
ar
X

iv
:c

on
d-

m
at

/0
30

62
85

v2
  [

co
nd

-m
at

.s
tr

-e
l]

  1
5 

D
ec

 2
00

3

Out of equilibrium correlation functions of quantum anisotropic XY models:

one-particle excitations.

Luigi Amico and Andreas Osterloh
NEST-INFM & Dipartimento di Metodologie Fisiche e Chimiche (DMFCI), viale A. Doria 6, 95125 Catania, ITALY

We calculate exactly matrix elements between states that are not eigenstates of the quantum
XY model for general anisotropy. Such quantities therefore describe non equilibrium properties of
the system; the Hamiltonian does not contain any time dependence. These matrix elements are
expressed as a sum of Pfaffians. For single particle excitations on the ground state the Pfaffians in
the sum simplify to determinants.

I. INTRODUCTION

Spin systems are paradigmatic models for describing many phenomena in contemporary physics [1]. Often their
main properties can be captured qualitatively, resorting on approximated techniques. However, in many cases more
refined approaches are required to obtain reliable results. A prime example are systems near or at a phase transition,
where quantum fluctuations inhibit many standard routes from working (as e.g mean-field theory but also perturbation
theory). At the critical point, in change, the system can remarkably be simplified by a then present large class of
symmetries. Conformal field theory employs systematically this important property of the system at criticality and
the corresponding dynamics can be integrated exactly in 1+1 dimensions. Much more difficulties arise when the
system is far from either, criticality and accessibility to mean-field or perturbation theory. Fortunately there are
many non-trivial systems for which the symmetry is large enough to allow the dynamics being integrated exactly
even for generic values of the relevant couplings. Then, also the physics of the cross over from non-critical to critical
regimes is accessible. Complete integrability constitutes the crucial property that even exact correlation functions are
available. Important steps forward to this goal have become possible by the Quantum Inverse Scattering approach [2],
more recently refined by Kitanine, Maillet, Slavnov and Terras [3] and Korepin and Göhman [4].
The quantum anisotropic XY chains are a relevant example of completely integrable models. The model was solved

exactly by Lieb, Schultz and Mattis [5], Pfeuty [6] for isotropic cases and by Barouch, McCoy, and Dresden [7] for
generic anisotropy. Also the correlation functions were intensively studied and analytic expressions for their asymp-
totics (in time and space variables) were obtained [7,8]. The correlation functions were calculated at equilibrium
and for time-dependent magnetic field. We perform an exact calculation of correlations between states that are not

eigenstates of the model, and that therefore describe non-equilibrium properties of the model; we remark that the
Hamiltonian instead does not contain explicit time-dependence. Our motivations come from condensed matter where
quantum XY chains are particularly studied, even more intensively since recent interest in the phenomenon of deco-
herence in suitably designed physical systems [9]; this latter kind of analysis is due, in turn, to the burst of interest
in quantum information theory [10]. Such cross-over of interests originated a line of research investigating the inter-
connection between condensed matter and quantum information. In particular it is intriguing to investigate whether
it is possible to better characterize condensed matter states by looking at e.g. quantum correlations entanglement

properties of their wavefunction. Already a number of interesting results in this direction have been obtained [11]-
[19].
The present paper is laid out as follows. In the next section we present the models we discuss and review the exact

solution from Refs. [5,7], already preparing relevant building blocks for computing off-equilibrium correlations. In
section III we present known results connecting vacuum expectation values in fermionic theories with a generalized
determinant structure, called the Pfaffian and their application to equilibrium correlation functions presented in [6,7].
Section IV contains the main result for non-equilibrium correlations and matrix elements of the presented models.
After all we draw our conclusions.

