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We derive a coarse-grained equation of motion of a number density by applying the projection
operator method to a non-relativistic model. The derived equation is an integrodifferential equa-
tion and contains the memory effect. The equation is consistent with causality and the sum rule
associated with the number conservation in the low momentum limit, in contrast to usual acausal
diffusion equations given by using the Fick’s law. After employing the Markov approximation, we
find that the equation has the similar form to the causal diffusion equation. Our result suggests that
current-current correlations are not necessarily adequate as the definition of diffusion constants.

PACS numbers: 05.70.Ln, 47.10.+g

I. INTRODUCTION

Diffusion is a typical relaxation process and appears
in various fields of physics: thermal diffusion processes,
spin diffusion processes, Brownian motions and so on. It
is empirically known that the dynamics of these processes
is approximately given by the diffusion equation,

∂

∂t
u(x, t)−D∇2u(x, t) = 0, (1)

where D is the diffusion constant. This equation is phe-
nomenologically derived by employing the Fick’s law or
the Fourier’s law.
Although the diffusion equation has broad applica-

bility, there exist the limits of the validity. First
of all, the diffusion equation does not obey causality
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14], the propa-
gation speed of information exceeds the speed of light.
This means that we cannot apply the ordinary diffu-
sion equation to describe relativistic diffusion processes
that might be realized in relativistic heavy-ion collisions
[10, 11, 12, 13]. Second, the diffusion equation breaks
sum rules associated with conservation laws[15]. The
diffusion equation is the coarse-grained equation that is
valid only for describing macroscopic motions, and hence
one may claim that such a coarse-grained dynamics does
not necessarily satisfy the sum rules. However, as we will
see later, it is possible to derive a coarse-grained equation
consistent with a sum rule.
These deficiencies can be overcome by introducing re-

laxation times [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 15,
16, 17, 18, 19]. Then, the diffusion equation is changed
into the following telegraph equation:

τ
∂2

∂t2
u(x, t) +

∂

∂t
u(x, t)−D∇2u(x, t) = 0, (2)

where D is the diffusion constant and τ is the relaxation
time. The telegraph equation is reduced into the diffu-
sion equation in the limit of τ −→ 0. The propagation
speed of the equation is defined by V =

√

D/τ . One
can easily see that the propagation speed of the diffusion
equation diverges and hence causality is broken. Thus,

in the following, we call the diffusion equation given by
the Fick’s law the ”acausal” diffusion equation, and call
the telegraph equation the ”causal” diffusion equation.
Furthermore, as we will see later, the causal diffusion
equation does not break sum rules.

As just described, the causal diffusion equation may
be more appropriate to describe diffusion processes [20].
However, the microscopic derivation of the causal diffu-
sion is still controversial. One of the typical methods to
derive coarse-grained equations is the projection operator
method (POM) [21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31,
32, 33, 34, 35, 36]. In this method, the motions associated
with microscopic time and length scales are projected out
by introducing projection operators, and we can obtain
coarse-grained equations expressed in terms of variables
associated with macroscopic time and length scales. As
is discussed in Ref. [22], the coarse-grained equation de-
rived by using the POM is not causal diffusion equations
but acausal diffusion equations. However, it should be
noted that an approximation whose validity is not obvi-
ous is introduced to obtain the acausal diffusion equation.
Thus, when we do not use the approximation, it may be
possible to obtain causal diffusion equations instead of
acausal ones by using the POM.

As a matter of fact, the author recently applied the
POM to derive the coarse-grained equation of the order
parameter that describes the critical dynamics of the chi-
ral phase transition [23, 24]. The derived equation fulfills
the requirements near the critical temperature and con-
verges to the equilibrium state consistent with mean-field
results evaluated in finite temperature field theory. How-
ever, the equation shows the relaxation exhibiting oscil-
lation. This behavior is different from that of the time-
dependent Ginzburg-Landau (TDGL) equation that has
been assumed as a phenomenological equation of the crit-
ical dynamics. We can look upon the TDGL equation as
the acausal diffusion equation for ”non-conserved” quan-
tities because of its overdamping behavior. Then, the
appearance of the oscillation means that a kind of relax-
ation time is introduced. This result suggests to us that
if we apply the POM to derive a coarse-grained equation
of a ”conserved” quantity, for instance, a number den-
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sity, the coarse-grained dynamics may be accompanied
by oscillation like the causal diffusion dynamics.
In this paper, we apply the POM to a non-relativistic

model and show that the coarse-grained equation of the
number density has a similar form to the causal diffusion
equation instead of the acausal one.
This paper is organized as follows. In Section 2, we

summarize the POM. In Section 3, we apply the POM
to a non-relativistic model and derive the coarse-grained
equation of the number density. The number density is
a conserved quantity in this model and there exists the
sum rule associated with the conservation law. We inves-
tigate the relation between the coarse-grained equation
and the sum rule in Section 4. The coarse-grained equa-
tion contains the memory effect, which can be eliminated
by employing the Markov limit. Then, the equation has a
similar form to the causal diffusion equation, as is shown
in Section 5. In the acausal diffusion equation of the
number density, it is known that the diffusion constant is
given by the time correlation function of the number den-
sity. However, the simple relation is changed for causal
diffusion equations. The reason is discussed in Section
6. The summary and concluding remarks are given in
Section 7.

