [l WP ) - i £ ) @30
W = [l - a0 ) - 1)

1
— 1 £ ), (33d)
FIG. 1: Coefficientu™ of the first cumulant, and the ratios
n!u™ /P for the coefficients of the second, third, and fourth cu-
mulant [cf. Eq. [2B)], as a function of the strengt} of the static

Whereféo)(z) = Psaf2) Is given by the stationary distribu- background potential.

tion function ofz, Eq. (18), while the other functions follow



n 1 2 3 4 el 1 2 3 4
nlp(™ 0.365 0.401 0.0975 0.0361 wl 0 22/3 241/3 841/3

n 5 6 7 8 ¢ 5 6 7
n!p(™ —0.266 —0.628 —0.554 3.71 | 2014 4 3vV19)Y3 | (252 4 24/79)Y/3| 2(63 + 15v/10)"/3

TABLE I: First eight coefficients:!n(™) of the cumulants of finite-
time Lyapunov exponents [cf. Eq. {26)], in absence of thiécsack-
ground potential {; = 0).

from Eq. (32h),

M) = / dydz K (y, 2) (V) — )£ (x), (34a)

>y>x

2)(z) = / dyde K (y, )1V — )£ ()

>y>x

— u? (),
- /dyde(y,Z)[(u(” — ) f (=)

>y>x
— n@ 0 (@) = p £ (@)). (340)
The coefficieni:(!) is then given by[[40]

(34b)

2(2)

1d |
p = =——log N,

SV (35)

whereN is given in Eq. [18), while the cumulants far> 2
can be obtained quickly by numerical integration2af-fold

integrals. The effort of integration can be greatly reduce
down to the expense equivalent to a single integral, becau
the integrand factorizes. An efficient recursive schemeeis d

scribed in the Appendix. In Fid] 1 we plot the coefficigft
and the ratios!(™ /™) for n = 2,3,4 as a function of
V5. The non-Gaussian corrections are largest ardgne 0,
while they become irrelevant for large negative or posiizie
ues ofVy.

For strong confinementVy > 1,

and the Gaussian approximation

,UGaussiaIGf) = M(l) <§ + %EQ> (36)

the coefficients
™ /(D = 61, + d2,, With §,,,, the Kronecker symbol,

TABLE II: Exponential growth rateg(&) of the first few moments
(M) [cf. Eq. )], in absence of the static background poténtia
(Vz =0).

analytic expression given in that paper is equivalent to. Eqs
B3H) and b). In Taff] | we tabulate the numerical values of
the first eight coefficients! (™) for V = 0.

IV. POSITIVE MOMENTS
A. Formally exact expressions

In view of Egs. [1p) and[(23) we find that the exponential
growth rates of the positive momentsiaf;; are given by the
eigenvalugu(¢) of Eq. ) at integer values gf

din(Mp,)  p(€)
dt o= te (38)

As we will now show, for integer values dfthe eigenvalue
problem ) can be reduced to a matrix eigenvalue problem
Gof finite dimension. For the first few moments the leading
eigenvalue can be calculated explicitely, while for largair
sev”. . ; :

ues itis formally given by the largest root of the correspogd
characteristic polynomial.

In order to obtain a solution of the differential equation

©1d), we write
e = [ ayry, 2

— 00

(39)
[with the kernelK (y, z) defined in Eq.@S)], and obtain fgr

the differential equation

(n—&2)g = (2" + V3)0.9 + 02g (40)

becomes valid. [In the context of wave localization, this-co (@ triconfluent Heun's equation with singularity gtz = 0).
responds to the well-known limit of a large Fermi energy e introduce into this equation the polynomial ansatz

E ~ Vj (cf. Sec[ITB).]
Analytical results can be found in the caigg = 0 for the
first two coefficients,

N(l) — (3/2)1/3ﬁ (3761)

r(/6) -
572 - T
—N—-—=N

18 2v/3
whereN (Vy = 0) = 35/62-1/37=1/2 /[(1/6)], while 3 F, is
a generalized hypergeometric function. Incidentally, ilne

73 33
(2 — .2 2.2
H 3F2 (11176727274)1 (37b)

merical value given fop(? in Ref. [L9] is wrong, but the

(41)

