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Abstract

The Fluctuation Relation for a stationary state, kept at constant energy by a deterministic

thermostat - the Gallavotti-Cohen Theorem — relies on the ergodic properties of the system

considered. We show that when perturbed by an energy-conserving random noise, the rela-

tion follows trivially for any system at finite noise amplitude. The time needed to achieve

stationarity may stay finite as the noise tends to zero, or it may diverge. In the former case

the Gallavotti-Cohen result is recovered, while in the latter case, the crossover time may

be computed from the action of ‘instanton’ orbits that bridge attractors and repellors. We

suggest that the ‘Chaotic Hypothesis’ of Gallavotti can thus be reformulated as a matter of

stochastic stability of the measure in trajectory space. In this form this hypothesis may be

directly tested.

http://arxiv.org/abs/cond-mat/0612397v1
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I. INTRODUCTION

The Fluctuation Theorems are relations satisfied by the distribution of entropy production

σ̄τ = 1
τ

∫ τ

o
dt σ(t) [1, 2, 3, 4]

P (σ̄τ)

P (−σ̄τ )
∼ eτ σ̄τ or 〈e−λτσ̄τ 〉 = 〈e−(1−λ)τ σ̄τ 〉 ∀λ (I.1)

They hold in a series of different settings. The proofs are very simple and general when they

apply to systems starting from an equilibrium configuration [2], or in contact with a thermal

bath involving stochastic noise that guarantees ergodicity [5, 6]. On the contrary, when the

system is treated in the stationary state achieved thanks to a deterministic thermostat, the

derivation is not simple and requires a knowledge of the ergodic properties that is very rarely

accessible analytically [3, 7].

In those cases in which the nature of the thermostat is thought to be physically irrelevant,

it is quite natural to prefer the stochastic baths because they invoke the least hypotheses,

making the analysis conceptually simpler. On the other hand, the very fact that for determin-

istic systems the Fluctuation Relation is not automatically satisfied makes it an interesting

tool to study questions of ergodic theory that are still largely open.

For a purely deterministic case, a forced system converges to an ‘attractor’ set, while

the time-reversed dynamics converges to a ‘repellor’ set. Loosely speaking, the Gallavotti-

Cohen theorem is then based on two types of hypotheses: i) that the attractor is sufficiently

chaotic, and ii) that the attractor and repellor are interwoven fractals with overlapping

closures. As the forcing is increased, attractor and repellor tend to separate, and even if

the attractor remains chaotic the Fluctuation Relation no longer holds in general [8]. For

macroscopic systems at reasonable levels of forcing, one can assume that the hypotheses

above are effectively (if not always strictly) satisfied, leading to the Chaotic Hypothesis [9].

In this paper we recast the content of the previous paragraph in the language of stochastic

stability [10]: we first show that adding a small, energy-conserving noise the Fluctuation

Relation is trivially satisfied by any model, and we then analise the limit of noise going

to zero. Indeed, all the subtelties of the Gallavotti-Cohen theorem and of the Chaotic

Hypothesis are a result of this limit. The small noise limit has moreover the advantage that

an approximation scheme (analogous to the semiclassical treatment) becomes exact, so that

one can analise it in detail.
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II. THERMOSTATTED DYNAMICS

We shall consider Hamilton’s equations with forcing, a thermostatting mechanism, and

energy conserving noise [11]:

q̇i = pi

ṗi = −∂V (q)

∂qi
+ gijηj − fi(q) + γ(t)pi = −∂V (q)

∂qi
+ gij(ηj − fj) (II.2)

here and in what follows we assume summation convention.

• ηj are white, independent noises of variance ǫ.

• gij = δij − pipj
p2 is the projector onto the space tangential to the energy surface.

• fi(q) is a forcing term that depends on the coordinates only.

• γ(t) = f•p
p2 . Multiplying the first of (II.2) by ∂V (q)

∂qi
, the second by pi and adding, one

concludes that energy is conserved.

• The product gijηj is rather ill defined because both terms depend on time and ηj is

discontinuous. The ambiguity is raised by stipulating that it has to be interpreted in

the Stratonovitch convention [12], the meaning of which will be made clear below.

The probability evolves through [12]:

Ṗ = −HP (II.3)

where H is the operator:

H = pi
∂

∂qi
− ∂V (q)

∂qi

∂

∂pi
+

∂

∂pi
[γpi]−

∂

∂pi
fi − ǫ

∂

∂pj
gijgil

∂

∂pl
(II.4)

The precise factor ordering in the last term is exactly what we meant by Eq. (II.2) being

in the ‘Stratonovitch convention’. In the absence of driving f = 0 it is easy to check that

H anihilates any function that depends on the phase-space coordinates only through the

energy E = p2

2
+ V . Hence, the noise respects the microcanonical measure, in that case.

