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Abstract

In this paper, we investigate the so-called “Sznajd Model” (SM) in one dimension, which

is a simple cellular automata approach to consensus formation among two opposite opinions

(described by spin up or down). To elucidate the SM dynamics, we first provide results of

computer simulations for the spatio-temporal evolution of the opinion distribution L(t), the

evolution of magnetization m(t), the distribution of decision times P (τ) and relaxation times

P (µ).

In the main part of the paper, it is shown that the SM can be completely reformulated

in terms of a linear VM, where the transition rates towards a given opinion are directly pro-

portional to frequency of the respective opinion of the second-nearest neighbors (no matter

what the nearest neighbors are). So, the SM dynamics can be reduced to one rule, “Just fol-

low your second-nearest neighbor”. The equivalence is demonstrated by extensive computer

simulations that show the same behavior between SM and VM in terms of L(t), m(t), P (τ),

P (µ), and the final attractor statistics.

The reformulation of the SM in terms of a VM involves a new parameter σ, to bias

between anti- and ferromagnetic decisions in the case of frustration. We show that σ plays a

crucial role in explaining the phase transition observed in SM. We further explore the role of

synchronous versus asynchronous update rules on the intermediate dynamics and the final

attractors. Compared to the original SM, we find three additional attractors, two of them

related to an asymmetric coexistence between the opposite opinions.

1 Introduction

The old wisdom still holds: if a single person finds a particular case important, this does not

matter too much – but already if two persons are convinced of its importance, they have a

good chance to convince others. This can be simulated by means of a cellular automaton (CA)

¶Corresponding author: schweitzer@ais.fraunhofer.de
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model of consensus formation, meanwhile well known as Sznajd model (abbreviated as SM from

now on). It is named after the two Polish authors, Katarzyna Sznajd-Weron and her father

Józef Sznajd, who in 2000 published a paper on “opinion evolution in a closed community” [38].

Interestingly, the dynamics of convincing others can be applied to the adoption of the SM in the

scientific community itself. The paper and the rather simple model (discussed in Sect. 2) would

problably not have gained so much attention without at least one other person confident about its

importance. It was Dietrich Stauffer [34, 35, 36, 37], who, after being influenced by the positive

response of his collaborators, started to propagate the SM in various scientific communities:

physicists, social scientists, computer scientists – and this way persuaded “neighboring” scientists

[4, 5, 6, 10, 20, 25, 30] to play with it (including the authors of this paper). So the SM –

which the original authors called USDF model : “united we stand, divided we fall” – attracted

a lot of interest. In particular, the dynamics, originally given for the one-dimensional lattice,

was generalized to higher dimensions [5, 37]. Bernardes et al. [4] used the SM to explain the

distribution of political votes and in [5] applied it, together with a Barabasi network, to the

Brazilian elections. In [10], the SM was also applied to small-world networks. Other applications

deal with financial markets [39], with aspects of statistical physics, such as correlated percolation

[20], and with different geometries [6].

While we on one hand are allured by the complex intermediate dynamics of this rather simplistic

model, our interest in this subject is mainly driven by the question: Is there anything new in the

SM? I.e., in what respect is the SM different from other CA models dealing with local adoption

processes?

In fact, ever since CA started to invade the social sciences in the 1950’s, lots of different CA-based

models were proposed to describe spatial structure formation in social systems [1, 12, 13, 22, 26,

28, 29, 33]. One well established model class is known as the voter model (abbreviated as VM

from now on). It is based on the idea that the adoption of a given “opinion” (behavior, attitude)

depends on the frequency of that opinion in the neighborhood. In the linear VM, the transition

rate of adopting an opinion is directly proportional to the given frequency, in non-linear VM

also other frequency dependencies (e.g. voting against the trend) are taken into account. VM

with positive frequency dependence (i.e. majority voting rules) can be considered as a simple

prototype for modeling herding behavior – a phenomenon widely known in biology, economy

and the social sciences. In a special class of non-linear VM, the non-linearity may result from

certain economic or social considerations, for example from a payoff matrix. Hence, as long as

the adoption dynamics depend on the (local) frequency, even applications in population biology

or evolutionary game theory can be treated as a non-linear VM.