II. THE MODELS

The system under consideration is a spin-1/2 ferromagnetic chain with an exchange coupling λ in a transverse
magnetic field of strength h. The Hamiltonian is H = hHs with the dimensionless Hamilton operator Hs being

Hs = −λ

N
∑

i=1

(1 + γ)Sx
i S

x
i+1 + (1− γ)Sy

i S
y
i+1 −

N
∑

i=1

Sz
i (1)
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where Sa are the spin-1/2 matrices (a = x, y, z) andN is the number of sites. We assume periodic boundary conditions.
The anisotropy parameter γ connects the quantum Ising model for γ = 1 with the isotropic XY model for γ = 0. In
the interval 0 < γ ≤ 1 the model belongs to the Ising universality class and for N = ∞ it undergoes a quantum phase
transition at the critical coupling λc = 1. The order parameter is the magnetization in x-direction, 〈Sx〉, which is
different from zero for λ > 1 and vanishes at and below the transition. On the contrary the magnetization along the
z-direction, 〈Sz〉, is different from zero for any value of λ.
This class of models was diagonalized by means of the Jordan-Wigner transformation [5–7] that maps spins to one

dimensional spin-less fermions with creation and annihilation operators c†l and cl. It proved convenient to use the

operators Al
.
= c†l + cl, Bl

.
= c†l − cl, which fulfill the anti-commutation rules

{Al, Am} = −{Bl, Bm} = 2δlm ,

{Al, Bm} = 0 . (2)

In terms of these operators the Jordan-Wigner transformation reads

Sx
l =

1

2
Al

l−1
∏

s=1

AsBs

Sy
l = − i

2
Bl

l−1
∏

s=1

AsBs

Sz
l = −1

2
AlBl . (3)

The Hamiltonian defined in Eq.(1) is bilinear in the fermionic degrees of freedom and therefore can be diagonalized
by means of the transformation

ηk =
1√
N

∑

l

eikl
(

αkcl + iβkc
†
l

)

(4)

with coefficients

αk =
Λk − (1 + λ cos k)

√

2[Λ2
k − (1 + λ cos k)Λk]

βk =
γλ sink

√

2[Λ2
k − (1 + λ cos k)Λk]

. (5)

The Hamiltonian thereafter assumes the form

H =
∑

k

Λkη
†
kηk −

1

2

∑

k

Λk (6)

and the associated energy spectrum is

Λk =

√

(1 + λ cos k)
2
+ λ2γ2 sin2 k .

Now, in order to calculate correlations out of equilibrium, we need to know the time dependence of the relevant
operators. From Eq.(4) we obtain the spin-less fermion creation and annihilation operators in the Heisenberg picture.

We have η†k(t) = exp (−i Λkt)η
†
k(0) and hence, using Eq.(4) and its inverse

cj(t) =
∑

l

[ãl−j(t)cl − b̃l−j(t)c
†
l ]

where the new coefficients are

ãx(t) =
1√
N

∑

k

cos kx
(

eiΛkt − 2iβ2
k sinΛkt

)

(7)

b̃x(t) =
2i√
N

∑

k

sin kxαkβk sinΛkt . (8)
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In the limit γ = 0 the previous expressions simplify considerably. In this case the magnetization, i.e. the z-
component of the total spin Sz =

∑

j S
z
j , is a conserved quantity. In terms of fermions this corresponds to the

conservation of the total number of particles, N =
∑

j nj =
∑

j c
†
jcj . For γ −→ 0 and |λ| ≤ 1 we find that αk −→ 0

and βk −→ signk. The energy spectrum is Λk = |1 + λ cos k| and the eigenstates are plane waves (the Hamiltonian
corresponds to a tight binding model)

cj(t) =
1√
N

∑

k

∑

l

cos k(l − j)e−iΛktcl (9)

η†k =
1√
N

∑

l

e−iklcl . (10)

In this work we discuss vacuum expectation values and correlations in excitations of them. It is worthwhile noticing
that different strategies are applied, depending on whether the vacuum is the ground state or the state with no
particles (which we call the c-vacuum). Since it is cumbersome to calculate the time dependence of the vacuum itself,
it is convenient to write the operators Al and Bl in the Heisenberg picture. For the ground state instead the time
dependence is trivial and the operators are taken in the Schrödinger picture. For both approaches we express the

operators Al and Bl in terms of the operators ηk and η†k

Al =
1√
N

∑

q

[

η†−q + ηq

]

zqe
−i ql (11)

