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Faraday patterns in Bose–Einstein condensates. Amplitude equation for rolls in the

parametrically driven, damped Gross–Pitaevskii equation

Germán J. de Valcárcel∗

Departament d’Òptica, Universitat de València, Dr. Moliner 50,

46100-Burjassot, Spain.

The parametrically driven, damped Gross–Pitaevskii equation, which models Bose–Einstein con-
densates in which the interatomic s−wave scattering length is modulated in time, is shown to support
spatially modulated states in the form of rolls. A Landau equation with broken phase symmetry is
shown to govern the dynamics of the roll amplitude.

I. MODEL

We consider spontaneous pattern formation in dilute Bose–Einstein condensates (BEC) whose interatomic s−wave
scattering length is periodically varied in time [1]. This modulation can be achieved by different means like, e.g., the
use of magnetic [2], electric [3], or light [4] fields. When damping is considered [5] such BEC can be described by the
following driven, damped Gross–Pitaevskii (GP) equation,

∂tψ (r, t) = (1− iγ)
[

−∇2ψ + V (r)ψ + |ψ|2 ψ
]

+ a(t)−a0

a0

|ψ|2 ψ. (1)

which has been written in appropriate normalized variables. Parameter γ accounts for damping (values on the
order 0.01 − 0.1 seem to be appropriate for actual BECs [5]), a (t) represents the instantaneous value of the
interatomic s−wave scattering length and a0 represents its mean value. We shall assume the simplest case
a (t) = a0 [1 + 2α cos (2ωt)].
In the following we shall consider ”pancake” (2D) or ”cigar” (1D) shaped BECs in which the trapping potential V (r)

strongly confines the condensate in one direction or two directions, respectively, whilst along the other direction(s) it
extends sufficiently as compared with the typical wavelength of the emerging pattern. If a parabolic trapping potential
V (r) = −1 + 1

2

(

ω2
xx

2 + ω2
yy

2 + ω2
zz

2
)

is used (the arbitrary offset is set to −1 for mathematical convenience) the
above situation can be fulfilled whenever ωz ≫ ω ≫ ωx, ωy for the 2D case and ωy, ωz ≫ ω ≫ ωx for the 1D case. In
a first approximation these inequalities allow: (i) to neglect the confined direction(s) in the descripition of the BEC
dynamics, and (ii) to approximate the potential by a constant. Both approximations come from the fact that the
characteristic wavelength of the selected pattern turns out to be, at the same time, much smaller than the size of the
weakly confined direction and much larger than the strongly confined direction. Hence we consider along the rest of
this work the following GP equation [1,6]:

∂tψ (x, t) = (1− iγ)
[

−∂2xψ − ψ + |ψ|2 ψ
]

+ 2α cos (2ωt) |ψ|2 ψ. (2)

Eq. (2) admits the following homogeneous state

ψ = exp [−i (α/ω) sin (2ωt)] , (3)

which, in the absence of modulation (α = 0) reduces to the BEC ground state ψ = 1 (the chemical potential is null
in this representation because of the choice of the offset in the trapping potential).

II. LINEAR STABILITY ANALYSIS: THE PARAMETRIC RESONANCE

We wish to know whether the spatially homogeneous external driving is able to induce a spontaneous spatial–
symmetry breaking of (3). Fot that we perform next a linear stability analysis of (3) by adding a small perturbation
to that solution in the form ψ = exp [−i (α/ω) sin (2ωt)] [1 + w (t) cos (kx)]. Substitution of this expression into Eq.
(2) and linearization with respect to w leads to the following coupled equations for u = Rew, and v = Imw:
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u′ (t) = −γ
(

2 + k2
)

u+ k2v, (4)

v′ (t) = −γk2v −
[

2 + k2 + 4α cos (2ωt)
]

u, (5)

which can be combined to yield [1]

u′′ (t) + 2γ
(

1 + k2
)

u′ (t) +
[(

1 + γ2
)