In addition to earlier work on mathematical analysis on VM [15], spatial VM have been recently

investigated by means of CA concepts [7, 8, 9, 14, 19]. In our own work [3, 32], we were partic-

ularly interested in spatio-temporal pattern formation in one- and two-dimensional VM. Based
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on theoretical investigations of the microscopic CA dynamics, we were able derive approxima-

tions for time-dependent macroscopic quantities, such as frequencies or spatial correlations, and

critical parameters for phase transitions. A comparison of these results with the CA simulations

showed a good agreement. Other investigations of the macroscopic VM dynamics by means of

either pair approximation or Markov models can be found in [2, 11, 17, 18, 27].

Application of the non-linear voter dynamics to the local adoption of successful strategic be-

havior (such as to cooperate or to defect) revealed phase diagrams for specific spatial patterns

(formation of small clusters and spatial domains, front dynamics) [31]. Similar work on the

spatial adoption of game-theoretical strategies has been done in [16, 21, 23, 24].

So, given the extensive work done on VM, the question addressed in this paper is about connec-

tions between VM and SM. Evidently, both models deal with local adoption processes, but an

in-depth analysis of SM is still lacking. If we could reveal – as we will do in this paper – that

SM is just a special case of VM, then many of the techniques and results obtained earlier for

linear and non-linear VM can be applied to SM, thus providing us with a wealth of analytical

understanding of the SM dynamics. Hence, to appreciate the ideas behind the SM, we should

also understand how the SM is related to the existing classes of CA models on consensus forma-

tion and what the difference are. To find this out, we start in Sect. 2 with a brief description of

the SM and present computer simulations in one dimension. In Sect. 3, we reformulate the SM

in terms of a VM, to show that the SM is in fact a linear VM. In Sect. 4, we further explain the

nature of the phase transitions observed in SM by means of an external parameter, σ. In Sect. 5

we investigate the influence of two different update rules (asynchronous vs. synchronous) on the

intermediate dynamics and the stationary states. We also show some new results on consensus

formation with asymmetric coexistence. In Sect. 6, we conclude with some hints about further

research.

2 Dynamics of the SM

2.1 Rules of the SM Game

In their original paper, Sznajd-Weron and Sznajd [38] proposed a one-dimensional Ising spin

model with periodic boundary conditions where each spin (or lattice site) i = 1, ..., N can have

be found in one of two states, θi ∈ {−1,+1} or {−,+} for short, which in the context of opinion

formation shall refer to two opposite opinions (see Fig. 1).

For the spin interaction of neighboring spins, the following two rules are proposed:

Rule 1: If two consecutive lattice sites have the same opinion, (either +1 or -1), i.e. if θiθi+1 = 1,

then the two neighbouring sites {i−1} and {i+2} will adopt the opinion of the pair {i, i+1},
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• •θiθi−1 θi+1θi−2 θi+2

Figure 1: One-dimensional CA, where each lattice site i = 1, ..., N can have one out of two

opinions, θi ∈ {−1,+1} or {−,+} for short. In the SM, the opinions θi−1 and θi+2 depend on

the opinions of the pair θi, θi+1 as described by rules 1, 2.

i.e. θi−1 = θi+2 = θi = θi+1. This rule refers to ferromagnetism.

Rule 2: If two consecutive lattice sites have a different opinion, (either +1 or -1), i.e. if

θiθi+1 = −1, then the two neighbouring sites {i− 1} and {i + 2} will adopt their opinion

from the second nearest neighbors as follows: θi−1 = θi+1, θi+2 = θi. This rule refers to

anti-ferromagnetism.

A deterministic dynamics is considered here, i.e. the rules apply with probability one – which

is similar to an Ising system at temperature T = 0. But there is still randomness in the system

in the sense that (i) there is an inital random distribution of the opinions with the mean values

of the frequencies f+1 = f−1 = 0.5, and (ii) during the computer simulations, the site i for the

next step is chosen randomly, i.e. the dynamics is governed by a random sequential update, or

asynchronous update.