Bl =
1√
N

∑

q

[

η†−q − ηq

]

z∗q e
−i ql (12)

These are sufficient for the correlations in the ground state. For the calculation for the c-vacuum it proves to be
convenient defining the following (redundant) Fourier transforms containing αk, βk, and their combination zk :=
αk + iβk

Ax :=
1

L

∑

q

dqα2
qe

i qx (13)

Bx :=
1

L

∑

q

dqβ2
qe

i qx (14)

Zx :=
1

L

∑

q

dqz2qe
i qx (15)

AZx(t) :=
1

L

∑

q

dqαqzqe
i Λqtei qx (16)

BZx(t) :=
1

L

∑

q

dqβqzqe
i Λqtei qx (17)

µx(t) := AZ
∗
x(t)− iBZx(t) . (18)

In these quantities we have

Al(t) =
∑

j

(

c†jµj−l(t) + cjµ
∗
j−l(t)

)

(19)

Bl(t) =
∑

j

(

c†jµl−j(t)− cjµ
∗
l−j(t)

)

. (20)

where

µx(t) =
1

L

∑

q

dqe−i Λqt(α2
q cos qx+ αqβq sin qx) . (21)
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III. CORRELATION FUNCTIONS AS PFAFFIANS

It is known since 1952 that “vacuum” expectation values of a product of 2R fermionic fields

〈0|Ψ1 · · ·Ψ2R |0〉 (22)

can be written as a Pfaffian [20]. The entries of the Pfaffian structure are the contractions of two field operators

〈0|ΨiΨj |0〉 = Pi,j . (23)

The field operators Ψ are linear functionals of fermionic creation and annihilation operators, where the “vacuum” |0〉
is that state annihilated by the annihilation operators. The Pfaffian is a type of generalized determinant form [20].
It is written in a triangular structure as

∑

π∈S<
2n

(−)πPπ(1),π(2)Pπ(3),π(4) . . . Pπ(2n−1),π(2n) =

| P1,2 P1,3 . . . P1,R P1,R+1 P1,R+2 . . . P1,2R

P2,3 . . . P2,R P2,R+1 P2,R+2 . . . P2,2R

. . . . . . . . . .
. . . . . . . . . . .

PR,R+1 PR,R+2 . . . PR,2R

PR+1,R+2 . . . PR+1,2R

. . . .
P2R−1,2R

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(24)

where S<
2n denotes all elements π of the symmetric group S2n which give ordered pairs; i.e. π(2l − 1) < π(2l)) and

π(2l − 1) < π(2m− 1) for l < m. We particularly make use of the known property that a Pfaffian can be expanded
along “rows” or “columns”, where the r-th row or column corresponds to all Pi,j with i = r or j = r. In analogy

to matrix minors, we will call the minor Pfaffian P̂i,j ≡ P̂j,i the Pfaffian of the above structure (24) when having
canceled the i-th and j-th row. In terms of these minors the expansion reads

P2R =

2R−1
∑

i=1

i6=r

(−)i+r+1P−→
i,r
P̂−→
i,r

, (25)

where
−→
i, r means that the indices are to be written in increasing order. It is worth noting that the r-th part of this

expansion reflects all possible contractions with the field operator Ψr performed in Eq.(22).
There are two cases which we will study in this work: |0〉 being (i) the ground state, denoted by |g〉 and (ii) the

c-vacuum, denoted by |⇓〉.

A. Ground state

At equilibrium [5–7], a crucial simplification is that 〈AlAm〉g = −〈BlBm〉g = δlm. This reduces the Pfaffian to a
Töplitz determinant

〈Sα
l S

α
l+R〉g = s(α, α) | 0 . . . 0 Gαα

1,1 Gαα
1,2 . . . Gαα

1,R

. . . . . . . . . . . . . . . . . .
0 Gαα

R−1,1 Gαα
R−1,2 . . . Gαα

R−1,R

Gαα
R,1 Gαα

R,2 . . . Gαα
R,R

0 . . . 0
. . . . . .