II. PROJECTION OPERATOR METHOD

In this section, we give a short review of the POM
[22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36].
The time-evolution of an arbitrary operator follows the
Heisenberg equation of motion,

d

dt
O(t) = i[H,O(t)] (3)

= iLO(t) (4)

−→ O(t) = eiL(t−t0)O(t0), (5)

where L is the Liouville operator and t0 is an initial time
at which we set up an initial state. To carry out the
coarse-grainings of irrelevant information, we introduce
the projection operators P and its complementary oper-
ator Q = 1− P with the following generic properties:

P 2 = P, (6)

PQ = QP = 0. (7)

From Eq. (5), one can see that operators are evolved by
eiL(t−t0), that obeys the following differential equation:

d

dt
eiL(t−t0) = eiL(t−t0)iL

= eiL(t−t0)PiL+ eiL(t−t0)QiL. (8)

Operating the projection operator Q from the right, we
obtain

d

dt
eiL(t−t0)Q = eiL(t−t0)PiLQ+ eiL(t−t0)QiLQ. (9)

This equation can be solved for eiL(t−t0)Q,

eiL(t−t0)Q

= QeiLQ(t−t0) +

∫ t

t0

dτeiL(τ−t0)PiLQeiLQ(t−τ).(10)

Substituting Eq. (10) into the second term on the r.h.s.
of Eq. (8) and operatingO(t0) from the right, the Heisen-
berg equation of motion is rewritten as

d

dt
O(t) = eiL(t−t0)PiLO(t0)

+

∫ t

t0

dτeiL(t−τ)PiLQeiLQ(τ−t0)iLO(t0)

+QeiLQ(t−t0)iLO(t0). (11)

This equation is called the time-convolution (TC) equa-
tion. The first term on the r.h.s. of the equation is
called the streaming term and corresponds to a collec-
tive oscillation such as plasma wave, spin wave, and so
on. The second term is the memory term that causes
dissipation. The third term is the noise term. We can
show that the memory term can be expressed by the
time correlation of the noise. This relation is called
the fluctuation-dissipation theorem of the second kind
[21, 22, 27, 28, 29, 30, 31, 33, 34, 35, 36]. However, in
this paper, we simply drop the noise term in the following
discussion.
The TC equation (11) is still equivalent to the Heisen-

berg equation of motion and difficult to solve in general.
Note that we can reexpress the memory term of the TC
equation as

∫ t

t0

dτeiL(t−τ)PiLQD(τ, t0)e
iQL0Q(τ−t0)iLO(t0), (12)

where

D(t, t0) = 1 +

∞
∑

n=1

in
∫ t

t0

dt1

∫ t1

t0

dt2 · · ·

∫ tn−1

t0

dtn

×QL̆Q
I (tn − t0)QL̆

Q
I (tn−1 − t0) · · ·QL̆

Q
I (t1 − t0),

(13)

with

L̆Q
I (t− t0) ≡ eiQL0Q(t−t0)LIe

−iQL0Q(t−t0). (14)

Here, L0 and LI are the Liouville operators of the non-
perturbative Hamiltonian H0 and the interaction Hamil-
tonian HI , respectively,

L0 O = [H0, O], LI O = [HI , O]. (15)

When we expand D(t, t0) up to first order in terms of LI ,
the TC equation is given by

d

dt
O(t0) = eiL(t−t0)PiLO(t0)

+

∫ t

t0

dτeiL(t−τ)PiLQeiQL0Q(τ−t0)iLO(t0).

(16)
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Here, we have already dropped the noise term. Equation
(16) is the starting point in the following calculation.
Note that the memory term contains the coarse-

grained time-evolution operator eiQL0Qt. In general, it
is not easy to evaluate the coarse-grained time-evolution
and hence it is approximately replaced by the ordinary
time-evolution operator eiL0t [22],

∫ t

0

dτeiL(t−τ)PiLQeiQL0Qτ iLO(0)

≈

∫ t

0

dτeiL(t−τ)PiLQeiL0τ iLO(0). (17)

See Appendix A for details. This approximation is crucial
to derive the ”acausal” diffusion equation. However, as
we will see later, it yields several problems.