We further note that in the SM two spins are flipped at a time. With the two rules above, we

find the following possible transitions in a neighborhood of n = 4:

θi−1 θi θi+1 θi+2 → θi−1 θi θi+1 θi+2 rule

? + + ? + + + + (1)

? − − ? − − − − (1)

? + − ? − + − + (2)

? − + ? + − + − (2)

(1)

It has been established through micro-simulations that the one-dimensional SM for any random

initial configuration asymptotically reaches one of three possible attractors, two of which refer

to ferromagnetism and one to anti-ferromagnetism. These possible attractors are reached with

different probability:

• attractor ferro+: {+ + + + + + + + +} with probability p = 0.25

• attractor ferro−: {− − −−−−−−−} with probability p = 0.25

• attractor anti-ferro: {− + − + − + − + −+} with probability p = 0.5
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In order to verify these probabilities, let us consider a lattice of size N with periodic boundary

conditions and an initial random distribution of + and −. Then, the number of consecutive

pairs, {i, i + 1} is also N , and the initial probability of finding either a ferromagnetic or an

anti-ferromagnetic pair adds up to 0.5, i.e.,

pf = p++ + p−− = 0.5 ; paf = p−+ + p+− = 0.5 ; pf + paf = 1 (2)

Under these conditions, what is the probability to find ferromagnetic and anti-ferromagnetic

pairs in the course of time? During the first q steps, we may assume that the initial distribution

is not changed much by the dynamics, i.e. eq. (2) remains valid and the probabilities are given

by the binomial distribution:
q

∑

k=0

(

q

k

)

pkaf p
q−k
f = 1 (3)

If during the first q steps more than q/2 antiferrormagnetic pairs are selected, then paf increases

since each selection will lead to two new antiferromagnetic pairs. The case of ferromagnetic pair

selection can be treated similarly. For q being an even number, the probability is then given by:

q
∑

i=(q/2)+1

(

q

k

)

pkaf p
q−k
f +

1

2

(

q

q/2

)

p
q/2
af p

q/2
f = 0.5 (4)

where the first term denotes the probability of selecting more than q/2 anti-ferromagnetic pairs

(favoring anti-ferromagnetism) and the second term denotes the probability of selecting exactly

q/2 pairs (favoring both ferro- and anti-ferromagnetism with probability 0.5). Thus, we can

conclude that the probability for the system to reach the anti-ferromagnetic attractor is given

by 0.5, eq. (4).

Equation (4) is valid as long as pf = paf = 0.5, i.e. for t ≤ q. After the initial time lag,

the symmetry is broken and the system dynamics goes towards one of the possible anti- or

ferromagnetic attractors with probability one.

2.2 Results of SM Computer Simulations

In this section, we show some results of computer simulations of the one-dimensional CA, using

the asynchronous update rule. The results are basically known, but we present them here to

allow for a comparison with the voter model in the following sections. Fig. 2 and Fig. 3 show

the spatio-temporal evolution of the opinion distribution for the two different attractors and the

respective magnetization curves over time, m(t). The magnetization gives a measure for reaching

the attractor and is defined as:

m(t) = f+ − f− ; f+ =
1

N

N
∑

i

δ+1;θi ; f− = 1 − f+ (5)
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and δ+;θi is the Kronecker delta, which is 1 only if θi = +1 and zero otherwise.

0 20 40 60 80 100
t

-1

-0.5

0

0.5

1

m

Figure 2: Evolution of the one-dimensional lattice (left) and magnetization m (right) vs time

in Monte-Carlo steps. At intermediate times, both anti-ferromagnetic stripes and ferromagnetic

domains coexist, but asymptotically, the consensus attractor is reached. (N = 100, asynchronous

update according to the Sznajd rules, eq. (1), dark gray dots indicate state −1, light gray dots

state +1.)

In Fig. 4(left) we present the distribution P (τ) of decision times τ introduced in the original

paper [38] as the time needed by an “individual” to change his/her opinion. I.e., τ is a measure of

how frequently the opinion of a particular individual changes, if it is selected by the asynchronous

dynamics (which is apparently not at every flip, but on average once during one Monte-Carlo

step). The power-law behavior P (τ) ∝ τ−1.5, already found in [38] can be clearly observed in

Fig. 4.

Finally, in Fig. 4(right) we also present the distribution P (µ) of relaxation times µ into one of

the possible attractors. The bin size for the histogram has been chosen as 2n+1−2n, to allow for

comparison with [37]. We find that the distribution has its maximum at about 250 MC steps,

which means that an average simulation with a CA of N = 100 needs about this much time.