0

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= (−)R(R−1)/2s(α, α)

∣

∣

∣

∣

∣

∣

Gαα
1,1 . . . Gαα

1,R

. . . . . . . . .
Gαα

R,1 . . . Gαα
R,R

∣

∣

∣

∣

∣

∣

(26)
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with [21]

Gxx
µ,ν = 〈Al+µBl+ν−1〉g (27)

Gyy
µ,ν = 〈Al+µ−1Bl+ν〉g (28)

〈AlBm〉g = Zm−l. The correlation functions 〈Sx
l S

y
l+R〉g and 〈Sy

l S
x
l+R〉g identically vanish, since a complete row and

column in the corresponding matrices vanishes, respectively. It is worth noting that due to the translational invariance
of the state the determinant above is of Töplitz type. As a consequence the asymptotics of the correlation functions
can be extracted explicitly [7] applying the Szegö theorem.

IV. CORRELATION FUNCTIONS OUT OF EQUILIBRIUM

As already mentioned, time-dependent correlation functions were derived in Ref. [7]. There, the time-dependence
was explicitly induced into the Hamiltonian (time dependent external magnetic field). In contrast, we compute
matrix elements of operators at non-equilibrium, meaning that the initial and final state are not eigenstates of the
Hamiltonian; the resulting quantities are then time dependent although the Hamiltonian is not. First, we consider
matrix elements in the c-vacuum |⇓〉 (for generic γ this is not an eigenstate of the Hamiltonian; only for γ = 0 it
coincides with the ground state), and in excitations on it and on the ground state.

A. Correlations in the c-Vacuum

Using Eqs. (19,20), leads to the following contractions as building blocks for the Pfaffians

〈Al(t)Bm(t)〉⇓ =
∑

j

µ∗
j−lµm−j =

= δlm − 4
1

L

∑

q

(

2α2
qβ

2
q cos q(m− l) + αqβq(1− 2β2

q ) sin q(m− l)
)

sin2 Λqt (29)

〈Al(t)Am(t)〉⇓ =
∑

j

µ∗
j−lµj−m = δlm − 2i

1

L

∑

q

αqβq sin q(m− l) sin 2Λqt (30)

〈Bl(t)Bm(t)〉⇓ =
∑

j

µ∗
j−lµl−j = −δlm − 2i

1

L

∑

q

αqβq sin q(m− l) sin 2Λqt (31)

We are now ready to write down the two-point spin correlation functions, applying the results from the previous
section

〈Sα
l S

β
l+R〉⇓ = s(α, β)·

· | Iαβ1,2 . . . Iαβ1,R−1 Jαβ
1 Fαβ

1 Gαβ
1,2 . . . . Gαβ

1,R

. . . . . . . . . . . . . . . . . . . . . .

IαβR−2,R−1 Jαβ
R−2 Fαβ

R−2 Gαβ
R−2,2 . . . . Gαβ

R−2,R

Jαβ
R−1 Fαβ

R−1 Gαβ
R−1,2 . . . . Gαβ

R−1,R

Eαβ Dαβ
2 . . . . Dαβ

R

Kαβ
2 . . . . Kαβ

R

Hαβ
2,3 . . . Hαβ

2,R

. . . . . .

Hαβ
R−1,R

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(32)
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where s(x, x) = s(y, y) = 1/4(−)R(R+1)/2,

Ixxµ,ν = 〈Al+µ(t)Al+ν(t)〉⇓

Jxx
µ = Ixxµ,R

Hxx
µ,ν = 〈Bl+µ−1(t)Bl+ν−1(t)〉⇓

Kxx
ν = Hxx

1,ν

Gxx
µ,ν = 〈Al+µ(t)Bl+ν−1(t)〉⇓

F xx
µ = Gxx

µ,1

Exx = Gxx
R,1

Dxx
ν = Gxx

R,ν



































































































(33)

