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Abstract

Applying a unifying Lax operator approach to statistical systems a new class of integrable vertex

models based on quantum algebras is proposed, which exhibits a rich variety for generic q, q roots

of unity and q → 1. Exact solutions are formulated through algebraic Bethe ansatz and a novel

possibility of hybrid vertex models is introduced.

—–

PACS numbers 02.30.Ik, 02.20.Uw, 05.20.-y 05.50+q, 03.65.Fd

Introduction:

D-dimensional quantum systems are known to be related to (1+D)-dimensional classical statistical

models, which is true naturally also in D = 1, where one finds an exclusive class of models, known as

integrable systems, allowing exact solutions. Celebrated example of such relation is that between the

XY Z quantum spin-12 chain and the 8-vertex statistical model and similarly between the XXZ chain

and the 6-vertex model [1]. Hamiltonian Hs of the integrable quantum spin chain is given through

its transfer matrix as lnτ(u) = I + uHs +O(u2), while the partition function Z of the related vertex

model is constructed from τ(u) as Z = tr(τ(u)M ). Moreover, both these models share the same

quantum R-matrix and have the same representation for the transfer matrix, commutativity of which:

[τ(u), τ(v)] = 0 guarantees their integrability.

It is therefore rather surprising to note that, inspite of such deep connection between these two in-

tegrable systems, their starting formulation conventionally follows two different routes. Quantum sys-

tems usually are defined by their Lax operators Lal(u), which satisfy the quantum Yang-Baxter equa-

tion (YBE) Rab(u−v)Lal(u)Lbl(v) = Lbl(v)Lal(u)Rab(u−v), together with its associated R-matrix. A

vertex model on the other hand is described by its Boltzmann weights given generally through the ele-

ments of the R-matrix alone, which solves the YBE Rab(u− v)Ral(u)Rbl(v) = Rbl(v)Ral(u)Rab(u− v).

However such a difference in their approaches, reason of which seems to be rather historical, puts
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certain restrictions on the 2-dimensional vertex models by assuming their vertical (v) and the hori-

zontal (h) links, which are related to the auxiliary and quantum spaces respectively, to be equivalent.

As a consequence while a rich variety of integrable quantum systems with wide range of interactions

involving spin, fermionic, bosonic and canonical variables does exist, the integrable vertex models

are confined mostly to those quantum models that exhibit regularity property expressed through the

permutation operator: Lal(0) = Pal and hence correspond to local Hamiltonians with nearest neighbor

(NN) interactions. Therefore the well known examples of the integrable vertex models, apart from

those mentioned above, appear to be limited mainly to the models like the 5-vertex model [2], 6-vertex

model in external fields [3], 19-vertex model connected with the Babujian-Takhtajan spin-1 chain [4]

and the vertex models equivalent to the Hubbard model [5], supersymmetric t-J model [6], Bariev

chain [7] etc. all exhibiting only NN interactions.

The basic idea of the present letter however is to exploit fully the equivalence between statistical and

quantum systems and construct new class of integrable vertex models by applying a unifying scheme

designed originally for quantum models [8]. In the original scheme an ancestor model was proposed

for generating integrable quantum systems as its various descendant realisations. For describing our

vertex models we start in analogy also with the generalised Lax operator [8]

L(u) =

(

c+1 q
S3+u + c−1 q

−(S3+u) 2 sinαS−

2 sinαS+ c+2 q
−(S3−u) + c−2 q

S3−u

)

, q = eiα, (1)

linked with the underlying quantum algebra

[S3, S±] = ±S±, [S+, S−] = (M+[2S3]q +M−[[2S3]]q), [M±, ·] = 0. (2)

Here [x]q ≡ sin(αx)
sinα

, [[x]]q ≡ cos(αx)
sinα

and the central elements M± are related to the other set of such

elements appearing in the L-operator as M± = ±1
2

√
±1(c++c

−
− ± c−+c

+
−). It is important to notice that

(2) is a q-deformed quadratic algebra, which generalises both q-spin and q-boson algebras and in fact

follows from the quantum YBE representing integrability condition. We define the Boltzmann weights

(BW) of our vertex models not by the R-matrix as conventional, but through the elements of the

Lax operator: L
j,k
ab (u) = ωa,j;b,k(u) by using matrix representations of the general algebra (2) in (1).

These generalised BW generate a unified vertex model, which through possible reductions yields new

series of vertex models linked with different underlying algebras, their representations and choices of

the central elements. Prominent examples of such integrable statistical systems are a rich collection

of vertex models linked to q-spin and q-boson with generic q, q roots of unity and q → 1. In all these

models the h and v links , contrary to the usual approach, may become inequivalent and independent

at every vertex point and since we consider here 2× 2 Lax operators, the h links admit only 2 values:

a, b ∈ [+,−]. The v links on the other hand have richer possibilities with j, k ∈ [1,D], depending

on dimension D of the matrix-representation of the q-algebras (see Fig. 1). The familiar ice-rule is

generalised here as the ’colour’ conservation a+ j = b+ k for determining nonzero BW. The crucial

partition function of the models however is given as usual by Z =
∑

config

∏

a,b,j,k ωa,j;b,k(u).