We shall consider as usual the ‘time-reversal transformation’ H̃ = [QHQ−1]
†
, where

Q is the operator that reverses momenta: QpiQ
−1 = −pi and Q ∂

∂pi
Q−1 = − ∂

∂pi
. Under
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momentum reversal all terms change signs, except the last. Under Hermitean conjugation

the factor order is reversed, and derivatives change sign. We get:

H̃ =
[

QHQ−1
]†

= H + σ

σ ≡ [γpi]
∂

∂pi
− ∂

∂pi
[γpi] = −(d− 1)γ (II.5)

with 2d is the dimension of phase-space, which can be checked by straightforward calculation.

We hence have:

[

QHQ−1
]†

= H + σ (II.6)
[

Q(H + λσ)Q−1
]†

= H + (1− λ)σ (II.7)

because the entropy production rate σ changes sign under time-reversal and conjugation.

From here it is standard to show that for every finite value of ǫ the fluctuation theo-

rem holds [5, 6]. For completeness, let us outline the proof: given any initial and final

configurations xi = (qi, pi) and xf = (qf , pf) the expectation of the total work is

〈e−λ
R τ

o
σdt〉 = 〈xf |e−τ(H+λσ)|xi〉

= 〈xi|e−τ(H+λσ)† |xf 〉 = 〈xi|Q−1e−τ(H+(1−λ)σ)Q|xf〉 (II.8)

Because of the noise, the evolution is ergodic on the energy surface, and thus the real part of

the spectrum of H restricted to functions on the energy surface has a gap. Evaluating (II.8)

on a basis of eigenfunctions on the energy surface, the ‘lowest’ right and left eigenfunctions

(the ones with the eigenvector µo(λ) having the lowest real part) 〈Lo| and |Ro〉 dominate:

〈xf |e−T (H+λτσ)|xi〉 ∼ 〈xf |Ro〉〈Lo|xi〉 e−τµo(λ)

= 〈xf |Lo〉〈Ro|xi〉 e−τµo(1−λ) (II.9)

and using the fact that H+λσ and H+(1−λ)σ have the same spectrum, we conclude that:

lim
τ→∞

{

1

τ
ln〈e−λ

R T

o
σdt〉 − 1

τ
ln〈e−(1−λ)

R T

o
σdt〉

}

= 0 (II.10)

which is the Laplace transformed version of the Fluctuation Theorem (I.1). Clearly, the

whole argument breaks down at strictly zero noise, when the eigenfunctions on the energy

surface are no longer smooth, and the overlaps 〈Lo|xf 〉 and 〈Ro|xi〉may vanish. The problems

thus may (and will) arise because we have proven the theorem for

lim
ǫ→0

lim
τ→∞

1

τ
lnP

(
∫ τ

o

dt σ

)

(II.11)
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and the Gallavotti-Cohen theorem is for:

lim
τ→∞

lim
ǫ→0

1

τ
lnP

(
∫ τ

o

dt σ

)

(II.12)

In what follows, we shall analise the small-noise limit, starting from a simple example.

III. A SIMPLE EXAMPLE

Consider a particle on a two-dimensional space with toroidal boundary conditions, a

constant field E along the direction 1, and an isokinetic thermostat. The example was

discussed in Ref. [7]. We write the velocity vector (px, py) as:

px = p cos θ ; py = p sin θ (III.13)

There are two stationary situations: parallel velocity (px, py) = (p, 0), θ = 0 (stable: the at-

tractor) and antiparallel velocity (px, py) = (−p, 0), θ = π (unstable: the repellor). Equation

(II.2 ) reads, in this case:

ṗx = E − Ep2x
p2

+ ηx − px
pxηx + pyηy

p2

ṗy = −Epxpy
p2

+ ηy − py
pxηx + pyηy

p2
(III.14)

In terms of θ both equations collapse into a single one:

θ̇ = −E sin θ + ηθ = − d

dθ
[−E cos θ] + ηθ (III.15)

where we have defined the angular, isotropic noise: ηθ ≡ sin θηx − cos θηy, a white noise

whose variance is ǫ. The entropy production rate is σ = E cos θ.