But, deviations from this mean value follow approximately a log-normal distribution, as shown

in Fig. 4(right). This agrees with the finding of Stauffer for a two-dimensional CA (for rules IIc

and III) [37].
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Figure 3: Evolution of the one-dimensional lattice (left) and magnetization m (right) vs time in

Monte-Carlo steps. Asymptotically, the coexistence attractor (or stalemate, antagonistic attrac-

tor) is reached. (Same parameters as in Fig. 2, but different random numbers)

10
0

10
1

10
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τ
10
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10
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10
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τ−1.5

10
1

10
2

10
3

10
4

µ
10

0

10
1

10
2

10
3

10
4

10
5

P
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)

Figure 4: (Left) Distribution of decision times P (τ) averaged over 200 simulations, (right) dis-

tribution P (µ) of relaxation times µ averaged over 100.000 simulations. (N = 100, asynchronous

update according to the Sznajd rules, eq. (1))
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3 Reformulation of the SM in terms of a VM

3.1 Rules of the VM Game

Generally, it is argued that the SM is different from the voter model (VM) in that the opinion

spreads outwards instead of inwards. In this section, we reformulate the SM in terms of a VM

based on the Ising spin concept and will demonstrate that the SM is in fact a linear VM. This

derivation will occur in three steps.

First, we wish to point out the basic idea of a VM. There, the adoption of an opinion +1 or

−1 of a given site i depends on the local frequency of the respective opinions in the immediate

neighborhood. Usually, only nearest neighbors are taken into account. The transition rate for

changing θi is generally given as:

w(θ′i|θi) = κ(f) fθ′
i

(6)

where fθ′
i

is the local frequency of the opposite opinion in the nearest neighborhood of site i

possessing opinion θi, and κ(f) is a non-linear function dependent on local frequency. In the

linear VM, κ(f) = const. is chosen.

In order to derive a similar transition rate for the SM, we look at the possible local configurations

in the neighborhood of site i, given in the first column of eq. (7). Here, we have to note a basic

difference between SM and VM. In SM, a pair of sites {i− 2, i− 1} influences its two neighbors

{i − 3, i} at the same time, i.e. the dynamics of i is influenced only by one pair of neigbors

(either from the left or from the right side). As opposed to that, in the VM, the local frequency

of opinions both from the left and from the right side is taken into account. So, looking at the

second nearest neighborhood on both sides, we have a total of 16 possible configurations. The

respective transition rates w(θ′i|θi) for adjusting θi are then defined in such a way that they lead
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to the same dynamics as in the SM.

θi−2 θi−1 θi θi+1 θi+2 w(+|θi) w(−|θi)

+ + ? + + 1 0

− − ? − − 0 1

+ + ? − − 0.5 0.5

− − ? + + 0.5 0.5

− + ? + − 0 1

+ − ? − + 1 0

− + ? − + 0.5 0.5

+ − ? + − 0.5 0.5

+ + ? − + 1 0

− − ? + − 0 1

+ − ? + + 1 0

− + ? − − 0 1

+ + ? + − σ 1 − σ

− + ? + + σ 1 − σ

+ − ? − − 1 − σ σ

− − ? − + 1 − σ σ

(7)

In eq. (7), the first four transition rates are based on the ferromagnetic principle, since θi−2θi−1 =

θi+1θi+2 = 1 (rule 1 of SM). The next four transition rates are based on the anti-ferromagnetic

principle, since θi−2θi−1 = θi+1θi+2 = −1 (rule 2 of SM). The last eight possible configurations

do not correspond to the SM, because opinion θi has to choose between ferromagnetism and

antiferromagnetism since θi−2θi−1 = 1 and θi+1θi+2 = −1 and vice versa. In particular, in the

last four cases frustration occurs because θi cannot simultaneously accomodate the opinions of

both neighboring pairs. For example, if the pair ++ appears on the left and the pair +− appears

on the right side, then the opinion bias from the left side would push θi towards +, while from

the right side, it would push θi towards −. For those cases, we have introduced a parameter σ

to bias the decision towards either the anti- or the ferromagnetic case. I.e., if σ = 0, opinion θi
is completely biased by the anti-ferromagnetic neighbor pair, while for σ = 1 it is completely

biased by the ferromagnetic neighbor pair. However, if σ = 0.5, opinion θi is equally balanced

between ferromagnetism and antiferromagnetism spread.