III. APPLICATION TO NON-RELATIVISTIC

MODEL

In this section, we apply the POM to a non-relativistic
model. In the view of causality, coarse-grained equations
of non-relativistic models is not necessarily causal diffu-
sion equations. However, if we can implement coarse-
grainings preserving conservation laws, the causal dif-
fusion equations are more appropriate as coarse-grained
equations even in the non-relativistic systems, because
acausal diffusion equations break sum rules.
We apply the POM to the non-relativistic model with

the following Hamiltonian:

H = H0 +HI , (18)

H0 =

∫

d3xψ†(x)

(

−
1

2m
∇2 − µ

)

ψ(x), (19)

HI = −

∫

d3xd3x′ g

2
ψ†(x)ψ(x)v(x − x

′)ψ†(x′)ψ(x′),

(20)

where H0 and HI are the non-perturbative Hamiltonian
and the interaction Hamiltonian, respectively. The chem-
ical potential µ is introduced in the non-perturbative
Hamiltonian.
The commutation relation of the fermion field ψ(x) is

given by

[ψ(x), ψ†(x′)]+ = δ(3)(x− x
′), (21)

where [ ]+ denotes the anticommutator.
There are many possibilities for the definition of the

projection operator [22, 23, 24, 25, 26, 27, 28, 29, 30, 31,
32, 33, 34, 35, 36]. To describe the diffusion process of the
number density, we employ the following Mori projection
operator [27],

PO

=

∫

d3xd3x′(O, δn(x)) · (δn(x), δn(x′))−1 · δn(x′).

(22)

FIG. 1: The ring diagram that contributes the calculation of
the memory term. The solid line represents the fermion and
the dotted line denotes the interaction v(x).

Here, δn(x) denotes the fluctuations of the number den-
sity,

δn(x) = ψ†(x)ψ(x) − 〈ψ†(x)ψ(x)〉eq . (23)

where 〈ψ†(x)ψ(x)〉eq is the expectation value in thermal
equilibrium. The Kubo’s canonical correlation is defined
by

(X,Y ) =

∫ β

0

dλ

β
〈eλH0Xe−λH0Y 〉0, (24)

where

〈O〉0 =
1

Z0
Tr[e−βH0O], (25)

with Z0 = Tr[e−βH0 ]. When we use this projection op-
erator, we obtain a linear equation. This is enough for
our purpose because we are interested in the dynamics
close to equilibrium. If we want to take nonlinear terms
into account, we should re-define a projection operator
including nonlinear operators. See [24, 27] for details.
Substituting them into the TC equation (16) and set-

ting O(0) = δn(x) and t0 = 0, the coarse-grained equa-
tion of the number density is derived. As is discussed
in Refs. [23, 24], the memory function is approximately
given by calculating the contribution of the ring diagram
shown in Fig. 1. Then, we set v(x − x

′) = δ(3)(x− x
′)

for simplicity. Finally, we have the integrodifferential
equation of the number density,

d

dt
δn(k, t) = −

∫ t

0

dsΓ(k, t− s)δn(k, s). (26)

Here, the memory function Γ(k, t) is defined by the
inverse-Laplace transform of ΓL(k, s),

ΓL(k, s) =
−χ̈L

s (k)

χ0(k) + χ̇L
s (k)

Ω(k), (27)

where

Ω(k) = 1− gβχ0(k), (28)

χ̇L
s (k) =

∫ ∞

0

dte−st d

dt
χt(k), (29)

χ̈L
s (k) =

∫ ∞

0

dte−st d
2

dt2
χt(k), (30)
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with

χt(k)

=
1

βV

∑

p

(n−
p+k − n−

p )
−1

Ep+k − Ep

e−i(Ep+k−Ep)t.

(31)

Here, n−
k is the Fermi distribution function,

n−
k =

1

eβ(Ek−µ) + 1
, (32)

with Ek = k2/2m. The function χt(k) corresponds to
the simple contribution of the one-loop fermion diagram
and is interpreted in the kinematical way as is discussed
in Refs. [23, 24]. However, the memory function itself
is given by the involved combination of χt(k) because
of the coarse-grained time-evolution operator. If we use
the approximation discussed in Eq. (17), the memory
function is more simplified. We will come back to this
point later.
The Laplace transform of the diffusion equation (26)

is

δnL(k, s) =
δn(k, 0)

s+ ΓL(k, s)
. (33)

Now, we can investigate whether the number density con-
verges to the thermal equilibrium state or not. When
the diffusion equation describes the thermal equilibration
process, δn(x, t) vanishes at late time. From the final
value theorem of the Laplace transformation, δn(k,∞)
is given by

lim
t→∞

δn(k, t) = lim
s→0

sδnL(k, s). (34)

Substituting Eq. (33) into the final value theorem, we
have

lim
t→∞

δn(k, t) = 0. (35)

Thus, the time-evolution of δn(k, t) is consistent with
the fact that the derived diffusion equation describes the
thermal equilibration process.
As we have discussed at the last paragraph of the pre-

ceding section, the projection operator Q contained in
the memory term is sometimes dropped and the approx-
imation yields several problems. One is the problem of
the convergence discussed above. When we apply the
approximation, from Eq. (17), the memory function is
given by

ΓL(k, s) = −
χ̈L
s (k)

χ0(k)
Ω(k). (36)

Substituting this expression into the final value theorem,
one can easily check that δn(x, t) does not vanish at late
time,

lim
t→∞

δn(k, t) 6= 0. (37)

This means that the derived equation cannot describe the
thermal equilibration process in employing the approxi-
mation. Thus, we should not apply the approximation
in this calculation. Another problem will be discussed in
Section 6.