Iyyµ,ν = 〈Al+µ−1(t)Al+ν−1(t)〉⇓

Jyy
µ = Iyyµ,R

Hyy
µ,ν = 〈Bl+µ(t)Bl+ν(t)〉⇓

Kyy
ν = Hyy

1,ν

Gyy
µ,ν = 〈Al+µ−1(t)Bl+ν(t)〉⇓

F yy
µ = Gyy

µ,1

Eyy = Gyy
R,1

Dyy
ν = Gyy

R,ν



































































































(34)

and s(x, y) = s(y, x) = −i /4(−)R(R−1)/2,

Ixyµ,ν = 〈Al+µ(t)Al+ν(t)〉⇓

Gxy
µ,ν = 〈Al+µ(t)Bl+ν (t)〉⇓

Jxy
µ = Gxy

µ,0

F xy
µ = Gxy

µ,1

Hxy
µ,ν = 〈Bl+µ(t)Bl+ν(t)〉⇓

Exy = Hxy
0,1

Dxy
ν = Hxy

0,ν

Kxy
ν = Hxy

1,ν



































































































(35)
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Iyxµ,ν = 〈Al+µ−1(t)Al+ν−1(t)〉⇓

Gyx
µ,ν = 〈Al+µ−1(t)Bl+ν−1(t)〉⇓

Jyx
µ = Iyxµ,R

F yx
µ = Iyxµ,R+1

Eyx = IyxR,R+1

Dyx
ν = Gyx

R,ν

Kyx
ν = Gyx

R+1,ν

Hyx
µ,ν = 〈Bl+µ−1(t)Bl+ν−1(t)〉⇓



































































































(36)

We note that a Pfaffian P can be written (up to a sign) as a determinant of the corresponding antisymmetric matrix
A of dimension 2R × 2R [22] by [pfP ]2 = detA. Since the c-vacuum is transactional invariant this determinant is
again of Töplitz type. Therefore, also here the asymptotics of the correlation functions could be extracted explicitly
along the lines depicted in [7].

B. Matrix elements for excitations of the vacuum

We now want to concentrate on expectation values for states which are not the vacuum. So let C† and C′† be linear
functionals in the creation and annihilation operators and let us calculate

〈C|Ψ1 · · ·Ψ2R |C′〉 := 〈0| CΨ1 · · ·Ψ2RC′† |0〉 (37)

Performing all possible contractions in (37), we obtain 〈0| CC′† |0〉 〈0|Ψ1 · · ·Ψ2R |0〉 + all possible contractions where

C and C′† are contracted with a pair of field operators, say Ψi and Ψj. Thus we have to calculate

P̃i,j := 〈C|Ψi |0〉 〈0|Ψj |C′〉 − 〈C|Ψj |0〉 〈0|Ψi |C′〉 , (38)

where we take i < j in order to avoid double counting of contractions. The sign coming from transporting the operators

C and C′† to the left of Ψi and the right of Ψj respectively is (−)i+j+1. In the remaining vacuum expectation value
the field operators Ψi and Ψj are missing, which corresponds to canceling the rows i and j in the original Pfaffian

(24). Consequently, this expectation value is the minor Pfaffian P̂−→
i,j
, and we obtain

〈C|Ψ1 · · ·Ψ2R |C′〉 := P2R +
2R−1
∑

i=1

2R
∑

j=i+1

(−)i+j+1P̃i,jP̂−→
i,j

=

= P2R +

2R−1
∑

i=1





i−1
∑

j=1

(−)i+j+10 · P̂−→
i,j

+

2R
∑

j=i+1

(−)i+j+1P̃i,j P̂−→
i,j





We note that this expression is the sum over Pfaffian expansions (25). Indeed, each element of the first sum is the

expansion of a Pfaffian along the i-th row, in which Pj,i = 0 and Pi,j → P̃i,j , hence

〈C|Ψ1 · · ·Ψ2R |C′〉 :=
2R−1
∑

i=0

P(i)
2R , (39)

where we defined

P(0)
2R := P2R

7



and

P(i)
2R := | P1,2 . . . 0 P1,i+1 . . . P1,2R

. . . . . . . . . . . . . . .
0 Pi−1,i+1 . . . Pi−1,2R

P̃i,i+1 . . . P̃i,2R

. . . . . .
P2R−1,2R

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(40)

Actually, we found the correlations 〈C|Sα
l S

β
m|C′〉 expressed as a sum of Pfaffians. The generalization to operators

C† that are multi-linear in the annihilation and creation operators can be related to a sum of multi-row expanded
Pfaffians [23].
In what follows, we will come back to the cases of the ground state and the c-vacuum, discussed in the previous

section. As mentioned, in order to be able to explicitly extract the asymptotics of the correlations, the initial and
final state have to be transactional invariant. In the following, the translational invariance is explicitly broken.