Eq. (7) can be used as a lookup table for the microsimulations. But, in order to derive a general-

ized voter rule, we want to find a frequency dependent form for the transition rates in the form

of eq. (6). This will be done in the second step, as follows. The local frequencies of the different

opinions in the nearest neighborhood – f
(1)
+ – and in the second nearest neighborhood – f

(2)
+ –
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are defined as:

f
(1)
+ =

1

2
(δ+;θi−1

+ δ+;θi+1
) ; f

(2)
+ =

1

2
(δ+;θi−2

+ δ+;θi+2
) (8)

Using the local frequencies, we can reduce the lookup table to only nine different transition

rates, as follows:

f
(1)
+ f

(2)
+ w(+|θi) w(−|θi)

1. 1 1 1 0

2. 0 0 0 1

3. 0.5 0.5 0.5 0.5

4. 1 0 0 1

5. 0 1 1 0

6. 0.5 0 0 1

7. 0.5 1 1 0

8. 1 0.5 σ 1 − σ

9. 0 0.5 1 − σ σ

(9)

The first three transition rates (1.-3.) apply in cases where θi has ferromagnetic pairs on both

sides, while the three cases (3.-5.) apply if θi has anti-ferromagnetic pairs on both sides. The last

four cases (6.-9.) apply if θi has one anti- and one ferromagnetic pair on each side. Again, cases

8. and 9. are special in the sense that frustration occurs because of the discrepancy between the

opinion biases from the left and from the right side.

In the third step, we conclude the frequency dependence of the transition rates given in eq. (9)

in a most concise equation:

w(+|θi) = κ(f+) f
(2)
+ ; κ(f+) =

{

1 (no frustration)

2σ f
(1)
+ + 2(1 − σ) (1 − f

(1)
+ ) (frustration)

(10)

w(−|θi) = κ(f−) f
(2)
− ; κ(f−) =

{

1 (no frustration)

2σ f
(1)
− + 2(1 − σ) (1 − f

(1)
− ) (frustration)

It turns out that the dynamics of the SM can be rewritten in terms of a VM where the frequency

dependent transition rate basically depends on the frequencies of opinions of the second nearest

neighbors, f
(2)
+ , f

(2)
− . The opinion frequencies of the first nearest neighbors, f

(1)
+ , f

(1)
− only enter

the prefactor κ, thus making the transition rate a non-linear voter rule.

We note that κ is different from 1 only in the case of frustration, in which the nearest neighbor

frequencies f
(1)
+ , f

(1)
− can have only values of 0 or 1. However, for the special case of σ = 0.5,

i.e. no bias towards either anti- or ferrromagnetism, κ becomes 1 even in the case of frustration.

Thus, we can reduce the dynamics of eq. (10) to a linear voter rule, valid for all cases:

w(+|θi) = f
(2)
+ ; w(−|θi) = f

(2)
− (for σ = 0.5) (11)
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This remarkable finding is based on theoretical investigations of the possible local configurations

– but in Sect. 3.2 we will show by means of computer simulations that the linear rule of eq. (11)

matches numerically with the dynamics of the SM.

To summarize, the only VM transition rates that matter for the simulation of the SM, are simply

given by the three cases:

f
(2)
+ w(+|θi) w(−|θi)

1 1 0

0 0 1

0.5 0.5 0.5

(12)

The additional transition rates given in eq. (9) depend on σ and result from the possibility of

considering frustration dynamics, which exceeds the original idea of the SM.

Finally, we emphasize that the importance of the second neighbors on the opinion dynamics is

already a basic ingredient of the SM (even if not seen that way). Thus, the two rules of the SM

can be simply combined into only one rule, namely “just follow your second nearest neighbor”.

Specifically, using the notation of the SM, θi−1 = θi+1 and θi+2 = θi, no matter whether

θiθi+1 = 1 or θiθi+1 = −1. To repeat this important finding, in SM the nearest neighbors of a

site are just ignored in the dynamics.

3.2 Results of VM Computer Simulations

In this section, we compare the results of the VM dynamics with the known results of the SM.

Therefore, we fix σ = 0.5 because only in this case the VM is equivalent to the SM, according to

the previous section. The figures showing the spatio-temporal evolution of the lattice states and

the respective magnetization shall be compared with the corresponding figures obtained from

the SM. The basic setup chosen is the same, i.e. N = 100 and periodic boundary conditions for

the lattice, initially uniform random distribution of the opinions, and asynchronous update rule.

