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We study the relaxation dynamics of a Hamiltonian system of N fully-coupled XY spins. The
thermodynamics of the system predicts a ferromagnetic and a paramagnetic phase. Starting from
out-of-equilibrium initial conditions, the dynamics at constant energy drives the system into quasi-
stationary states (QSS) characterized by dynamical frustration. We introduce the spin polarization
as a new order parameter which allows to interpret the dynamically generated QSS regime as a
glassy phase of the model.
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The Hamiltonian Mean Field (HMF) model, originally
introduced in Ref.[1], has been intensively studied in the
last years for its extreme richness and flexibility in explor-
ing the connections between dynamics and thermody-
namics in long-range many-body systems. In fact, on one
hand the model has an exact equilibrium solution, on the
other hand, because of the presence of a kinetic energy
term in the Hamiltonian, the dynamics can be studied
by means of molecular dynamics simulations [1, 2, 3, 4].
From these investigations, many new interesting features
have emerged which are common to other systems with
long-range interactions [5, 6, 7]. One of the most intrigu-
ing characteristics of the dynamics is the existence of
quasi-stationary states (QSS), i.e. dynamically-created
states, whose lifetime diverges with the system size N
[8]. In such states anomalous diffusion [3], non-Gaussian
velocity distributions [8], vanishing Lyapunov exponents
[8], ergodicity breaking and slow-decaying correlations
[9, 10] have been observed. These features have sug-
gested a possible application of Tsallis generalized ther-
modynamics [8, 11, 12, 13, 14].

In this paper we show that the HMF model in the QSS
regime behaves similary to a glassy system. In fact, by
means of a new order parameter, it is possible to char-
acterize the dynamically generated QSS as a thermody-
namics glassy phase of the model, despite the fact that
neither disorder nor frustration are a-priori present in
the interaction. The main idea of the paper originated
from the observation of slow relaxation and aging [9, 10]
in the QSS regime. Such a behavior is typical of frus-
trated systems, whose prototype are spin-glasses [15]: in
these systems, the impossibility to minimize simultane-
ously the interaction energies of all the couples of spins
leads the system to a very complex energetic landscape.
One might imagine it as consisting of large valleys sep-
arated by high activation energies. Each valley contains
many local minima, i.e. metastable states, in which the
system, after quenching in his low-temperature phase,
can remain trapped for a very long time, showing those
strong memory effects better known as aging behavior.

The HMF model describes a system of N fully-coupled

classical XY spins [1]:

✲

si= (cos θi, sin θi) i = 1, ..., N . (1)

The equations of motion derive from the following Hamil-
tonian:

H =

N
∑

i=1

pi
2

2
+

1

2N

N
∑

i,j=1

[1− cos(θi − θj)] , (2)

where θi (0 < θi ≤ 2π) is the angle and pi the respec-
tive conjugate variable representing the rotational veloc-
ity (the mass is set equal to 1) of spin i. If we associate
a particle, moving on the unit circle, to each spin, the
model can be seen as a system of fully-coupled rotators.
Though the division of the potential by a factor N (the
so-called Kac’s prescription) makes the Hamiltonian for-
mally extensive [4], the latter remains nonadditive due
to the long-range nature of the interaction [12].
The equilibrium solution of the model in the canonical

ensemble predicts a second-order phase transition from a
high temperature paramagnetic (PA) phase to a low tem-
perature ferromagnetic (FE) one [1]. The critical temper-
ature is Tc = 0.5 and corresponds to a critical energy per
particle Uc = Ec/N = 0.75. The order parameter of this
phase transition is the modulus of the average magneti-

zation per spin defined as: M = 1

N |
∑N

i=1

✲

si | . Above
Tc, in the PA phase, the spins point in different directions
and M ∼ 0. Below Tc, in the FE phase, all the spins are
aligned (the rotators are trapped in a single cluster) and
M 6= 0.
The molecular dynamics simulations at constant en-

ergy (microcanonical ensemble) reveals interesting prop-
erties in the energy range U = 0.5− 0.75. In fact, start-
ing from of out-of-equilibrium initial conditions [17], the
system has an extremely slow relaxation to the equilib-
rium and show the presence of meta-equilibrium quasi-

stationary states (QSS) with the following properties:
1) The temperature (calculated from the average ki-

netic energy) and the magnetization assume costant val-
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ues for a time τQSS . Such values are different from the
equilibrium ones and depend on the number of spins N .

2) For large N , M vanishes (as N−1/6) and T tends
to an energy-dependent value so that the QSS lie on the
extension for T < Tc of the high-temperature branch of
the caloric curve.