IV. COARSE-GRAININGS AND SUM RULE

In our Hamiltonian, the number density is a conserved
quantity and there exists a sum rule associated with the
conservation law. Then, it is desirable that the coarse-
grained equation is consistent with the sum rule. In this
section, we show that our coarse-grained equation is con-
sistent with the sum rule.
First of all, we introduce the Fourier transform of the

correlation function of the number density [15],

〈[n(x, t), n(x′, t′)]〉eq

=

∫

dω

2π

∫

dk

(2π)3
C′′(k, ω)eik(x−x′)e−iω(t−t′).

(38)

The Fourier transform C′′(k, ω) is real and an odd func-
tion of the frequency ω [15]. From the sum rule asso-
ciated with the number conservation, as is discussed in
Appendix B, the Laplace-Fourier transform δnLF (k, z) is
expanded for large values of z,

δnLF (k, z)/F (k)

=
i

z
C(k) +

i

z3
1

m
k
2〈n(0)〉eq +O(1/z4), (39)

where F (k) denotes an external field, and

C(k) =

∫

dω′

2π

C′′(k, ω′)

ω′
. (40)

We can see that (i) the term proportional to 1/z2 dis-
appears and (ii) the coefficient of the term 1/z3 is given
by i〈n(0)〉eqk

2/m. As is shown in Appendix B, if the
dynamics of the number density is approximately given
by the acausal diffusion equation, one can show that the
term proportional to 1/z2 does not disappear [15]. This
is contradiction to the exact result.
On the other hand, the integrodifferential equation

(26) obeys the sum rule and is consistent with Eq. (39).
By setting s = −iz and expanding Eq. (33) for large
values of z, we obtain

δnLF (k, z) =
iδn(k, 0)

z

+
iδn(k, 0)

z3

− 2
βV

∑

p n
−
p (Ep+k − Ep)

1
βV

∑

p(n
−
p+k − n−

p )
1

(Ep+k−Ep)

Ω(k)

+O(1/z4)

=
iδn(k, 0)

z
+
iδn(k, 0)

z3

k2

mβV

∑

p n
−
p

χ0(k)
Ω(k)

+O(1/z4). (41)
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One can see that the coefficient of the term proportional
to 1/z2 vanishes, as is the case with Eq. (39).
As the initial condition, we set

δn(k, 0) = C(k)F (k), (42)

where, the function C(k) is given by

C(k)

=

∫

dω

2π

∫∞

−∞
dt

∫

d3x〈[δn(x, t), δn(0, 0)]〉eqe
−ikxeiωt

ω
.

(43)

Substituting it into Eq. (41), we find that the first term
is identical with that of Eq. (39). On the other hand, we
can see the following relation by comparing the second
terms:

〈n(x′)〉eq = C(k)

1
βV

∑

p n
−
p

χ0(k)
Ω(k). (44)

When we apply the free gas approximation to the expec-
tation value of Eq. (43), the initial condition is given
by

C(k) = βχ0(k). (45)

Substituting this expression into Eq. (44), we obtain the
number density at the equilibrium state,

〈n(0)〉eq =
1

V

∑

p

n−
pΩ(k). (46)

The r.h.s. of the equation has the k dependence. It fol-
lows that the number density converges to an inhomoge-
neous distribution instead of a thermal equilibrium distri-
bution. However, it should be noted that the breaking of
the sum rule is small for low k because limk→0 Ω(k) = 1.
Thus, this approach is still available for describing the
dynamics associated with long distance scales [37].

V. MARKOV APPROXIMATION

The derived diffusion equation is still an integrodif-
ferential equation. To discuss the behavior of the coarse-
grained equation, that is, causal or acausal, we derive the
local equation by employing the Markov approximation.
First of all, we should notice that the memory term

can be separated into two terms [23, 24],

d

dt
δn(k, t) = −

∫ t

0

dτΩ2(k, t− τ)δn(k, τ)

−

∫ t

0

dτΦ(k, t − τ)δn(k, τ), (47)

where the frequency function Ω2(k, t) and the renormal-
ized memory function Φ(k, t) are defined by the imagi-
nary part and the real part, respectively,

Ω2(k, t) =

∫

dω

2π
iIm[ΓL(k,−iω + ǫ)]e−iωt, (48)

Φ(k, t) =

∫

dω

2π
Re[ΓL(k,−iω + ǫ)]e−iωt. (49)

It is worth notifying that the time derivative of the
number density always vanishes at the initial time,
d(δn(k, t))/dt|t=0 = 0.
From the final value theorem, we can see the tempo-

ral behavior of the two functions; the frequency function
converges to a finite value and the renormalized memory
function vanishes at late time. Thus, we assume that the
renormalized memory function relaxes rapidly and van-
ishes, while the frequency function converges to finite val-
ues depending on temperatures and chemical potentials
after short time evolution. Actually, the memory func-
tion of the chiral order parameter behaves as is assumed
above [23, 24]. Because we are interested in the slow dy-
namics associated with the macroscopic time scale, we
ignore such fast variations. Then, the frequency function
is approximately given by a time-independent constant
and the time dependence of the renormalized memory
function is replaced by the Dirac delta function,