Ω2 (k) + 4k2α cos (2ωt)
]

u (t) = 0, (6)

where

Ω (k) = k
√

2 + k2, (7)

is the nonlinear dispersion relation for the perturbations.
Eq. (6) is a Mathieu equation with damping, analogous to that describing parametrically driven, damped pendula,

and ubiquitous in the description of parametric forcing [7]. Its solutions are well known which, according to Floquet’s
Theorem, can be written as

u (t) = Re f (t) eµt, (8)

where f is a periodic complex function of period π/ω and µ is the so called Floquet exponent (in the case of the
Mathieu equation µ/i is known as Mathieu characteristic exponent). The BEC ground state (3) will be unstable
against perturbations with wavenumber k whenever Reµ > 0. A general property of Eq. (6) is that Reµ > 0 within
a series of resonance ”tongues” very much like the parametric resonances observed in liquids vibrated vertically [7].
For small γ and α (the cases we consider here) these tongues are located, as a function of Ω, around Ω (kn) = nω,
n = 1, 2, 3, . . . Within these tongues the BEC ground state undergoes a spontaneous spatial-symmetry breaking

and perturbations with wavenumber kn =
√√

1 + n2ω2 − 1 amplify. The Floquet exponents can be numerically
determined by using standard mathematical methods [8]. Useful analytical information can be obtained in the limit
of weak damping γ ≪ 1. Taking into account that for γ = α = 0 the solution to (6) is of the form u (t) = ReUeiΩt,
if we consider α ∼ |ω − Ω| ∼ γ, a perturbative expression for u can be obtained by allowing U to be a slowly varying
function of time with the result

u (t) = Re [U+ exp (λ+t) + U− exp (λ+t)] e
iΩt, (9)

λ± = i (ω − Ω)− γ
(

1 + k2
)

±

√

(

αk2

Ω

)2

− (ω − Ω)
2
. (10)

Note that (9) can be written as (8) with f (t) = exp (i2ωt), and

µ = −iω − γ
(

1 + k2
)

+

√

(

αk2

Ω

)2

− (ω − Ω)
2
. (11)

Finally the condition Reµ ≥ 0 reads

α ≥ Ω

k2

√

γ2 (1 + k2)
2
+ (ω − Ω)

2
, (12)

where the equality defines the boundary (neutral stability line) of the first resonance tongue. Note that (12) indicates
that, for fixed ω, the threshold for pattern formation is minimum at Ω = ω, i.e., for wavenumbers k = k1 =
√√

1 + ω2 − 1. The minimum parametric driving is hence predicted to be αn=1
min (ω) = γω

√
1 + ω2/

(√
1 + ω2 − 1

)

.

Following a similar analysis for the second resonance tongue (Ω ≃ 2ω) in the limit α ∼ |ω − Ω| ∼ γ1/2, it follows that
u (t) can be written as (9) with

λ± = i (2ω − Ω)− γ
(

1 + k2
)

± 1

3

√

20

(

α2k4

Ω3

)2

− 24
α2k4

Ω3
(2ω − Ω)− 9 (2ω − Ω)

2
, (13)

from which the second tongue (Reλ+ ≥ 0) runs:

α ≥ Ω3/2

k2

√

3

10

√

√

5γ2 (1 + k2)2 + 9 (2ω − Ω)2 + 2 (2ω − Ω). (14)

The minimum driving amplitude needed in this case, αn=2
min , occurs at Ω = 2ω. In this case αn=2

min ∼ √
γ hence the

second resonance tongue is excited at larger driving amplitudes than the first one, for which αn=1
min ∼ γ. Note in both

cases that for γ = 0 (no damping) the threshold for both (and in fact any) resonance tongues is α = 0 hence all are
simultaneously excited at vanishingly small values of driving amplitude. Damping hence breaks this degeneracy and
selects the first resonance tongue at low drivings.
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III. THE ROLL PATTERN: AMPLITUDE EQUATION

In the following we study the simplest pattern supported by the GP equation (2) under the previously described
parametric instability. We consider a roll pattern in the form

ψ (x, t) = e−i(α/ω) sin(2ωt)
[

1 + εw1 (t) cos (kx) + ε2w2 (x, t) + ε3w3 (x, t) +O
(

ε4
)]

, (15)

where 0 < ε≪ 1 is an auxiliary small parameter. In order to deal with a small roll component (of order ε) we assume
that the amplitude of the parametric driving is also small, say α = O

(

ε2
)