As we can see in Fig. 5 and Fig. 6, the dynamics eventually reach either the coexistence or the

consensus attractor, and even the intermediate coexistence of anti- and ferromagnetic domains

can be observed as in the case of SM. Also, the power law of the distribution of decision times

P (τ), Fig. 7(left), remains the same, as well as the distribution of relaxation times P (µ), Fig.

7(right), which follows the log-normal distribution. The only difference to be noticed is that the

average relaxation time has now doubled in VM, compared to SM. This is to be expected since

each update makes two flips in SM, while it makes only one flip in VM.

Thus, our microsimulations show that the proposed linear voter rule (σ = 0.5) is not different

from the SM, both in terms of the dynamics and the final attractors. In the next section, we will

show that this holds also for the frequency of reaching the attractors (50 percent stalemate, 25

percent up and 25 percent down).
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Figure 5: Evolution of the one-dimensional lattice (left) and magnetization m (right) vs time in

Monte-Carlo steps. Asymptotically, the coexistence attractor is reached. (Same setup as in Fig.

3, but dynamics according to the linear voter rule, eq. (11).)
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Figure 6: Evolution of the one-dimensional lattice (left) and magnetization m (right) vs time in

Monte-Carlo steps. Asymptotically, the concensus attractor is reached. (Same setup as in Fig.

2, but dynamics according to the linear voter rule, eq. (11).)
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Figure 7: (Left) Distribution of decision times P (τ) averaged over 200 simulations, (right)

distribution P (µ) of relaxation times µ averaged over 100.000 simulations (dynamics according

to the linear voter rule, eq. (11).)

We conclude that it does not matter, whether “the influence flows inward from the surrounding

neighbors to the center site, or spreads outwards in the opposite direction from the center to

the neighbors” as argued in [10, 37], i.e. there are basically no principle differences between the

SM and the VM except in the expression of the rules.

4 Influence of the Bias Parameter σ

When comparing SM and VM, we found that the decision dynamics for some local configurations

is characterized by some sort of frustration, because of a conflict between the left and right opin-

ion bias. In order to break the symmetry in those cases, we have introduced the bias parameter

σ, which favors the anti-ferromagnetic response for σ → 0 and the ferromagnetic response for

σ → 1. Only for the case of σ = 0.5, no bias is given – which is the case for expressing the SM

in terms of a VM.

In this section, we want to pay more attention to the role of σ, which exceeds the original idea

of the SM. Let us first look at the probability of reaching the different attractors. We recall from

Sect. 2 that in SM three attractors exist, where the two ferromagnetic attractors are reached

with probability 0.25 each, whereas the anti-ferromagnetic attractor is reached with probability

0.5. In Sect. 3.2, we have already shown that these attractors are also reached in the case of a
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linear voter model (σ = 0.5). To estimate the probability, we run 1.000 computer simulations

with different values of σ (Table 1)

σ 0.00 0.25 0.45 0.50 0.55 0.75 1.00

f−+ 1 1 0.998 0.510 0.004 0 0

f++ 0 0 0.002 0.250 0.526 0.496 0.510

f−− 0 0 0 0.240 0.470 0.504 0.490

Table 1: Frequency of reaching the different attractors, ferro+ (f++), ferro− (f−−), and anti-

ferro (f−+) obtained from 1.000 simulations (N = 100, voter rules of eq. (10), asynchronous

update).

For σ = 0.5, we observe that in the VM case the three attractors are reached with the same

probability as in the SM case. Thus we can conclude that there are no differences between SM

and VM with respect to this feature either.

Since σ → 0 biases the dynamics towards the anti-ferromagnetic attractor while σ → 1 biases

towards the ferromagnetic one, the VM provides a simple possibility to avoid either stalemate

or consensus in decision making. It is interesting to note that already small deviations from

σ = 0.5 will lead to drastical changes in the probabilities of reaching the different attractors.

I.e., already for σ = 0.45 or σ = 0.55 only one attractor is found (where the ferromagnetic one

appears in two different “flavors”).

The disappearance of one of the attractors basically results from a competition process between

anti- and ferromagnetic domains. If a site is selected within a domain, nothing changes. The

important events for the spatio-temporal evolution occur only at the borders between these

domains, i.e. {+ + + + ? + − + −} or {− − − − ? − + − +}, where frustration also occurs.