Ω2(k, t) ≈ lim
t→∞

Ω2(k, t) ≡ Dkk
2, (50)

Φ(k, t) ≈ 2δ(t)

∫ ∞

0

dτΦ(k, τ) ≡
2

τk
δ(t). (51)

As a result, the integrodifferential equation is approx-
imately given by

d

dt
δn(k, t) = −Dkk

2

∫ t

0

dτδn(k, τ) −
1

τk
δn(k, t), (52)

where

Dk =
2Ω(k)

mβ(2π)2χ0(k)

∫ Λ

0

dpp2n−
p , (53)

1

τk
= |k|χ0(k)Ω(k)

×

[

mπ

(2π)2

∫ Λ

0

dppn−
p (1 − n−

p )θ(1−
|k|

2p
)

]−1

.(54)

Here, we introduced the momentum cutoff Λ. It should
be noted that Dk is defined also by the final value theo-
rem,

Dkk
2 = lim

s→0
sΓL(k, s). (55)

This definition gives completely the same expression as
Eq. (53).
These expressions are further simplified in the low mo-

mentum limit,

Dk ≈ D ≡
1

mβ

∫ Λ

0 dpp2n−
p

∫ Λ

0 dpp2n−
p (1 − n−

p )
, (56)

1

τk
≈

2

mπ
|k|

∫ Λ

0 dpp2n−
p (1− n−

p )
∫ Λ

0 dppn−
p (1− n−

p )
. (57)
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For later convenience, we multiply τk for both sides.
Finally, the integrodifferential equation is reduced to the
following Markovian diffusion equation:

τk
d2

dt2
δn(k, t) +

d

dt
δn(k, t) +Dca

k k
2δn(k, t) = 0, (58)

where

Dca
k ≡ Dτk. (59)

Solving the differential equation, we should employ the
constraint for the initial condition[38],

d

dt
δn(k, t)

∣

∣

∣

∣

t=0

= 0. (60)

One can easily see that the equation is nothing but the
causal diffusion equation. The diffusion coefficient Dca

k

corresponds to the diffusion constant of the usual dif-
fusion equation, and τk represents the relaxation time.
One can easily see that the Markovian diffusion equation
is reduced into the form of the acausal diffusion equation
by setting τk = 0.
The difference between Eq. (2) and Eq. (58) is the

momentum dependence of the relaxation time. In Eq.
(2), the number density decays with the same relaxation
time even for the different momentum modes. On the
other hand, our equation shows different relaxation time
depending on the momentum.

VI. DIFFUSION CONSTANT AND

RELAXATION TIME

If the coarse-grained dynamics is given by the acausal
diffusion equation, the diffusion constant is expressed
by the time correlation function of the number density
(or the time correlation function of the number current
density)[21]. In this section, we give the expressions of
the diffusion coefficient and the relaxation time in terms
of correlation functions.
By using the initial condition given by the linear re-

sponse of the external field F (k), the Laplace-Fourier
transform of the causal diffusion equation (58) is pre-
sented by

δnLF (k, z)/F (k) =
(1− izτk)C(k)

−z2τk − iz +Dkk
2
. (61)

Note that the real part of δn(k, z)/F (k)|z=ω+iǫ is related
to the correlation function of the number density (see
Appendix B).
Setting z = ω + iǫ, we can find that the real part has

the following relations;

lim
ω→0

lim
k→0

ω4

|k|3
Re
n(k, ω)

F (k)
=

C(0)D

τ
, (62)

lim
k→0

lim
ω→0

|k|Re
n(k, ω)

F (k)
=

C(0)

Dτ
, (63)

where τ = limk→0(|k|τk) and D is defined by Eq.
(56). Thus, it is possible to express the diffusion co-
efficient and the relaxation time in terms of the cor-
relation function. However, the expressions are not so
simple as the diffusion constant of the acausal diffu-
sion equation. This is because our equation is based
on the coarse-grained dynamics using the projection op-
erator. In the POM, the projected microscopic vari-
ables are the origin to cause the fluctuations and dis-
sipations of variables associated with macroscopic time
scales. Then, the diffusion coefficient is defined by the
noise-noise correlation instead of the current-current cor-
relation [22, 27, 28, 29, 30, 31, 33, 34, 35, 36]. As a mat-
ter of fact, from Eq. (11), the exact TC equation of the
number density is given by

d

dt
δn(x, t) =

∫ t

0

dτ

∫

d3x′Γ(x− x
′, t− s)δn(x′, s)

+ξ(x, t). (64)

Here, the last term represents the noise term that has
been ignored until now and is defined by

ξ(x, t) = QeiLQtiLδn(x, 0). (65)

The relaxation function Γ(x− x
′, t − s) is expressed by

the noise-noise correlation,

Γ(x− x
′t− t′)

=

∫

d3x′′(ξ(x, t), ξ(x′′, t′)) · (δn(x′′, 0), δn(x′, 0))−1.