(that this is the proper scaling for α is
justified a posteriori by the consistency of the final result). On the other hand for the parametric excitation to be
effective Eq. (12) must be fulfilled. If we want to take into account both the resonance condition and the effect of
damping we must impose γ = O

(

ε2
)

and (ω − Ω) = O
(

ε2
)

. Summarizing we consider in the following the scalings

ω = Ω+ ε2ω2, α = ε2α2, γ = ε2γ2. (16)

Our goal is to find an equation for the roll complex amplitude w1. This will be done using a standard multiple
timescale technique [7,9]. For this purpose we introduce a slow time

τ = ε2t, (17)

and allow all coefficients of the expansion to depend formally both on t and τ :

w1 (t) = u11 (t, τ) + iv11 (t, τ) , (18)

wj (x, t) = uj (x, t, τ) + ivj (x, t, τ) . (19)

Finally Eqs. (15), (16), (18) and (19) are introduced into the GP equation (2). After using the chain rule for
differentiation ∂t → ∂t+ε

2∂τ and equating equal powers in ε an infinite hierarchy of differential equations is obtained.

A. Order ε
1

This is the first nontrivial order and reads

∂tu11 (t, τ)− k2v11 (t, τ) = 0, (20)

∂tv11 (t, τ) +
(

2 + k2
)

u11 (t, τ) = 0, (21)

whose solution can be written as

u11 (t, τ) =
[

r (τ) eiΩt + r (τ) e−iΩt
]

, (22)

v11 (t, τ) = i
Ω

k2
[

r (τ) eiΩt − r (τ) e−iΩt
]

, (23)

where r (τ) stands for a yet arbitrary complex function of the slow time, and the overbar denotes complex conjugation.

B. Order ε
2

At this order we find

∂tu2 (x, t, τ) + ∂2xv2 (x, t, τ) = [1 + cos (2kx)]u11 (t, τ) v11 (t, τ) , (24)

∂tv2 (x, t, τ) +
(

2− ∂2x
)

u2 (x, t, τ) = − 1
2 [1 + cos (2kx)]

[

3u211 (t, τ) + v211 (t, τ)
]

, (25)

whose solution can be written as

u2 (x, t, τ) = u20 (t, τ) + u22 (t, τ) cos (2kx) , (26)

v2 (x, t, τ) = v20 (t, τ) + v22 (t, τ) cos (2kx) , (27)

where each of the coefficients verifies
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∂tu20 (t, τ) = i
Ω

k2
[

r2 (τ) ei2Ωt − r2 (τ) e−i2Ωt
]

, (28)

∂tv20 (t, τ) = −2u20 (t, τ)− 2
(

2 + k−2
)

|r (τ)|2 +
(

k−2 − 1
) [

r2 (τ) ei2Ωtr2 (τ) e−i2Ωt
]

, (29)

∂tu22 (t, τ) = 4k2v22 (t, τ) + i
Ω

k2
[

r2 (τ) ei2Ωt − r2 (τ) e−i2Ωt
]

, (30)

∂tv22 (t, τ) = −
(

2 + 4k2
)

u22 (t, τ)− 2
(

2 + k−2
)

|r (τ)|2 +
(

k−2 − 1
) [

r2 (τ) ei2Ωtr2 (τ) e−i2Ωt
]

, (31)

which solved yield

u20 (t, τ) = −2
(

1 + k−2
)

|r (τ)|2 + 1

2k2
[

r (τ) eiΩt + r (τ) e−iΩt
]2
, (32)

u22 (t, τ) = − 1

2k2
[

r (τ) eiΩt + r (τ) e−iΩt
]2
, (33)

v20 (t, τ) = v200 (τ) +
i

2Ω

[

r2 (τ) ei2Ωt − r2 (τ) e−i2Ωt
]

, (34)

v22 (t, τ) = − iΩ

2k4
[

r2 (τ) ei2Ωt − r2 (τ) e−i2Ωt
]

, (35)

where v200 (τ) is a yet undetermined function of the slow time, which is not fixed by the present analysis. This
information should be obtainable by extending the calculation up to higher orders of the expansion. Anyway, as will
be seen below, the knowledge of v200 (τ) is not relevant for our purposes.