An important point to note is that unlike traditional approach the Lax operators related to such

vertex models do not coincide with their R-matrix, do not comply with the regularity condition and do

2



not correspond in general to quantum Hamiltonians with NN interactions. Moreover since our vertex

models belonging to the same class have the same R-matrix, we can generate another rich series of

integrable models, namely hybrid vertex models by combining any number of them in a row (see Fig.

1).

The eigenvalue solution of the transfer matrix needed for constructing the partition function for

all these vertex models can also be found exactly through the algebraic Bethe ansatz in a unifying

way.

Unified vertex model:

In accordance with our primary goal we discover an explicit matrix representation for the basic

operators S±, S3:

< s, m̄|S3|m, s >= mδm,m̄, < s, m̄|S±|m, s >= f±
s (m)δm±1,m̄, (3)

with f+
s (m) = f−

s (m + 1) = (κ + [s −m]q(M
+[s +m + 1]q +M−[[s +m + 1]]q))

1

2 having additional

parameters κ, s. It may be checked that (3) indeed gives an exact representation of the general q-

deformed algebra (2) for arbitrary values of the central elements M±. Therefore the BW may be

constructed from the matrix representation of the generalised Lax operator (1) by using (3) in the

form

ω±,j;±,j(u) = c+±e
iα(u±m) + c−±e

−iα(u±m), ω+,j;−,j−1 = ω−,j−1;+,j = 2f+
s (m) sinα, (4)

with m = s + 1 − j, j = 1, 2, . . . ,D. The BW parameterised as (4) would generate now a unified

(4D−2)-vertex model, representing a new series with arbitrary parameters c±±, s and κ. These models

and naturally all others obtained below through various reductions are integrable statistical models

and share the same R-matrix, which is given by that of the well known 6-vertex model [1].

Note that though in general the dimension D of the matrices (3) is infinite, it may get truncated

through possible appearance of zero-normed states. To analyse this important effect we observe that

since [0]q = 0, one gets f+
s (m = s) = 0 for κ = 0, recovering the familiar ’vacuum’ state: S+|s, s >= 0.

However due to the presence of the second term one gets here f−
s (m = −s) = ([2s + 1]q(M

+[0]q +

M−[[0]]q))
1
2 6= 0 and unlike the spin representation we have S−|m, s > 6= 0 for all m. This creates

therefore an infinite tower of states by the action of the lowering operator S−, as typical for the

bosonic representation. This also signals the fact that algebra (2) includes both q-spin and q-boson

and therefore their representations must be derivable from (3) as particular cases.

q-spin vertex model:

It is straightforward to check that for M+ = 1,M− = 0, our unifying algebra (2) reduces to the

well known Uq(su(2)) quantum spin algebra [9] and at the same time (3) reproduces the known q-spin

representation. Therefore the corresponding BW may be obtained from (4) for a consistent choice

c±+ = c±− = ∓i, as

ω±,j;±,j(u) = [u±m]q, ω+,j;−,j−1 = ω−,j−1;+,j = f+(qspin)
s (m), m = s+ 1− j

with f
±(qspin)
s (m) = ([s ∓m]q[s ±m+ 1]q)

1

2 . In this case the truncation S±|m = ±s, s >= 0 typical

for spin models and hence the familiar D = 2s + 1 dimensional representation naturally arise, which
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produces therefore a series of q-spin (8s + 2)-vertex models. The 6-vertex model is clearly recovered

at s = 1
2 , while s = 1, 32 , 2,

5
2 , . . . yield new 10, 14, 18, 22, . . .-vertex models (Fig. 1 a,b)).

The quantum systems related to such statistical models may be represented in general by inter-

acting q-spins with nonlocal interactions. In particular, since the well known sine-Gordon model is a

realisation of the q-spin [10], the vertex models constructed with nonzero κ and having infinite D will

be related to the quantum integrable lattice sine-Gordon model [11].

q-boson vertex model:

We find that q-bosonic algebra [12] can also be derived as a subalgebra of (2) for the complementary

choice M+ = sinα,M− = cosα by denoting S+ = ρA, S− = ρA†, S3 = −N, ρ = (cotα)
1

2 . The

same choice derives therefore the matrix representation for the q-boson directly from (3) with the

assumption that κ = s = 0 and n = −m, yielding

f
−(qbos)
0 (n) = ([1 + n]q[[−n− 1]]q)

1

2 =
1√
2
[1 + n]

1
2

q2
, f

+(qbos)
0 (n) = f

−(qbos)
0 (n− 1) =

1√
2
[n]

1
2

q2
.

