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1 Abstrat

The theoretial desription of the evolution of ooperation presented by

Bergstrom [1℄ based on assortative mathing with partner hoie allows to

model the population dynamis in a game of Nonrepetitive Prisoners Dilemma.

In this paper we present a short analysis of asymmetri e�ets brought into

the game by self knowledge of the partiipants, that is the knowledge of

one's own strategy. Within the same oneptual framework as introdued

by Bergstrom inlusion of selfknowledge leads to di�erent behaviour of the

assortativity index and hanges in payo�s for di�erent strategies.

2 Basi Assumptions and Notation

Sine the lassi works by Maynard Smith [2, 3℄ the evolutionary game the-

ory has been used in numerous appliations, ranging from biology, through

soiology to applied eonomis. One of the branhes of the disipline is the

mathing theory, whih deals with the situations where two separate sets of

players have to with eah other. Mathing theory an desribe �elds as sex-

ual pairing, job market or even routing in omputer networks. The literature

dealing with mathing theory is quite rih, the introdution an be found in

the work of Roth and Sotomayor [4℄.

One of the interesting aspets of mathing is the in�uene of intergroup

traits on the mathing proess. Suppose that there are some subsets within

eah of the two sets of players that are mathed. the question whether it
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makes sense to inlude these subsets in analysis of the mathing, or, in other

words, whether there is any evolutionary advantage in mathing like with

like (or vie versa) has been given the name of assortativity mathing. This

paper is a diret extension of the analysis of assortative mathing presented

by Bergstrom [1℄. We would repeat a lot of the de�nitions and notations

used in that paper to allow to follow the reasoning and easily observe the

di�erenes of the two approahes.

Following Bergstrom we assume that our population is divided between

two types of players, ooperators and defetors. The ratio of ooperators

within the population is x, orrespondingly for defetors it is 1− x.
The members of the population form pairs (math) with other members.

Assortativity of mathing results from di�erene between of frequenies of

mathing between one's own type and with di�erent type. The relative fre-

queny of mathings between various types of players depends on individuals'

types and proportions of their types within the population.

Let p(x) be the onditional probability that one enounters a ooperator,
given that one is a ooperator.

Let q(x) be the onditional probability that one enounters a ooperator,

given that one is a defetor.

Then, as argued in [1℄, the fration of all enounters between two indi-

viduals in whih a ooperator meets a defetor is x(1− p(x)). Similarly, the

fration of enounters in whih a defetor meets a ooperator is (1− x)q(x).
Sine these are just two di�erent ways of ounting the same mathings we

have the initial equation:

x(1− p(x)) = (1− x)q(x) (1)

Bergstrom de�ned the index of assortativity, a(x) as a di�erene between
probability of homogenous and heterogenous mathes.

a(x) = p(x)− q(x) (2)

By simple rearangements it is possible to express p(x) and q(x) through
x and a(x):

q(x) = x[1− (p(x)− q(x)] = x(1− a(x)) (3)

p(x) = a(x) + x(1− a(x)) (4)

2.1 Basi games senarios

Let's de�ne the general payo� matrix for two partiipants, X and Y . Eah of

them has two possible hoies of behaviour, Cooperating (C) and Defeting

(D). The payo�s are de�ned as:
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Y = C Y = D
X = C R,R S, T
X = D T, S P, P

For the games onsidered here we assume that T ≥ R ≥ P ≥ S.
In this paper we would be assuming that the individual players use simple

strategies (i.e. not resorting to adaptive or time-dependant strategies, suh

as Repeated Prisoners Dilemma (RPD) games). Moreover, we would assume

that a player would aept a math when the expeted payo� is greater than

or equal zero (assumption of rational behaviour). This means that if the

analysis, based on the information available to the player would show that

he is ertain to lose, the player would not math. This point would beome

important when we would start disussing the assortative mathing with

partner hoie.

Bergstrom has onsidered two types of games: prisoners Dilemma and

the Game of Shared Output. The analysis of assortativity applies to both

of them, but for simpliity we would onentrate on the game of Prisoners

Dilemma. Within this game the payo� for player X is given by:

Both oooperate: R = b− c

X ooperates, Y defets: S = −c (S < 0!)