(66)

In the linear response theory, it is known that the dif-
fusion constant is expressed by the correlation function of
currents when the coarse-grained dynamics is assumed to
be given by the acausal diffusion equation[21]. To derive
the acausal diffusion equation after taking the Markov
limit in the POM, the noise-noise correlation must be
replaced by the current-current correlation, at least, in
the low momentum limit. This is easily verified if we can
approximately replace the coarse-grained time-evolution
operator eiLQt with the usual time-evolution operator
eiLt (see Appendix A for details). As a matter of fact,
this approximation means to drop χ̇L

s (k) in the denom-
inator of the memory function, and hence the memory
function is approximately replaced by Eq. (36). Then,
one can easily show that the Markovian diffusion equa-
tion is reduced to the acausal diffusion equation in the
low momentum limit. It is normally assumed that the
approximation is justified at least in the low momentum
limit [22]. Actually, the famous conclusion that the diffu-
sion constant is given by the current-current correlation is
derived under the same assumption [39]. However, χ̇L

s (k)
is not small even in the low momentum limit. This is the
reason why we cannot obtain the acausal diffusion equa-
tion in contrast to Ref. [22]. This result further suggests
that the current-current correlation does not necessarily
give the definition of the diffusion constant.
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VII. SUMMARY AND CONCLUDING

REMARKS

We applied the projection operator method (POM) to
the non-relativistic model and derived the coarse-grained
equation for the number density. The derived equation is
an integrodifferential equation and contains the memory
effect. In our model, the number density is a conserved
quantity and there exists the sum rule associated with
it. The usual acausal diffusion equation breaks the sum
rule. On the other hand, the integrodifferential equation
satisfies the sum rule in the low momentum limit.
Second, we assumed that there exists the clear sepa-

ration between microscopic and macroscopic scales, and
employed the Markov approximation. The Markovian
diffusion equation is characterized by the diffusion coef-
ficient and the relaxation time as is the case with the
causal diffusion equation. Thus, we can conclude that
the causal diffusion equation can be derived by using the
POM. However, it should be noted that the relaxation
time of our equation depends on the momentum.
To derive the acausal diffusion equation in the POM,

as is discussed in Ref. [22], we should approximately re-
place the coarse-grained time-evolution operator with the
normal time-evolution operator. Usually, it is assumed
that the approximation is justified in the low momentum
limit[22]. However, in our calculation, we cannot em-
ploy the approximation even in the low momentum limit.
This result further suggests that the current-current cor-
relation does not necessarily give the definition of the
diffusion constant.
These results are not particular to the model used in

this paper. The causal diffusion equation is obtained
also by applying the POM to the Nambu-Jona-Lasinio
(NJL) model, which is the low energy effective model of
quantum chromodynamics (QCD). This result may be
important to discuss the QCD critical dynamics. Usu-
ally, we simply assume acausal diffusion equations as
coarse-grained equations of conserved variables associ-
ated with macroscopic time and length scales near the
critical points [40, 41, 42, 43]. However, the coarse-
grained equation does not necessarily have an acausal
form [23, 24, 44]. When we apply causal diffusion equa-
tions instead of acausal ones, the QCD critical dynamics
might be changed.
In this calculations, we employed the perturbative ap-

proximation. Thus, there may exist criticism that if we
calculate without employing approximations, we may be
possible to obtain acausal diffusion equations instead of
causal ones. However, it is impossible because the exact
calculation must satisfy the sum rule.
Ichiyanagi also discussed the causal diffusion equation

(more generally, the extended irreversible thermodynam-
ics) based on the projection operator method [45, 46].
However, the situation discussed by him is different from
ours. He introduced a time-smoothed density matrix to
define the projection operator. The time-smoothed den-
sity matrix represents a non-equilibrium state and hence,

the Kubo’s canonical correlation of Eq. (24) is replaced
by a non-equilibrium expectation value. In our calcula-
tion, we consider the situation where the deviation from
the equilibrium state is not so strong and the degrees
of freedom associated with microscopic time scale has
already reached the thermal equilibrium. This is the
reason why we employ the Kubo’s canonical correlation
as the definition of the scalar product contained in the
projection operator. On the other hand, when we em-
ploy the time-smoothed density matrix as the definition
of the scalar product, the microscopic degrees of free-
dom stays in the non-equilibrium state and hence the
derived coarse-grained equation describes the evolution
of the fluctuations from the non-equilibrium state.
Recently, the generalized projection operator method

(GPOM) is developed to describe the pulse parameter
dynamics [47]. Although projection operators are intro-
duced also in the GPOM, the GPOM is different from our
method. The Mori projection operator satisfies the con-
dition (6), and this plays an important role in deriving
the TC equation (16). However, the projection operator
introduced in the GPOM does not satisfy this condition
because the phase degree of freedom is introduced. Thus,
it is difficult to reproduce the GPOM in our projection
operator method.
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APPENDIX A: CONVENTIONAL DERIVATION