Dependent on the value of σ, the following possibilities for the dynamics exist:

+ + + + ? + − + − ⇒











+ + + + − + − + − if σ = 0.0

+ + + + + + − + − if σ = 1.0

+ + + + ? + − + − if σ = 0.5

(13)

That means that for σ → 0 the anti-ferromagnetic domain will always increase at the cost of the

ferromagnetic one, while for σ → 1 the opposite will occur. Only for σ = 0.5, both cases occur

with the same probability, i.e. in half of the cases the system may eventually reach (one of)

the ferromagnetic attractors and in half of the cases the anti-ferromagnetic one. We note that

this insight, how one domain may invade the other one, became clear only in the VM picture

through investigation of the frustration dynamics (while it was not apparent in the SM view).

Thus, we conclude that σ plays a crucial role in explaining the phase transition known in SM,

from the initial random distribution to either antagonistic or consensus attractor.
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Figure 8: Evolution of the one-dimensional lattice (left) and magnetization m (right) vs time in

Monte-Carlo steps. Asymptotically, the coexistence attractor is reached. (Same setup as in Fig.

2, but dynamics according to the voter rules, eq. (9) with σ = 1.0)
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Figure 9: Evolution of the one-dimensional lattice (left) and magnetization m (right) vs time in

Monte-Carlo steps. Asymptotically, the coexistence attractor is reached. (Same setup as in Fig.

3, but dynamics according to the voter rules, eq. (9) with σ = 0.0)
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Finally, we will have a look at the evolution of the spatio-temporal patterns for the two extreme

cases, σ → 0, Fig. 8, and σ → 1, Fig. 9, and compare them with the case of σ = 0.5, Figs. 5,

6 where the VM dynamics are equivalent to the SM dynamics. As already noticed above, the

asymptotic distributions are “preselected” by the choice of σ, so it is not surprising that either

the coexistence or the consensus attractors are reached. However, looking at the intermediate

dynamics, we realize that there are no anti-ferromagnetic domains (“striped patterns”) for σ =

1.0, while there are no ferromagnetic domains (“filled patterns”) for σ = 0.0. I.e., there is no

coexistence between ferromagnetic and anti-ferromagnetic domains in the intermediate dynamics

in the biased case, while it can be observed in the non-biased case.

5 Synchronous vs. Asynchronous Update

So far, we have used the so-called asynchronous (i.e. random sequential) update dynamics both

for the SM and the VM, which means that at each time step one lattice site is randomly updated

and changes are immediately processed to the neighborhood. VM, however, were first considered

in a biological context, where time is measured in generations and changes of the lattice states

become effective only after a generation is completed (i.e., usually after all sites are selected).

The information generated will be thus processed in parallel, which is known as synchronous

update.

In this section, we want to investigate whether the different update rules, i.e. the different ways

of information processing, may affect the outcome of the SM/VM dynamics. Therefore, we have

fixed σ = 0.5. First, we have a look again at the possible attractors of the dynamics, as shown

in Table 2.

attractor local configuration f+/f− frequency

1 + + + + + + + + + + ++ 1/0 0.056

2 −−−−−−−−−−−− 0/1 0.060

3 − + − + − + − + − + −+ 0.5/0.5 0.125

4 + + + − + + + − + + +− 0.75/0.25 0.250

5 −−− + −−− + −−−+ 0.25/0.75 0.252

6 −− + + −− + + −− ++ 0.5/0.5 0.257

Table 2: Attractors of the VM dynamics and frequencies of reaching them (obtained from

10.000 simulations). f+/f− gives the frequencies of each opinion in the asymptotic configuration.

(N = 100, voter rules of eq. (10), σ = 0.5, synchronous update).

Compared to the asynchronous VM/SM dynamics, we notice the appearance of three more
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attractors in the synchronous case. Two of these are different from the known ones in that they

are characterized by a asymmetric coexistence of the two different opinions. I.e., we find stable

configurations (in the absense of noise) with 75 percent of one of the opinions. The third new

attractor is again a stalemate, or antagonistic attractor, but the local configuration is different

from the known anti-ferromagnetic one, (anti-ferro), attractor 3 in Table 2.

Furthermore, from the frequencies with which the attractors are reached, Table 2, we note that

the three new attractors are reached with the same probability of about 0.25, while the “old”

attractors (1-3) alltogether only have a probability of 0.25. Again, within that share, the prob-

ability of the anti-ferromagentic attractor is equal to the probability of both the ferromagnetic

ones, 0.125. But, given the absolute probability, pure anti- (3) and ferromagnetic configurations

(1,2) become rare in synchronous update.