Consequently for a consistent solution c+± = 1, c−± = ∓ie±iα we can derive from (4) the BW as

ω±,j;±,j(u) = ie±iαφ[u∓ (j + φ− 1)]q, φ =
1

2
(1 +

π

2α
),

ω+,j;−,j−1 = ω−,j−1;+,j = f
+(qbos)
0 (j − 1) =

1√
2
[j − 1]

1
2

q2
. (5)

It is obvious that apart from the vacuum state |0 > with f
+(qbos)
0 (0) = 1√

2
[0]

1

2

q2
= 0 we can

have no other zero-normed states and the q-bosonic representation like the standard boson is semi-

infinite with D = n + 1. The integrable (4n + 2)-vertex model linked to the q-boson (Fig. 1c)) that

we construct using (5) would therefore be related to the lattice version of the quantum derivative

nonlinear Schrödinger model (DNLS), which exhibits a q-bosonic realisation [13].

Vertex models with q roots of unity:

An excellent possibility for regulating the dimension of the matrix representation opens up when

q = eiα is chosen as solutions of qp = ±1 with parameter α taking discrete values αa = π a
p
, a =

1, 2, . . . , p − 1 [14]. Note however that when some values of a becomes a factor of p one faces a

situation with q
p

a = ±1. Therefore to avoid such complicacies we suppose p to be prime in our present

discussion. For further analysis we focus on the action of S− assuming κ = 0 in (3): S−|m = −s̄, s >=

([s + s̄+ 1]q(M
+[s− s̄]q +M−[[s− s̄]]q))

1
2 . and observe that due to [p]q = sinαap = 0, unlike generic

q we can get now S−| − s̄, s >= 0 at s̄ = p− (s+ 1), which reduces matrix (3) to a finite dimensional

representation. Therefore the BW obtained from (4) for this case would generate another series of

unified K-vertex model having finite K = 4p− 2 configurations at every vertex point. Moreover, since

for a fixed p there can be p − 1 different αa, each of these discrete values describes a different set of

BW and hence a novel model.

Consequently at particular reductions as analysed above, we obtain the corresponding series of new

vertex models linked with q-spin or q-boson, but now having finite configuration space determined by

p. Thus for the q-spin with fixed p, 0 < p < 2s + 1, in place of a (8s + 2)-vertex model for generic q,
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one obtains p− 1 number of different (4p− 2)-vertex models and the related representation including

the case p > 2s + 1 become more involved [14]. The corresponding BW defining these models should

however be given by their same generic form, though using discrete αa values. As for example in case

of s = 5
2 with q5 = −1, instead of a 22-vertex model one obtains 4 different 18-vertex models for

distinct values of αa = π a
5 , a = 1, 2, 3, 4. Noticeably, as a quantum model the q-spin with q roots of

unity are realised as the restricted sine-Gordon model [15].

The situation becomes more interesting when applied to the q-boson with finite p, since now

together with the standard vacuum we get also A†|n = p
2 − 1 >= 1√

2
[p2 ]

1
2

q2
|p2 >= 0, yielding finite

(p2 ×
p
2 ) matrix representations for the q-bosonic operators A,A†. As a result we obtain an intriguing

series of (2p− 2)-vertex models with BW described by the same form (5) as for the generic q-bosonic

case, but with different possible parameter values q = eiαa , a = 1, 2, . . . , p − 1. The quantum model

corresponding to such q-boson vertex models can be realised as the restricted DNLS model, which

supports finite quasi-particle bound states [16].

Rational class of vertex models :

At q → 1(α → 0) on the other hand, the associated R-matrix goes to its known rational limit

and the underlying algebra becomes undeformed one with M± → m±, reducing at the same time

the unified model to its rational form. Consequently, taking carefully the limits we may construct

in a similar way the corresponding set of vertex models belonging to the rational class. Not going

into details we mention only that the BW of these vertex models can be obtained from the limiting

values of (4) yielding f+
s (m) → ((s − m)(m+(m + s + 1) + m−))

1
2 . It is easy to check that the BW

for the vertex models related to the undeformed spin as well as the standard boson correspond to

the particular values of the central elements: m+ = 1,m− = 0 and m+ = 0,m− = 1, respectively.

Remarkably, the spin vertex model constructed in this way coincides with the similar higher s model

obtained earlier through fusion method [4], whereas the bosonic-vertex model apparently is a new

model, linked to a quantum integrable lattice NLS model [17].