X defets, Y ooperates: T = b

Both defet: P = 0

where b is the bene�t onferred and c is the ost of ation, with b > c.

3 Mathing rules

As Bergstrom has noted, when partners have hoie about their partners and

mathing results from mutual onsent interesting possibilities arise. This

allows us to predit the index of assortativity. In the game of Prisoners

Dilemma everyone would prefer to be mathed with a ooperator rather

than with a defetor. In the simplest ase, if the players behaviour ould be

predited by observation with a 100% auray then the ooperators would

math with ooperators only (with payo� of R)and defetors only with defe-

tors (with payo� of P = 0). In this ase, regardless of x, p(x) = 1, q(x) = 0
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and, onsequently a(x) = 1. With R > P the only stable population would

be the one of all ooperators.

Bergstrom proposed a more general model, in whih the auray of de-

termination of partner type of behaviour is less than perfet. The proposed

model is based on labelling the players with an imperfet indiator of their

type (suh a s reputation based on partial information, behavioral ues or

a psyhologial test [1℄). We introdue notation in whih, for example, DC

denotes a true defetor labelled and pereived as ooperator (good heater),

CC denotes true and reognizable ooperator, CD a ooperator unfortunately

mislabelled as defetor and DD a defetor unable to 'hide' his harater.

Within the population of ooperators we have a fration α of orretly

labelled ones (CC) and fration (1−α) of ooperators mislabelled as defetors

CD. Within the population of defetors we would have a fration β of or-

retly labelledDD and fration (1−β) of defetors mislabelled as ooperators

(DC). Bergstrom proposed that labelling should be `reasonably reliable', i.e.

α, β > 1/2, we would study the whole range of 0 < α, β < 1.
Beause the deisions of the players would be based on what they assume

about the other players (the labels) rather than the real situation the outome

of the mathing (payo� matrix) beomes less trivial.

Bergstrom assumed a ruial simpli�ation in partner aeptane rules, in

whih `apparent ooperators will all be mathed with apparent ooperators and

apparent defetors would be mathed with apparent defetors'. This allowed

to alulate the index of assortativity for any x.
The assumption above does not, however, apply to the situation when

the players are selfknowledgeable, that is when any player `knows' his `true

nature'. In suh situation true ooperators � even those labelled as defetors

� would shirk from mathing with pereived defetors. This would reate

quite ompliated mutual onsent rules and payo� matrix whih are presented

in several tables in Appendix 1. The ases where the mutual onsent is

marked by YES

∗
are speial in the sense of additional level of selfknowledge,

possible to be added, namely the knowledge of other's reation to one's own

label. For example in the ase X = CD and Y = DC , X , knowing he looks

like a defetor might wonder why an apparent ooperator would want to

math with him. The only rational explanation being that Y is in fat a

true defetor, X would then rationalise not to math with Y . Suh in depth

analysis of 'I know that you know that I know . . . ' is beyond the sope of

the urrent analysis.
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3.1 Calulation of relative frequenies and assortative

index

In this setion we will ompare the alulated values of p(x), q(x) and a(x)
for both the Bergstrom model and Selfknowledge model.

Following Bergstrom we have:

pB(x) =
α2x

αx+ (1− β)(1− x)
+

(1− α)2x

(1− α)x+ β(1− x)
(5)

qB(x) =
(1− β)αx

αx+ (1− β)(1− x)
+

β(1− α)x

(1− α)x+ β(1− x)
(6)

aB(x) = (α + β − 1)

(

αx

αx+ (1− β)(1− x)
+

(1− α)x

(1− α)x+ β(1− x)

)

(7)

For the selfknowledge model the probabilities are:

pS(x) =
α2x

αx+ (1− β)(1− x)
(8)

qS(x) = (1− β)x (9)

aS(x) =
α2x

αx+ (1− β)(1− x)
− (1− β)x (10)

Figure 1 in Appendix 2 ompares aB(x) and aS(x) for α = 3/4 and

β = 3/5. One an immediately see the di�erene in behaviour of a(x) in the

region of x ≈ 1. To understand the meaning of the di�erenes it is useful to

onsider the limiting ases for both models.