3) τQSS grows linearly with the system size N [2]. For
this reason the QSS regime can be interpreted as the true
equilibrium if the thermodynamic limit is taken before
the infinite-time limit [8].

4) The QSS are characterized by non-Gaussian velocity
distributions [8], Lévy walks and anomalous diffusion [3].

5) The largest Lyapunov exponent vanishes and the
system lives in a restricted part of the a-priori accessible
phase space. Such a weak-mixing dynamics suggests a
connection with the Tsallis generalized thermodynamics
[8], but also the possibility of framing the QSS within the
so-called weak-ergodicity breaking scenario [21], typical of
glassy systems.

The last point has been recently corroborated by the
discovery of aging in the QSS regime [9, 10]. In the fol-
lowing we show how the analogy with glassy systems and
the weak ergodicity breaking scenario can be made more
stringent [16] by the introduction of a new order param-
eter inspired by the microscopic dynamics of spin-glass
models.

The materials that originally were called spin-glasses

are alloys formed by a noble metal support (gold, sil-
ver, copper) containing randomly distributed magnetic
impurities (iron or manganese). Such a configuration
determines a random distribution (’quenched disorder’)
of the interactions: according to the distance between
each pair of spins, the interaction among them may be
either ferromagnetic or anti-ferromagnetic, thus gener-
ating frustration. The first theoretical spin-glass model
was the short-range Edwards-Anderson (EA) model [18].
However, the first solvable one was the Sherrington-

Kirkpatrick (SK) model [19], where the spins are coupled
by infinite-ranged interactions independently distributed
according to a Gaussian. Depending on the tempera-
ture and the parameters of the Gaussian distribution,
the SK model shows three different phases, namely ferro-
magnetic (FE), paramagnetic (PA) and spin-glass (SG).
Since the magnetization M vanishes in the SG phase as
well as in the PA one, an additional order parameter
qEA - called EA order parameter - was proposed [18, 19]
in order to discriminate between spin-glass disorder and
paramagnetism. The physical meaning of this order pa-
rameter is that one of quantifying the degree of freezing
in the SG phase. In fact the three phases are character-
ized by a different microscopic behavior. In order to get
an intuitive picture of this behavior, let us imagine to
take some snapshots of the spins configuration in each of
the three phases [20]. If a snapshot is taken at one par-
ticular time, one easily would be able to recognize the
FE phase, since all the spins are aligned and frozen in
their equilibrium position. However it would be impos-
sible to distinguish between the PA and the SG phase.

In fact in both of these phases the orientations of spins
are random, due to the high thermal noise for the PA
phase and to the quenched spatial disorder for the SG
phase. The discrimination between these two phases is
possible only if one takes a temporal sequence of snap-
shots. In fact in the PA phase the orientation of each spin
at successive instants of time would be random, so the
sequence of snapshots shows every time a different spa-
tial configuration. On the other hand in the SG phase
all the snapshots are identical, since each spin is frozen
and retains the same orientation over very long periods
of time.
As previously discussed, the HMF model at equilib-

rium has only two phases (PA and FE). The main goal of
this paper is to show that the dynamically generated QSS
can be interpreted as a glassy phase of the model. For
this reason, inspired by the arguments described above,
we propose to introduce a new order parameter, the av-

erage polarization p, in order to measure the extent of
freezing of the system. The physical meaning of p is re-

lated to the elementary polarizations
✲

pi, i.e. the time
averages of the successive positions of each elementary
spin vector, defined as:

✲

pi=<
✲

si (t) >=
1

τ

∫ τ

0

✲

si(t)dt i = 1, ..., N (3)

The average polarization is then obtained averaging the
modulus of the elementary polarization over all the rota-
tors:

p =
1

N

N
∑

i=1

|
✲

pi | . (4)

Such a new order parameter has to be compared to M ,
the modulus of the average magnetization, calculated as:

M =< M(t) >=
1

τ

∫ τ

0

M(t) dt , M(t) =
1

N

∣

∣

∣

∣

∣

∣

N
∑

i=1

✲

si(t)

∣

∣

∣

∣

∣

∣

.

(5)
In the FE phase each elementary polarization vector co-
incides with the correspondent spin vector, both being
frozen and parallel, then the average polarization p keeps
a non zero value equal to M . In the PA phase the ori-
entation of each spin vector at every time is completely
random, so this continuous motion yields a zero value
both for M and p. On the other hand, if the QSS corre-
spond to a glassy-like phase of the model, we expect to
find a zero value for M , as in the PA phase, and a non
zero value for p, as in the FE one. All these features are
summarized in Table 1.