Power matching results in the following recursion relation

(€ —n)en = pens1 + (n+2)[Vacniz — (0 + 3)cp3]
(42a)

for the coefficients,,, with initial conditions

ce =1, Ce—1 = [, ce—o = pi%/2. (42b)
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250 S large&. This results from the influence of the term$) ¢
,.;;;2°°° for n > 3 in the complete Taylor expansion pf Eq. (25).
200 [ .,.3335°° 1 Further note that the subleading eigenvalue stays at a finite
,.;;;<'>°°° distance to the leading eigenvalue (indeed, their distémce
150 f : creases with increasing), as we have assumed before in
e restricting the attention to the leading eigenvalugof the
100 eigenvalue problenf (R1).
50 For finite V], the growth rate of the first moment
N Rep(1) = | Tm /Vj] (45)
0 10 20 30 40 50 60 70 80

vanishes in the case of confinemeW, > 0. This will be
confirmed by the direct computation in SEc. IV B. The growth
rate of the second moment is given by

€

FIG. 2: Growth rateg:(§) of the momentgM77) [cf. Eq. @3)] in 18
absence of the static background potenfigl & 0), obtained as the 1/3 / 3
largest eigenvalue of the matrE[44) (full circles). Aldwosvn is the p2) =2 L+ /1 4+16V57/27
real part of the subleading eigenvalue of this matrix (ofecies). 1/3
+21/3 (1 —\/1+4 16‘/2’3/27) (46)
For integer¢ this recursion relation terminates. We obtain
functionscy (1), c1(p), andeo (1) and an additional condition  [with the roots taken such that(2) is real]. We plotted the
from the term in Eq.[(40) which is constantin real parts of the leading and subleading growth rates [eigen

values of matrix[(44)] for the first four moments in Ffg. 3.
Pe(p) = pco + Vyer = 2c2 =0, (43)

wherepe (1) is a polynomial of degreg + 1. B. Direct computation of the first and second moment
The polynomialp, (1) can also be interpreted as the char-
acteristic polynomial of thé¢ + 1) x (¢ + 1)-dimensional

. In order to illustrate the results for the growth rates of the
matrix

moments(Mfl) we compare the results fgr= 1 and§ = 2
0~V 1.2 0 0 ... o o to the exact results fo_r all times (_includi_ng the tr_ansiec_m b
€ 0 —avl 2.3 0 havior). A formal solution of the differential equatidn )lia

2 terms of a series in the disorder potential is obtained kg int

0{-1 0 =3V5 3-4 - grating Eq. [1B) twice, under observation of the initial don
0 0 ¢-2 0 —4vy - tions My; = 1, dM;;/dt = 0 for ¢ = 0, and iterating the

0 0 0 £-3 0 resulting integral relation

0 (1-OVi (€ 1) M) = 1+ /tdtl / a5 200y (s

2 0 —£Vy Ot ‘ ()

0 ) 0 = 1+/ dty(t —t1) ml My ().  (47)
(44) ’

The formal solution is of the form
which is the matrix representation of the eigenvalue pmoble
[@1) in the space of the monomial expansior of). Moc(e) = 1 oy [ P . v(ty) 48
The exponential growth ratg(¢) of the £&th moment is 1(to) =1+ Z H 0 B (fe-1 — ) m (48)
given by the largest root Of)g%, or equivalently by the
largest eigenvalue of the matrik [44). In subsecfion IV B weyhere we introducet), = t for notational convenience.
will see for the example$ = 1, 2 that the other roots show up o the first moment we can average Ha] (48) directly. Be-
in the transient behavior of the moments. . cause of the factor§;,_, — ;) and the time ordering, the
First we present results in absence of the static backgroungngom function never appears instantaneously in second or
potential,V, = 0. The values for the first few moments are pigher order in any of the integrals. Hence we can reptdne

given in Tab[l]. Figgreﬂz shows the growth rates and the reaks average, given in Eq[(JL0). Consequently, the first mdmen
part of the subleading eigenvalue for values¢ofip to 80. g given by

A log-normal statistics of\/;; (corresponding to a Gaussian

statistics of the finite-time Lyapunov exponents) wouldites L wpoyy=vi . L o/ =va
in the quadratic dependence E[.](36)6f) on &, while the (Mi1) = cos{(t/tc)\/ V3] = 5¢ Pt g *
plot shows a weaker (approximately linear) dependence for (49)

n=1k=1



For VJ = 0 the first moment is constant and given by its ini-
tial value, (M71) = 1. This means that negative deviations
M, < 0, corresponding to inverse hyperbolic motion, can-
cel precisely the positive deviatiordd;; > 0 of hyperbolic
motion. For negativé/y the first moment grows, while for
positiveV} it oscillates and stays of order unity. In the decom-
position of the cosine into the two exponentials, we idgntif
in the exponents the two roots,/—V, of the characteristic
polynomialpe—1 (1) = 1%+ V4 of the matrix [44) with¢ = 1.
For negativel’;, the subleading exponent hence governs the
transient behavior of the first moment.