1. Single hole excitations on the ground state

We choose the final and initial state to be 〈C| = 〈g| c†j/
√
B0 =: 〈j| and |C′〉 = ck |g〉 /

√
B0 =: |k〉, which is normalized

due to 〈g| c†jck |g〉 = Bk−j . Then we have to calculate

〈AlBm〉jkg
.
= 〈j|Al |g〉 〈g|Bm |k〉 − 〈j|Bm |g〉 〈g|Al |k〉

In this case we find

〈AlBm〉jkg =
BZj−lBZ

∗
m−k +BZm−jBZ

∗
k−l

B0
(41)

〈AlAm〉jkg =
BZ

∗
k−mBZj−l −BZ

∗
k−lBZj−m

B0
(42)

〈BlBm〉jkg = −
BZ

∗
m−kBZl−j −BZ

∗
l−kBZm−j

B0
, (43)

The contraction of C with C′ is

〈0| CC′ |0〉 = Bk−j

B0
(44)

We now discuss the correlation functions
〈

Sα
l S

α
l+R

〉

. The only non-zero contributions come from contractions of C
and C′ with one operator of type A and one of type B (since only vacuum expectations of an equal number of A’s
and B’s are non-zero as discussed before). That means that here the sum of Pfaffians simplifies to the following sum
of determinants

〈Sα
l S

α
l 〉 =

R
∑

i=1

D(i)
R

with

D(i)
R = (−1)R

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

Gαα
1,1 . . . Gαα

1,R

. . . . . . . . .

G̃αα
i,1 . . . G̃αα

i,R

. . . . . . . . .
Gαα

R,1 . . . Gαα
R,R

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(45)

with

Gxx
µ,ν = 〈Al+µBl+ν−1〉g (46)

G̃xx
µ,ν = 〈Al+µBl+ν−1〉jkg (47)

Gyy
µ,ν = 〈Al+µ−1Bl+ν〉g (48)

G̃yy
µ,ν = 〈Al+µ−1Bl+ν〉jkg (49)
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Analogously, for the correlation functions
〈

Sx
l S

y
l+R

〉

and
〈

Sy
l S

x
l+R

〉

the only non-zero contributions come from con-
tractions of C and C′ with two operators of type B and two of type A, respectively. This again simplifies the sum of
Pfaffians to a sum of determinants

〈Sx
l S

y
l 〉 =

R
∑

i=1

P(i)
2R ,

where

P(i)
2R = | 0 . . . 0 Gxy

1,1 . . . . 0 Gxy
1,i+1 . . . . Gxy

1,R+1

. . . . . . . . . . . . . . . . . .
0 Gxy

R−2,1 . . . . . Gxy
R−2,i+1 . . . . .

Gxy
R−1,1 . . . . 0 Gxy

R−1,i+1 . . . . Gxy
R−1,R+1

0 . . . 0 0 . . . . 0
. . . . . . . . . .

0 0 . . . . 0

H̃xy
i,i+1 . . . . H̃xy

i,R+1

0 . . . 0
. . . .

0

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(50)

and this simplifies to

〈Sx
l S

y
l 〉 =

R
∑

i=1

D(i)
R

with

D(i)
R = (−1)R

∣

∣

∣

∣

∣

∣

∣

∣

Gxy
1,1 . . . Gxy

1,i−1 Gxy
1,i+1 . . . Gxy

1,R+1

. . . . . . . . . . . . . . .
Gxy

R−1,1 . . . Gxy
R−1,i−1 Gxy

R−1,i+1 . . . Gxy
R−1,R+1

0 . . . 0 H̃xy
i,i+1 . . . H̃xy

i,R+1

∣

∣

∣

∣

∣

∣

∣

∣

(51)

with

Gxy
µ,ν = 〈Al+µBl+ν−1〉g (52)