In fig.1 we show the modulus of the elementary polariza-
tion for each spin i. We consider a system of N = 1000
spins and different energy densities. The values of the
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TABLE I: Values of M and p in the three phases of the HMF
model

M p

Ferromagnetic phase (FE) 6= 0 6= 0
Paramagnetic phase (PA) 0 0
Glassy phase 0 6= 0
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FIG. 1: The modulus of the elementary polarization |
✲

pi

| = | <
✲

si (t) > | for a system with N = 1000 and different
energies. The values of the average polarization p (dashed
lines) and magnetization are also reported for comparison.
Note that only for U = 0.5 and U = 0.69 we are in the QSS
regime. In the other cases the system is at equilibrium

average polarization p and the average magnetization M
are also reported in figure. In the simulation we have per-
formed, the time averages of p and M are evaluated over
an opportune time interval τ < τQSS , in order to stay
inside the temperature plateau for those energy values
where the QSS regime appears (U = 0.5 and U = 0.69).
In particular we have used τ = 2000 and a transient of
1000 time units. The results do not depend significa-
tively on τ . As usual in molecular dynamics simulations,
in order to make our results independent from the specific
dynamical realization, we have also taken averages over
a set of different realizations (events) of the same out-
of-equilibrium initial conditions. As expected the two
parameters p and M coincide and are close to 1 at low
energy, e.g. U = 0.1, while both of them tend to zero
for U above the critical value Uc = 0.75. The situation
is different for U = 0.5 and for U = 0.69, two energies
at which the QSS appear. In these cases the values of p
and M are different: for N = 1000 we have respectively
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U=0.69               QSS regime

FIG. 2: We plot the values of the polarization p and the
magnetization M calculated in the QSS regime for U = 0.69
as a function of the size N of the system. While p assumes a
constant value ∼ 0.24 ± 0.02, M decreases as N−1/6.
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FIG. 3: For N = 10000, we show the polarization p and mag-
netization M vs energy per particle U once the equilibrium
regime has been reached.

p = 0.67, M = 0.63 and p = 0.24, M = 0.20. We have
checked that the difference between p and M increases
with the system size N . In particular for large N , in
the QSS regime, we expect a vanishing average magne-
tization M and an average polarization p different from
zero.

In fig.2 we study the behavior of p and M with the size of
the system. We report only the case U = 0.69 where the
anomalous effects of QSS are more evident. As expected,
whileM vanishes asN−1/6, p is independent ofN (within
the error) and equal to 0.24± 0.02.
Finally in fig.3 we consider a system with N = 10000

and we compare magnetization M and polarization p at
equilibrium for different energies. In order to let the sys-
tem reach equilibrium for the energy range 0.5 ≤ U ≤ Uc

we ran the simulations for a time much larger than τQSS .
In this way every trace of metastability, and consequently
also of the glassy phase behavior, disappears. The nu-
merical values of M and p reported in figure coincide,
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in agreement with the previous statement about equiva-
lence between M and p in the pure FE and PA phase.
Our numerical results support the interpretation of the

QSS regime as a dynamically-created glassy phase of the
HMF model. In the QSS regime the simulations show
the formation of a dynamical clustering [10]. The ro-
tators feel the attraction of the dynamically-generated
clusters in competition within each other. Each rota-
tor remains trapped in a cluster for a while and then
eventually succeed in escaping from it [22]. This is also
the cause of the anomalous diffusion and Lévy walks ob-
served in Ref.[3]. Such a competition between the dif-
ferent clusters in the QSS regime therefore realizes a dy-
namical frustration that slows down the dynamics and
prevents the system from exploring all the potentially
available phase space. Such a behavior is also related to
the aging phenomenon observed in refs. [9, 10] and can
be interpreted in the framework of the weak-ergodicity
breaking scenario [21]. When, at the end of the QSS
regime, the system relaxes to the equilibrium of the pure
FE phase, all the rotators concentrate in a single cluster

which rotates with the same phase of the average mag-
netization vector, i.e. φ = tan−1(My/Mx) [23], and all
the anomalies disappear.
In conclusion the results of this paper show that the

most remarkable features of the long-range HMF model,
namely the dynamically-generated metastable states, can
be interpreted as a thermodynamical glassy phase of the
model. If the system is started sufficiently far from equi-
librium, the long-range character of the interaction pro-
duces dynamically a very complex configurational land-
scape typical of glassy systems. We have introduced the
polarization p as a new order parameter to character-
ize the degree of freezing of the spins due to the pres-
ence of the dynamical competition among clusters in the
metastable state. Considering that the HMF model is
paradigmatic of a large class of long-range Hamiltonian
systems, it seems very interesting to search for further
connections with glassy dynamics, which likely could help
understanding some of the open problems in this field.
We thank M. Mezard, P. Grigolini and S. Ruffo for

their useful comments.
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