Bergstrom Selfknowledge

p(x) in the limit x → 0

pB(x) ≈ x
(

α2

1−β
+ (1−α)2

β

)

pS(x) ≈ x
(

α2

1−β

)

q(x) in the limit x → 0
qB(x) ≈ x qS(x) ≈ x(1 − β)

p(x) in the limit x → 1
pB(x) ≈ 1− (1− x) pS(x) ≈ α− (1− x)(1− β)

q(x) in the limit x → 1

qB(x) ≈ 1− (1− x)
(

β2

1−α
+ (1−β)2

α

)

qS(x) ≈ (1− β)− (1− x)(1− β)
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The intuitive explanation of the limiting ases is quite instrutive. Lets

onsider �rst the x → 0. In Bergstrom's model pB(x) is proportional to x,
with two terms orresponding to two situations: real ooperator laballed as

ooperator mathes real ooperator laballed as ooperator and real ooper-

ator laballed as defetor mathes with real ooperator laballed as defetor.

Taking selfknowledge into aount the seond type of math is not allowed,

as selfknowledgeable ooperator would not math with apparent defetor,

thus pS(x) has only one term.

For q(x) in the limit of small x , Bergstrom's model gives qB(x) ≈ x. This
orresponds to the situation where every defetor (either DC or DD) would

�nd a ooperator (respetively CC and CD). In the selfknowledge model only

the defetors posing as ooperators would �nd willing ooperators, and thus

qS(x) ≈ x(1− β).
Despite quantitative di�erenes both model preserve linaerity of p(x) and

q(x) for small x. For x approahing 1 their behaviour is however drastially

di�erent. Bergstrom's model predits both funtions to approah 1, so that

their di�erene, a(x) is again linear in (1 − x). The selfknowledge model

gives a di�erent predition. As x → 1 pS(x) approahes α. This orresponds
to an intuition that when there are almost no defetors, only the apparent

ooperators would �nd willing partners. Those 'unfortunate' to be labelled

as defetors, despite their true nature would remain unmathed. For x → 1
we have qS(x) → 1 − β. This may be explained as follows: from the small

number of defetors all heaters labelled as ooperators would surely �nd a

math of a ooperator. More importantly, the linear terms in expansion of

both pS(x) and qS(x) for x approahing 1 are the same, namely (1−x)∗(1−β).
They anel out leaving aS(x) ≈ α + β − 1 +O(x2).

4 Comparison of payo�s

Before we would summarize the results of the disussed models lets introdue

the payo� funtions for ooperators and defetors and their di�erene δ(x).
This di�erene would then determine the dynamis of the population.

The payo� for a ooperator is given by:

p(x)R + (1− p(x))S = S + p(x)(R− S) (11)

= S + a(x)(R− S) + x(1− a(x))(R− S).

Similar reasoning gives the payo� for a defetor:

q(x)T + (1− q(x))P = P + x(1− a(x))(T − P ). (12)
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The di�erene between payo�s is

δ(x) = S − P + a(x)(R − S) + x(1 − a(x))[(R + P )− (S + T )]. (13)

For additive Prisoners Dilemma games (R + P )− (S + T ) = 0 and

δ(x) = S − P + a(x)(R − S) = a(x)b − c, (14)

where we have used the notation from Setion 2. In the following we would

study only suh additive games.

In Bergstrom's model aB(x) for all values of α and β has zero values for

x = 0 and x = 1. For the range of values onsidered in [1℄ i.e. α, β > 1/2,
the index of assortativity aB(x) is a onave funtion. It is interesting to

observe that this property is preserved for all values of α and β, with the

exeption of situation when α+ β = 11. This allows to extend the results of

Bergstrom to quite interesting situation of invasion of 'very good heaters'

into ooperators population. In suh situation x ≈ 1, β < 1/2 and hanging

α does not introdue qualitative impat. As may be seen from Figure 2

even for β < 1/2 the onave harater of the aB(x) is preserved. This

means that the onave harater of δB(x) = aB(x)b− c is also preserved. If

c > max(a(x)b) then δB(x) < 0 and proportion of defetors inreases, due to

their higher payo�. There is only one stable point: all players are defetors.

For c < max(a(x)b) as presented in [1℄ δB(x) < 0 for ertain x1 < x < x2,

and there are two stable equilibria: x = 0 � all defetors and x = x2 � mixed

population of defetors and ooperators (see Figure 4).