H̃xy
µ,ν = 〈Bl+µ−1Bl+ν−1〉jkg (53)

In an analogous way we find

〈Sy
l S

x
l 〉 =

R
∑

i=1

D(i)
R

with D(i)
R defined as in (51), but

Gxy
µ,ν = 〈Al+ν−1Bl+µ〉g (54)

H̃xy
µ,ν = 〈Al+µ−1Al+ν−1〉jkg (55)

2. Single particle excitations on the ground state

Alternatively we consider 〈C| = 〈g| cj/
√
A0 =: 〈j| and |C′〉 = c†k |g〉 /

√
A0 =: |k〉 as final and initial state, which are

again normalized according to 〈g| c†jck |g〉 = Ak−j . In this case the possible contractions with the operators C and C′

are
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〈AlBm〉jkg = −
AZk−lAZ

∗
m−j + AZm−kAZ

∗
j−l

A0
(56)

〈AlAm〉jkg =
AZ

∗
j−mAZk−l − AZ

∗
j−lAZk−m

A0
(57)

〈BlBm〉jkg = −
AZ

∗
m−jAZl−k − AZ

∗
l−jAZm−k

A0
, (58)

The contraction of C with C′ is here

〈0| CC′ |0〉 = Ak−j

A0
(59)

3. Single particle excitations on the c-vacuum

We take the final and initial state to be 〈C| = 〈0| cj =: 〈j| and |C′〉 = c†k =: |k〉. In this case the Pfaffian P i
2R is

given by Eqs. (32)–(36), where (following Eq. 40) in the i-th row

〈⇓|AlBm |⇓〉 −→ 〈AlBm〉jk⇓
are replaced with

〈AlBm〉jk⇓
.
= 〈j|Al |⇓〉 〈⇓|Bm |k〉 − 〈j|Bm |⇓〉 〈⇓|Al |k〉

and in the same manner 〈⇓|AlAm |⇓〉 −→ 〈AlAm〉jk⇓ , 〈⇓|BlBm |⇓〉 −→ 〈BlBm〉jk⇓ . We find

〈Al(t)Bm(t)〉jk⇓ = −
(

µm−jµ
∗
k−l + µj−lµ

∗
m−k

)

(60)

〈Al(t)Am(t)〉jk⇓ = µj−lµ
∗
k−m − µj−mµ∗

k−l (61)

〈Bl(t)Bm(t)〉jk⇓ = µm−jµ
∗
l−k − µl−jµ

∗
m−k . (62)

With these results, all spin-correlation functions can be calculated as long as 〈C|Sx
l (t = 0) |C′〉 = 〈C|Sy

l (t = 0) |C′〉 = 0.
In this case it will remain zero during the evolution. This is satisfied if the parity symmetry of the Hamiltonian is
not broken by neither the initial nor the final state.

V. CONCLUSIONS

We calculated exactly spin-spin correlations out of equilibrium. For excitations on the “vacuum”, they can be written
as a sum of Pfaffians. For excitations on the ground state these Pfaffians reduce to determinants (see Eqs. (39), (40)).
The result for particle and hole excitations on the ground state and the c-vacuum were based on different approaches,
writing the fermionic field operators in the Schrödinger and Heisenberg picture, respectively. Comparing with the
known eigenstate correlations, we remark that here 〈Sα

l S
α
l+R〉 cannot be reduced to R×R Töplitz determinants. For

the vacuum-correlation functions the Pfaffians instead, they can be related to 2R × 2R Töplitz determinants. For
correlation functions in excited states (of the vacuum) the translational invariance of the system is explicitly broken
and then the determinants are not anymore of Töplitz type. This last issue constitutes a further difficulty of the
problem to find the asymptotics of the correlations since the Szegö theorem cannot be applied.
We have used these results explicitly for studying the dynamics of correlations and quantum information theoretic

quantities like the entanglement in specific states [19] but is also a key ingredient for the study of transport properties
of the system. One possible application of the exact results we found here is to study the quantum phase transitions
(characteristic of this class of models) out of equilibrium.
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