OF DIFFUSION EQUATION IN THE

PROJECTION OPERATOR METHOD

In this section, we review the conventional derivation
of a coarse-grained equation of the number density in the
POM [22].
Substituting the Mori projection operator defined by

Eq. (22) into Eq. (11), the exact TC equation is given
by

d

dt
δn(x, t)

=

∫ t

0

dτ

∫

d3x′d3x′′(eiQLτ δṅ(x), δṅ(x′))

·(δn(x′), δn(x′′))−1 · δn(x′′, t− τ) + ξ(x, t),

(A1)

The streaming term vanishes in this definition of the pro-
jection operator. We assume that the memory function
can be approximated as follows:

(eiQLτ δṅ(x), δṅ(x′)) = (eiQLτ∇x · δJ(x),∇x′ · δJ(x′))

≈ −∇2
x(e

iLτδJ(x), δJ(x′)), (A2)
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where δJ(x) is the current of the number density. In the
first line, we used the equation of continuity,

d

dt
δn(x, t) +∇ · δJ(x, t) = 0. (A3)

In the second line, the coarse-grained time-evolution op-
erator eiQLt is approximately replaced by the usual time-
evolution operator eiLt.
After the Fourier transformation, the TC equation is

given by

d

dt
δn(k, t) = k

2

∫ t

0

dτΓJJ (k, τ)δn(k, t − τ)

+ξ(k, t), (A4)

where ΓJJ (k, t) is the Fourier transform of the memory
function,

∫

d3x′(eiLtδJ(x), δJ(x′)) · (δn(x′), δn(x′′))−1

=

∫

d3k

(2π)3
ΓJJ (k, t)e

ik(x−x′).

(A5)

We assume that ΓJJ(0, t) is finite after taking the
Markov approximation. Finally, the coarse-grained equa-
tion at low k is given by

d

dt
δn(k, t) = k

2Dacaδn(k, t) + ξ(k, t), (A6)

where the diffusion constant is defined by

Daca =

∫ ∞

0

dτΓJJ (0, τ). (A7)

This is the acausal diffusion equation, and hence it is
often claimed that acausal diffusion equation can be de-
rived in the POM. However, as we have seen, to derive
the acausal diffusion equation, we should apply the ap-
proximation (A2) and it is not applicable to the non-
relativistic Hamiltonian used in this paper.

APPENDIX B: CORRELATION FUNCTIONS OF

NUMBER DENSITY

First of all, we summarize the general properties of the
correlation functions of the number density following the
discussion given by Kadanoff and Martin [15]. This dis-
cussion is of assistance when we investigate the validity
of the coarse-grained equation obtained by applying the
POM.
In the linear response theory, the expectation value of

an arbitrary operator 〈O(t)〉 that is dynamically induced
by the external field is given by

〈O(x, t)〉 − 〈O(x, t)〉eq = i

∫ t

−∞

ds〈[Hex(s), O(x, t)]〉eq ,

(B1)

where 〈 〉eq means to take a thermal expectation value
with a Hamiltonian H , and O(x, t) ≡ eiHtO(x)e−iHt.
We are interested in the number density induced by

the external field F (x, t). For this purpose, we substitute
O(x) = n(x) and Hex(t) = −

∫

d3xn(x, t)F (x, t) into Eq.
(B1). Then, we obtain

〈δn(x, t)〉 = i

∫ t

−∞

dt′〈[n(x, t), n(x′, t′)]〉eqF (x
′, t′).(B2)

Here, the external field has the following time depen-
dence:

F (x, t) =

{

F (x)eǫt t < 0
0 t > 0.

(B3)

Now, we introduce a function C′′(k, ω) as follows;

〈[n(x, t), n(x′, t′)]〉eq

=

∫

dω

2π

∫

dk

(2π)3
C′′(k, ω)eik(x−x′)e−iω(t−t′).

(B4)

The C′′(k, ω) is real and an odd function of the frequency
ω.
Substituting Eq. (B4) into Eq. (B2), we obtain

〈δn(x, t)〉

=

∫

dω

2π

∫

d3k

(2π)3
F (k)

C′′(k, ω)

ω
eikxe−iωt (t ≥ 0).