0 50 100 150 200 250
t

-1

-0.5

0

0.5

1

m

Figure 10: Evolution of the one-dimensional lattice (left) and magnetization m (right) vs time

in generations. Asymptotically, an asymmetric coexistence attractor is reached. (Same setup as

in Fig. 2, but synchronous update according to the voter rules, eq. (10), with σ = 0.5)

The influence of the synchronous update rule on the intermediate dynamics and the station-

ary distributions is shown in Fig. 10. We see that the spatio-temporal distribution now shows

the intermediate coexistence of six different domains, characterized by the local configurations

given in Table 2. Eventually, attractor 5, displaying the asymmetric coexistence of the opposite

opinions, is reached, which can also be confirmed by looking at the magnetization m(t).

Finally, we investigate how the synchronous update rule affects the distribution of decision times,

P (τ). As shown in Fig. 11(left), for σ = 0.5 we do not find a power law for the synchronous

case. This is due to the fact that during synchronous update, mostly (i.e. with probability 0.75)

domains from the three new attractors (4-6) appear, even during the intermediate dynamics

(cf. Fig. 10). Their local configurations, however, force the “individuals” to change their opinion

during every time step. We can observe that the mean value of τ is about 0.93. However, if
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Figure 11: Distribution of decision times P (τ) averaged over 200 simulations: (left) σ = 0.5,

(right) σin{0; 1}. (N = 100, synchronous update according to the voter rules, eq. (10))

σ ∈ {0, 1} then the three new attractors do not appear and the known power law P (τ) ∝ τ−1.5

can be recovered as in the asynchronous case, see Fig. 11(right).

6 Conclusions

In this paper we investigate similarities and differences between the previously established Sznajd

model (SM) and the well known voter model (VM) in one dimension. It is shown that the SM

can be completely reformulated in terms of a linear VM, where the transition rates towards

a given opinion are directly proportional to the second-nearest neighborhood frequency of the

respective opinion, eq. (11). The equivalence of the dynamics is demonstrated by extensive

computer simulations that show the same behavior (i) for the spatial-temporal evolution of

the lattice, L(t), m(t), (ii) for the power law distribution of decision times P (τ), (iii) for the

log-normal distribution of relaxation times P (µ), and (iv) for the final attractor statistics.

We basically conclude that there are no differences between SM and VM with respect to these

indicators. In particular, it does not matter whether the information flows from inward out

(as in SM) or from outward in (as in VM). Also the fact that in SM dynamics two opinions

are changed at the same time, while in VM only one opinion is changed, does not change the

dynamic behavior, except that the average time scale of relaxation is doubled.
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So, given that we can reduce the SM dynamics to linear VM dynamics, what are the advantages

of such a reduction? First, we could reveal that in SM only the second nearest neighbors matter

for the opinion dynamics, no matter what the nearest neighbors are. Second, in VM we could find

a parameter σ that expands the original SM dynamics by considering the case of frustration. We

further show that σ plays a crucial role in explaining the phase transition known in SM, from the

initial random distribution to either antagonistic or consensus attractors. Third, since the SM

is basically a linear VM, all the techniques developed for VM to describe the spatial structure

formation, e.g. pair approximations of the spatial correlations or Markov chain analysis, can be

adapted also for the analysis of the SM. This will be done in a forthcoming paper.

In this paper, we have also expanded the original SM dynamics by considering synchronous

update rules. We show that this will lead to three additional attractors, which are reached with

probability 0.75, while the original three attractors are reached only with probability 0.25. In the

synchronous case, we find a asymmetric coexistence of the different opinions, i.e. the existence

of a majority/minority different from 1/0, which is not found in the original SM.

Finally we address the issue of extending the proposed VM dynamics to a two-(and higher)

dimensional CA. This extension has been done for the SM already in [37]. Also the proposed

VM can be easily extended to two-dimensional problems, based on considerations e.g. in [19, 32].

We just have to adjust the second-nearest neighbor frequencies to the different neighborhood

definitions (such as Von-Neumann neighborhood with eight, or Moore neighborhood with sixteen

second-nearest neighbors). This shall be also done in a forthcoming paper.
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