C. Order ε
3. The amplitude equation

This is the last order we will consider. It reads

∂tu3 (x, t, τ) + ∂2xv3 (x, t, τ) = fu (t, τ) cos (kx) + gu (t, τ) cos (3kx) , (36)

∂tv3 (x, t, τ) +
(

2− ∂2x
)

u3 (x, t, τ) = fv (t, τ) cos (kx) + gv (t, τ) cos (3kx) , (37)

where

fu = −∂τu11 − γ2
(

2 + k2
)

u11 + (2v20 + v22)u11 + (2u20 + u22) v11 +
3
4

(

u211 + v211
)

v11, (38)

fv = −∂τv11 − γ2k
2v11 − 4α2 cos (2Ωt+ 2ω2τ)u11 − 3 (2u20 + u22)u11 − (2v20 + v22) v11 − 3

4

(

u211 + v211
)

u11 (39)

gu = u11v22 + u22v11 +
1
4

(

u211 + v211
)

v11, (40)

gv = −3u11u22 − v11v22 − 1
4

(

u211 + v211
)

u11. (41)

The solution to Eqs. (36) and (37) can be written as

u3 (x, t, τ) = u31 (t, τ) cos (kx) + u33 (t, τ) cos (3kx) , (42)

v3 (x, t, τ) = v31 (t, τ) cos (kx) + v33 (t, τ) cos (3kx) , (43)

where each of the coefficients verifies

∂tu31 (t, τ)− k2v31 (t, τ) = fu (t, τ) , (44)

∂tv31 (t, τ) +
(

2 + k2
)

u31 (t, τ) = fv (t, τ) , (45)

∂tu33 (t, τ)− 9k2v33 (t, τ) = gu (t, τ) , (46)

∂tv33 (t, τ) +
(

2 + 9k2
)

u33 (t, τ) = gv (t, τ) . (47)

The last two equations do not give us relevant information for our purposes. On the contrary Eqs. (44) and (45)
determine the evolution equation for the complex amplitude of the roll r. This comes from the fact that these equations
contain resonant terms which yield divergent solutions unless a solvability condition is imposed. This is clearly seen
by writing Eqs. (44) and (45) in vector form:

∂t

[

u31 (t, τ)
v31 (t, τ)

]

=

[

0 k2

−
(

2 + k2
)

0

] [

u31 (t, τ)
v31 (t, τ)

]

+

[

fu (t, τ)
fv (t, τ)

]

. (48)
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Upon diagonalizing this equation we obtain

∂tχ (t, τ) = −iΩχ (t, τ) + f (t, τ) , (49)

(and its complex conjugate) where

χ (t, τ) =
(

2 + k2
)

u31 (t, τ) + iΩv31 (t, τ) , (50)

f (t, τ) =
(

2 + k2
)

fu (t, τ) + iΩfv (t, τ) . (51)

Eq. (49) can only be solved if the driving term f does not contain elements oscillating as exp (−iΩt). Upon substituting
Eqs. (38) and (39) into Eq. (51), and making use of Eqs. (22), (23) and (32)–(35), the solvability condition is found
to be

dr

dτ
= −γ2

(

1 + k2
)

r + i
α2k

2

Ω
e2iω2τr − i

3 + 5k2

Ω
|r|2 r. (52)

Finally we define a new roll complex amplitude

R (t) = εr (τ) e−iω2τ , (53)

and turn back to the original parameters by undoing the scalings (16) with the result

dR

dt
= −

[

γ
(

1 + k2
)

+ i (ω − Ω)
]

R + i
αk2

Ω
R− i

3 + 5k2

Ω
|R|2 R. (54)

Eq. (54) is the searched roll amplitude equation. It is a Landau equation with broken phase symmetry (note the
presence of the linear term proportional to R). The roll solution (15) can be written in terms of R making use of Eqs.
(18), (22), (23) and (53). To the leading order the roll reads

ψ (x, t) = e−i(α/ω) sin(2ωt) [1 + w (t) cos (kx)] , (55)

w (t) =
(

1− Ω/k2
)

R (t) eiωt +
(

1 + Ω/k2
)

R (t) e−iωt. (56)

Let us finally note that a straightforward linear stability analysis of the trivial solution R = 0 (hence w = 0) of Eq.
(54) yields the same neutral stability curve given in (12).
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