For the second moment let us restrict for simplicity to the
caseVy = 0. We group the functions in the two factors
of My in pairs and then invoke the delta-correlations of Eq.
@). Performing the time-ordered integrals we obtain

o) n tre—1
arfy) =1+ 3 e/ | -
n=1 k=1
= Lep@uste 4 =0 @t =17 ut /ey,
3
(50)

H(2)

The asymptotic growth rate of the second moment is given
by the leading rooj:(2) = 2%/3 of the characteristic poly-
nomialps () = 4% — 2, which is in accordance to Tab] 1.
The second and third exponent are the other two roots of this
polynomial.

C. Equivalence of matrix elements

H@3)

So far we mainly studied the statistics of the upper diagonal
elementM;; of the stability matrixAZ. At this point now
we can discuss how the results for the cumulant-generating
function and the positive moments can be transferred to the
other elements of/.

The differential equationm4) foMso can be integrated
similarly as the one foi/;;, from which we obtain analo-
gously to Eg. @8) the formal solution

-1 v(t
Mas(to) _1+ZH/ dtr (te — trst) () (51)

m
n=1k=1

H(4)

Here we defined in each term of orderthatt¢,,.; = 0. It
follows by direct computation that the first two moments of
M>5 are identical to those a¥/;4,

<M22>:<M11>, <M22> <M11> (52)

These explicit results already suggest that the statisfitise
two diagonal matrix elements is the same. Indeed, the trans-
formationt), = t—t,,+1_x, v(t—t) = 5(f) brings Eq.[BL) into
the form of Eq. ) and leaves the properties of the Gaussian
noise [IP) invariant. Hence even the transient behavidnef t
diagonal elements is completely identical, for arbitraajues
of Vj.

The results for the cumulant-generating functig(x)
(hence also the growth rates of the moments, but not the tran-

-10

FIG. 3: Growth rateg«(¢) the momentg M77) [cf. Eq. )], for
m = 1,2,3,4, as a function of the strengtti, of the static back-
ground potential. Also shown (dashed lines) is the real phathe
subleading growth rates [subleading eigenvalues of m@)q
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sient behavior) can also be transferred to the offdiago@al m for finite correlation times by introducing auxiliary vabias
trix elements ofM: The element),, fulfills the same dif- for the noise in the standard way.)

ferential equation a8/, ,, see Eq.[(13), whilé1y, fulfills the Let us point out two particular cases for which a statis-
same differential equation &g22. The initial conditions of  tical description promises to result in direct applicatido
the offdiagonal matrix elements differ from those of the di- physical situations of interest. One case is more relevant t
agonal elements. However, according to Hg] (24) this onlyvave-function localization while the other is more relevan
affects the functiory (£) in the subleading corrections of the chaotic dynamics.

cumulant-generating function [which, for the example @ th @) The diagonal element&;; = — K5, = 0 still vanish
second moment, results in factors in front of the exponkntiaidentically, but both off-diagonal elemenks;, and K>, fluc-
functions which are different than in Eq. [50)]. tuate with a vanishing mean. This situation appears to be re-
Let us add that from Eqs (48) ar{d(51) we find ¥gr=0 lated to the band-center case of one-dimensional locidizat
the cross-correlator in the Anderson modef [#1, #2] (where space is discretized on
11 the lattice), since at the band-center the effective masiseof
(M1 M) = B + 5<M121>. (63) particle diverges (and hence the mearkgt vanishes).

b) Chaotic dynamics with an isotropic phase space may

As a consequence, fof/ = 0 the tracetr M = My, + My, b€ modeled by independent fluctuations of all four matrix

of the stability matrix has the following first two moments ~ €lementsk;; with identical amplitude and vanishing mean.
Hamiltonian dynamics gives rise to the further constraint