In the selfknowledge model the situation is di�erent. For ertain values of

b, c, suh as c > max(a(x)b), as before, the proportion of defetors inreases,

due to their higher payo�. There is only one stable point: all players are

defetors.

When α + β − 1 < 0 we have aS(x) < 0 for all x. In suh a ase,

regardless of the payo� oe�ients b and c defetors bene�t always surpasses
ooperators bene�t and δS(x) < 0 for all x. The only equilibrium is at x = 0
(see Figure 5).

When α+β− 1 > 0 the assortativity index inreases monotonially with

x, and for c < max(a(x)b) there is a region of x > x1 where δS(x) > 0. Two
stable equilibria form depending on initial parameters, one at x = 0 and one

at x = 1.
Interpretation of the above results based on ommon sense reasoning is

as follows.

For α + β ≪ 1 we have relatively large number of `mislabelled' play-

ers, both ooperators and defetors. In suh situation ooperators are at

1

For the ase of α+ β = 1 we have aB(x) ≡ 0 for all x
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disadvantage: they would not want to math with anyone `looking like' a

defetor dereasing the number of mathes with true ooperators, while still

being prone to fall for a heating defetor. Defetors, on the other hand, see

little to lose in mathing with presumed defetor and willingly math with

presumed ooperators. Thus the negative value of a(x) and following it the

greater payo� for defetors.

For α+β ≫ 1 there are relatively few mislabelled haraters. For large x,
as most of the small number of defetors look as defetors, the pure strategy

of ooperators is atually bene�ial. There are no mathes suh as CD (o-

operator labelled as defetor) willing to math with DD (orretly labelled

defetor) � and suh mathes were allowed in Bergstrom model. Thus the

di�erene in the preditions of the two models. The defetors mathing with

defetors are at payo� disadvantege to ooperators mathing with oopera-

tors and eventually vanish from population.

On the other hand, for small x and α+β ≫ 1 the few ooperators present,

surrounded by many orretly labelled defetors an math only within their

group (αx) or with the mislabelled defetors (1 − β)(1 − x) � the other

situation resulting in severly disadvantageous outome. Here the only stable

population is that of defetors only.

A few words should be said about the validity of the two models for

α + β ≈ 1. For both models this hoie of parameters yields a(x) ≈ 0
for all x. Moreover, the funtion a(x) is very �at, and for α + β = 1 this

funtion is equal to 0 for all x. the validity of preditions for both models

are questionable for suh ase and the dynamis of the population should be

determined by fators not taken into aount.

4.1 Conlusions

In this short analysis we have extended the theoretial model proposed by

Bergstrom, whih allowed not only to analyse the results of assortative math-

ing (i.e. preferable mathing of similar players among themselves) but also

to alulate the assortativity index a(x). The new model takes into a-

ount in�uene of the selfknowledge of the players on their hoies. It has

been shown that for ertain values of the population omposition (de�ned by

numbers of ooperators and defetors and proportions of these populations

`orretly' labelled) the stable points predited by Bergstrom's model and

the selfknowledge model di�er qualitatively, the latter model leading only to

`pure' populations of all defetors or all ooperators.
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Appendix 1: Mathing tables for Selfknowledge

model and for the Bergstrom model

Tables for the Selfknowledge model

Cooperator � Cooperator with selfknowledge

X Y Fration Consent Payo� X Payo� Y Reasoning

CC CC α2x2 YES b− c+ k b− c+ k Full agreement of pereived

and real behaviour

CC CD α(1 − α)x2 NO � � X would not agree to pair

with Y , beause Y looks like

D

CD CC (1− α)αx2 NO � � Y would not agree to pair with

X, beause X looks like D

CD CD (1− α)2x2 NO � � Neither would agree to pair

with the other: 'I know I am

a C, why would I pair with

someone who looks like D'

Defetor � Defetor with selfknowledge

X Y Fration Consent Payo� X Payo� Y Reasoning

DC DC (1− β)2(1− x)2 YES 0 0 Both would agree with hopes

of heating the other

DD DD β2(1− x)2 YES 0 0 Both would agree on prinipe

of 'it would not hurt'