(B5)

We further define the Laplace-Fourier transform of the
number density,

δnLF (k, z) =

∫

d3x

∫ ∞

0

dteizt〈δn(k, t)〉

=

∫

dω

2πi

C′′(k, ω)

ω(ω − z)
F (k). (B6)

Here, we substitute Eq. (B5).
The dynamic susceptibility is defined by

C(k, z) =

∫

dω′

2π

C′′(k, ω′)

ω′ − z
. (B7)

Setting z = ω + iǫ, the dynamic susceptibility is decom-
posed into the real part and the imaginary part;

C(k, ω + iǫ) = C′(k, ω) +
i

2
C′′(k, ω), (B8)

where

C′(k, ω) = P

∫

dω′

2π

C′′(k, ω′)

ω′ − ω
. (B9)

This is a Kramers-Kronig relation. Because the function
C′′(k, ω) is an odd function of ω, we obtain the following
relation from the Kramers-Kronig relation,

C(k) ≡ C(k, ω = 0) =

∫

dω′

2π

C′′(k, ω′)

ω′
. (B10)
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We can derive a sum rule with the help of the equation
of continuity,

∂

∂t
n(x, t) +∇ · J(x, t) = 0. (B11)

Operating the time derivative to Eq. (B4) and applying
the equation of continuity, we obtain

∂

∂t
〈[n(x, t), n(x′, t′)]〉eq

= −〈[∇ · J(x, t), n(x′, t′)]〉eq

= −i

∫

dω

2π

∫

dk

(2π)3
ωC′′(k, ω)eik(x−x′)e−iω(t−t′).

(B12)

In the Schrödinger field discussed in this paper, the
current operator J(x, t) is given by

J(x, t) =
i

2m
(∇ψ†(x, t) · ψ(x, t) − ψ†(x, t)∇ψ(x, t)).

(B13)

Then, one can easily calculate the equal time commutator
of the current and the number density,

〈[J(x, t), n(x′, t)]〉eq = −
i

m
∇δ(x− x

′)〈n(x′)〉eq .(B14)

This equation implies

−

∫

dω

2π

∫

dk

(2π)3
ωC′′(k, ω)eik(x−x′)

=
1

m
∇2δ(x− x

′)〈n(x′ = 0)〉eq, (B15)

and hence we can obtain the following f-sum rule,

∫

dω

2π
ωC′′(k, ω) =

1

m
k
2〈n(0)〉eq . (B16)

By expanding Eq. (B6) for large values of z and using
the relation and the sum rule, we obtain

δnLF (k, z)/F (k) =
i

z
C(k) +

i

z2

∫

dω

2π
C′′(k, ω)

+
i

z3

∫

dω

2π
ωC′′(k, ω) + · · ·

=
i

z
C(k) +

i

z3
1

m
k
2〈n(0)〉eq +O(1/z4).

(B17)

1. Acausal diffusion equation

Here, we assume that the time-evolution of the num-
ber density follows the acausal diffusion equation. Then,
from the Fick’s law, the current is given by

J(x, t) = D∇n(x, t), (B18)

where D is the diffusion constant. Substituting it into
the equation of continuity, we obtain the acausal diffusion
equation,

∂

∂t
n(x, t) = D∇2n(x, t). (B19)

After the Laplace-Fourier transformation, the number
density is given by

nLF (k, z) =
n(k, 0)

−iz +Dk2
, (B20)

where, n(k, 0) represents an initial value of the number
density. When the initial value is induced by the external
field F (x, t) defined in the preceding section, we can set

n(k, 0) = C(k)F (k). (B21)

Expanding the Laplace-Fourier transform for large values
of z, we have

nLF (k, z)

F (k)
= i

C(k)

z
−
C(k)Dk2

z2
+ · · · . (B22)

This expression has the term proportional to 1/z2, while
the corresponding term vanishes in Eq. (B17). Further-
more, C′′(k, ω) in the diffusion equation is

C′′(k, ω) =
C(k)Dk2ω

ω2 + (Dk2)2
. (B23)

This expression fails to satisfy the sum rule (B16). Thus,
if the coarse-grained dynamics is approximated by the
acausal diffusion equation, the time-evolution completely
breaks the sum rule.

2. Causal diffusion equation

Kadanoff and Martin pointed out that we should intro-
duce a relaxation time to satisfy the sum rule[15]. Then,
the Fick’s law is modified as follows;

∂

∂t
J(x, t) = −

1

τ
J(x, t)−D∇n(x, t). (B24)

Substituting this equation into the equation of continuity,
we obtain

[

∂2

∂t2
+

1

τ

∂

∂t
−D∇2

]

n(x, t) = 0. (B25)

After using the initial conditions

n(k, 0) = C(k)F (k), (B26)

∂

∂t
n(x, t)

∣

∣

∣

∣

t=0

= 0, (B27)

the Laplace-Fourier transform of the number density is
given by

nLF (k, z)

F (k)
=

C(k)(1 − izτ)

−iz +Dk2 − τz2

= i
C(k)

z
+ i

Dk
2C(k)

τz3
+ · · · . (B28)
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In this expression, we do not have the term proportional
to 1/z2 and the equilibrium value of the number den-
sity is given by 〈n(0)〉eq = mC(k)D/τ . The equilibrium
number density should not depend on the momentum and
hence the expression of 〈n(0)〉eq looks inconsistent. How-

ever, the diffusion equation is the coarse-grained equation
and it is valid only in the low momentum limit. Then, the
function C(k) is approximately given by C(0). Thus, one
can conclude that the causal diffusion equation is consis-
tent with the sum rule in the low momentum limit.
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