{trM) = 2, (54a) K11 = —Ka. Isotropic dynamics arises in typical chaotic
(1173 maps (some maps, like the Baker map or the cat map, how-
(trM)?) = 14 et@/te 42 Reem (D Tnte, eveF;, :flre not isc?tropic—the directionsi:J of stable andpunsta—
(54b)  ble manifolds are known by construction). Good candidates
are the Poincaré surface of section of autonomous systems

with two degrees of freedom, in which the motion in four-
V. DISCUSSION dimensional phase space is restricted to three-dimerisiona
manifolds of constant energy and the coordinate along the

In this work we presented a uniform approach to the asympflow field is taken as a time.
totic statistics of finite-time Lyapunov exponents, for the It would be interesting to compare the outcome of an anal-
model (described in Se] 1) of a particle moving in a randomysis of model b) with the findings in the literaturle [1[5] 16]
time-dependent potential. The cumulant-generating fanct which indicate a certain degree of robustness (if not univer
n(&) was found to be directly proportional to the eigenvaluesality) of the distribution of finite-time Lyapunov exporten
(&) of a parameterized differential equation, defined by Egsfor typical chaotic systems.
éﬁl). This facilitated an effective analysis of the statsstin-
cluding the non-Gaussian deviations of the distributiamcfu
tion. These deviations are especially important for thétives Acknowledgments
moments of the elements of the stability matrix, since their
growth ratecannotbe predicted by the Gaussian approxima-
tion Eq. [3§).

We limited our attention to the case of time-dependen
Hamiltonian systems with a single degree of freedom and a
Hamiltonian [b) which is of the special type of kinetic en-
ergy plus potential energy, with time-dependence only & th
potential energy. This case is of particular interest beeau
of its direct applicability to specific dynamical systemsiras
the random wave-propagation problem of Refis| [2P, 23], and The cumulants of orden result from the recursion rela-
because of its applicability to one-dimensionalwave lizeal  tions Eq. [3P) in the form on-fold integrals. Usually, the
tion. For the Hamiltonian[[5) the matrix in the differential numerical evaluation of such integrals for largis very time-
equation K|7) is purely off-diagonal, with fluctuations omty ~ consuming, since the number of points on a grid covering
the lower-left element. For Hamiltonians which do not sepa-the integration domain with lattice constaiy/N), N >> 1,
rate into kinetic and potential energy, the differentialation ~ grows rapidly withn as N2". However, presently the in-

We gratefully acknowledge useful discussions with
hilippe Jacquod and Holger Kantz, and especially with
teven Tomsovic who motivated us to study this problem.

APPENDIX: INTEGRALS FOR THE HIGHER CUMULANTS

(E) for M involves the matrixK in the more general form tegrand factorizes and the expense of the integration can be
reduced from exponential to algebraiedependence- nN.
o2l o2l inci _
K Ky K\ _ T (55) ;rrllg .pr|nC|p:e can be demonstrated for the example of the two
Koo K _9’H _ 8°H old integra
21 22 12 8x0p

z21 4
A generalized statistical model now arises by introducingl ") :/ dzI1¥(z),  IP()= g(z)/ dy I®(y),
noise into all of the matrix elements &f. (One may also al- -
low for correlations between the different matrix elemeants (56)

Z0 —Z0



whereg is an arbitrary function and®) may itself be a multi-
dimensional integral.
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Moreover, when/ ®) itself is a multi-dimensional integral of
type IV, its current value can be obtained recursively in the

We introduce an index: which denotes that the argument same way as the value &f"). Since each additional integral

of a function is taken at theth lattice point on the appropriate
axis of the grid. The initial values dt atm =0 (the lower
integration boundary) are zero. We now can write recurgjvel
by incrementally increasing the integration variables,

m 1
1, = SO 4 —glD, (6579)
1 1
I, = 1,<,1>+N1§n)+1. (57b)

will give rise to only one additional equation [similar edth

to Eq. (57h) or to Eq[(5}b)], the number of operations grows
linearly with n, as advertised above. [The recursion relations
@) have the additional advantage for the present proliiam t
they avoid over- and underflow in the evaluation of the kernel
K(y,z) =exp(y®/3 + V3y — 2°/3 = Vjz) ]
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