DD DC β(1− β)(1 − x)2 YES 0 0 X would agree with hope of

heating Y , Y on prinipe of

'it would not hurt'

DC DD β(1− β)(1 − x)2 YES 0 0 Y would agree with hope of

heating X, X on prinipe of

'it would not hurt'

Tables for the Selfknowledge model
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Cooperator � Defetor with selfknowledge

X Y Fration Consent Payo� X Payo� Y Reasoning

CC DC α(1− β)x(1 − x) YES −c b Both would agree, X

genuinely, Y as heater

DC CC α(1− β)x(1 − x) YES b −c Both would agree, Y

genuinely, X as heater

CC DD αβx(1 − x) NO � � X would not agree

DD CC αβx(1 − x) NO � � Y would not agree

CD DD (1− α)βx(1 − x) NO � � X would not agree

DD CD (1− α)βx(1 − x) NO � � Y would not agree

CD DC (1− α)(1 − β)x(1− x) YES

∗ −c b X would agree pereiv-

ing Y as C, Y would

agree in the spirit 'it

would not hurt'

DC CD (1− α)(1 − β)x(1− x) YES

∗ b −c Y would agree pereiv-

ing X as C, X would

agree in the spirit 'it

would not hurt'

Cooperator � Cooperator Bergstrom

X Y Fration Consent Payo� X Payo� Y Reasoning

CC CC α2x2 YES b− c+ k b− c+ k apparent ooperator ONLY

with apparent ooperator

CC CD α(1 − α)x2 NO � � NO mixed labels

CD CC (1− α)αx2 NO � � NO mixed labels

CD CD (1− α)2x2 YES b− c+ k b− c+ k apparent defetor ONLY with

apparent defetor

Defetor � Defetor Bergstrom

X Y Fration Consent Payo� X Payo� Y Reasoning

DC DC (1− β)2(1− x)2 YES 0 0 apparent ooperator ONLY

with apparent ooperator

DD DD β2(1− x)2 YES 0 0 apparent defetor ONLY with

apparent defetor

DD DC β(1− β)(1 − x)2 NO � � NO mixed labels

DC DD β(1− β)(1 − x)2 NO � � NO mixed labels

11



Cooperator � Defetor Bergstrom

X Y Fration Consent Payo� X Payo� Y Reasoning

CC DC α(1− β)x(1 − x) YES −c b apparent ooperator

ONLY with apparent

ooperator

DC CC α(1− β)x(1 − x) YES b −c apparent ooperator

ONLY with apparent

ooperator

CC DD αβx(1 − x) NO � � NO mixed labels

DD CC αβx(1 − x) NO � � NO mixed labels

CD DD (1− α)βx(1 − x) YES −c b apparent defetor

ONLY with apparent

defetor

DD CD (1− α)βx(1 − x) YES b −c apparent defetor

ONLY with apparent

defetor

CD DC (1− α)(1 − β)x(1− x) NO � � NO mixed labels

DC CD (1− α)(1 − β)x(1− x) NO � � NO mixed labels

12



Appendix 2: Figures
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Figure 1: Comparison of assortativity indexes for Bergrstrom model and for

model with selfknowledge. Values used in alulation: α = 3/4, β = 3/5.
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β. Values used in alulation: α = 0.8; it is worth noting that for β = 0.2
aB ≡ 0.
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Figure 3: Assortativity index for Selfknowledge model as a funtion of x and

β. Values used in alulation: α = 0.8; it is worth noting that for β = 0.2
aS ≡ 0.
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Two stable equilibria at x = 0 and x = x2 form. Values used in alulation:

α = 0.8, β = 0.8, b = 10, c = 1. Arrows indiate diretion of evolution of

populations.
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Figure 5: Example of di�erene between payo�s δ(x) for Selfknowledge model

with α+β < 1 . Only one stable equilibrium at x = 0 is present. Values used
in alulation: α = 0.4, β = 0.4, b = 10, c = 1. Arrows indiate diretion of

evolution of populations.
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Figure 6: Example of di�erene between payo�s δ(x) for selfknowledge model

with α + β > 1 . Two stable equilibria at x = 0 and x = 1 are present.

Values used in alulation: α = 0.8, β = 0.8, b = 10, c = 1. Arrows indiate
diretion of evolution of populations.
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