Hybrid vertex models:

In constructing our vertex models we have flatly assumed that in any model the same BW must

be defined at every vertex point. An immediate generalisation is therefore possible by relaxing this

condition and considering the central elements c±± as well as the spin parameters s appearing in (4)

to be different at different sites. As we have already stressed, vertex models obtained as various

reductions of the same integrable unified model belong to the same class sharing the same R-matrix.

Thus the q-spin and q-boson vertex models are members of the trigonometric class, while the normal

spin and boson models belong to the rational class. Based on this fact therefore we can construct a

rich collection of hybrid models by combining different vertex models of the same class and inserting

their defining BW along the vertex points l = 1, 2, . . . , N in a row, in any but fixed manner. Due to

the association with the same R-matrix the integrability of such statistical models would be naturally

preserved.

Thus for example an alternate insertion of 10 and 6 vertex models results to a hybrid model, which

is related to the known quantum model [18] involving spin-1 and spin-12 operators with next-NN
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interactions. More exotic hybrid models can be formed by arranging the BW for the q-spin and q-

boson vertex models, alternatively or in any other way at different vertex points (Fig. 1). Similarly one

can construct a spin-boson hybrid vertex model by combining their individual vertex models, which

would correspond to a quantum chain of interacting spins and bosons involving next-NN couplings.

Unified solution:

The construction of the unified vertex model through the generalised Lax operator suggests also a

scheme for exactly solving the eigenvalue problem for the transfer matrix. Since the partition functions

in turn can be determined from the knowledge of these eigenvalues, all vertex models obtained as

particular cases and linked to (un-)deformed spin or (un-)deformed boson can also be solved in a unified

way. There is a well formulated algebraic Bethe ansatz method for exactly solving the eigenvalue

problem of the transfer matrix: τ(u) = trh(
∏N

l Ll(u)), when the associated Lax operator as well as

the R-matrix are given [19]. Therefore, since we have defined the BW through matrix representations

of the Lax operator and the R-matrix in our case is given by that of the well known 6-vertex model,

we can derive the exact eigenvalues for the transfer matrix of our models as

Λ(u) = ωN
+,1;+,1(u)

n
∏

k

g(uk − u) + ωN
−,1;−,1(u)

n
∏

k

g(u− uk), g(u) =
[u+ 1]q
[u]q

. (6)

with all possible solutions of {uk} to be determined from the Bethe equations

(

ω+,1;+,1(ul)

ω−,1;−,1(ul)

)N

=
n
∏

k 6=l

[ul − uk + 1]q
[ul − uk − 1]q

, l = 1, 2, . . . , n. (7)

By analysing the structure of these equations we conclude that, the factors involving BW in both of

them come from the action of the Lax operator on the pseudovacuum, which is chosen as the direct

product of the highest weight states with j = 1 i.e. |m = s >. The rest of the factors on the other

hand are originated from the R-matrix elements, which arise during diagonalisation of the transfer

matrix due to the use of the quantum YBA. Therefore it is crucial to note that, the only part given by

BW is model-dependent and defined for the vertex models by the diagonal entries in (4) with j = 1,

while the remaining parts contributed by the R-matrix are the same for all our models from the same

class. Consequently the exact solutions for all models constructed here can be found in a systematic

way from (6) and (7) by using corresponding reductions of the unified model (4).

The total number of solutions {Λγ(u)} for the eigenvalues (6) should be DN , which coincides with

the number of possible eigenstates and gives the dimension of the vector space on which the transfer

matrix acts. The partition function of the vertex models may therefore be given at the thermodynamic

limit by Z = limM,N→∞trv(τ
M (u)) = limM,N→∞

∑DN

γ=1 Λ
M
γ (u). At this important limit, the Bethe

equations (7) turn into an integral equation V (u) = 2πρ(u) +
∫

ρ(v)K(v, u)dv, with known kernel

of the 6-vertex model [20]. Interestingly, all information about a particular model is encoded in the

driving term only, which is expressed through
ω+,1;+,1(u)
ω−,1;−,1(u)

= reiP (u) as V (u) = P
′

(u) and therefore

knowing the explicit form of BM one can derive easily the equations for individual models.
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For extracting the solutions of the hybrid vertex models however the BW dependent parts in the

above equations should be slightly modified by generalising the factors inhomogeneously as
∏

β((ω
(β)
±,1;±,1(u))

Nβ ,

where Nβ is the number of vertices of type β appearing in a row with the constraint N =
∑

β Nβ .

Detail investigation of individual models and identification of their most probable states are im-

portant problems to be pursued.
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Figure 1: Integrable vertex models with horizontal (h) links taking 2 values, while the vertical (v) ones

may have D possible values. a) 6-vertex b) q-spin vertex and c) q-boson vertex models. Combining

a,b,c) an integrable hybrid model may be formed. qp = 1 gives D = p in b) and c)

.

9