A. Weak noise limit

Equation (III.15) can be interpreted as a Langevin process in an effective potential V =

−E cos θ, see Fig. 1. The probability evolves according to:

Ṗ = −
[

ǫ
∂2

∂θ2
+ E

∂

∂θ
sin θ

]

P = −HFPP (III.16)

If we are interested in calculating the average e−λ
R

σdt in the large-time limit we need to

compute the lowest eigenvalue of

Hλ = HFP + λE cos θ (III.17)



6

which can be taken as usual to the Hermitian form

Hh
λ = eǫE sin θHλe

−ǫE sin θ =
1

ǫ

[

−ǫ2
∂2

∂θ2
+

E

4
sin2 θ + ǫE(λ− 1

2
) cos θ

]

(III.18)

and takes the form of a Shroedinger operator in an effective potential Veff = E
4
sin2 θ+ ǫ(λ−

1
2
)E cos θ depicted in the figure 1. The average work per unit time at long times is given

by the lowest eigenvalue of (III.18). The Gallavotti-Cohen symmetry is manifest making

(λ− 1/2) → −(λ− 1/2) and θ → π − θ.

V

Veff

θ=0    

θ=0    θ=πθ=π

θ=π θ=π

A A

FIG. 1: Top: potential in terms of angle. Bottom: effective potential associated with the

Shroedinger problem (III.18). A is the subdominant bias proportional to (λ − 1/2) that favours

attractor (A > 0), or repellor (A < 0).

Now, in the limit of small ǫ the situation is as follows: to leading order in ǫ the ground

state is doubly degenerate, the eigenfunctions being concentrated in θ = 0 and θ = π,

respectively – both attractor and repellor are selected by the potential Veff at this order

(ǫ−1). It is the next-to-leading order A = (2λ − 1)E cos θ in Veff (see Fig. 1) that lifts

the degeneracy by a quantity of O(1) in ǫ, thus selecting attractor or repellor, depending

on the sign of (λ − 1/2). Clearly, if (λ − 1/2) is of order one, for small ǫ the ground state

eigenfunction is peaked in only one well, which one depends on the sign of (λ− 1/2), and :

〈e−λτσ̄τ 〉 ∼ eτ(|λ−1/2|−1/2)E (III.19)

where the last term 1/2 comes from the zero-point energy of the minimum.
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B. Attractor, repellor and time-reversal

Let us try now a more direct approach (the techiques can be found in [13]). We can write

an expression for the probability of a trajectory in configuration space:

P (traj) = e−
1

ǫ

R

dt [ 1
4
(θ̇+E sin θ)2− 1

2
Eǫ cos θ] (III.20)

and we wish to calculate the average

〈e−λσ〉 =
∫

traj

P (traj) e−λ
R

dt cos θ =

∫

traj

e−
1

ǫ

R

dt [ 1
4
(θ̇+E sin θ)2+(λ− 1

2
)Eǫ cos θ] (III.21)

The trajectory weight in (III.21) is composed of two terms, the leading term corresponding

to the Lagrangian:

L =
1

4
(θ̇ + E sin θ)2 =

1

4
θ̇2 +

1

4
E2 sin2 θ − 1

2
E
d cos θ

dt
(III.22)

and a subleading term proportional to (λ−1/2). The dominant terms must satisfy Lagrange’s

equations derived from (III.22): these correspond to a problem with inertia in the inverted

potential −Veff . The solutions are:

θ̇ = ±
√

4E + E2 sin2 θ (III.23)

where E is a constant playing the role of an energy associated with the Lagrangian (III.22).

It is easy to see that the integral in the exponent (III.20) (the action) can only be finite for

large times if the trajectory spends most of the time in attractor or repellor, and this is only

possible if E = 0. We thus have that solutions are either solutions of the original noiseless

problem:

θ̇ = −E sin θ = − d

dθ
[−E cos θ] (III.24)

which converge to the attractor and have zero action, or ‘rare’:

θ̇ = E sin θ =
d

dθ
[−E cos θ] (III.25)

taking from attractor to repellor, and these have a finite action equal to E
∫

dθ θ̇ sin θ = 2E.

The general trajectory selected by the first term of (III.21) is composed of sejours in the

attractor and in the repellor, with rapid descents from repellor to attractor (all three with

zero action), plus the ‘instanton’ trajectories with action 2E, see Fig. 2.
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repeller

attractor

instanton

FIG. 2: An ‘instanton’ - ‘antiinstanton’ gas configuration. The average time spent in the attractor

and repellor determines the entropy production.

An important point to note is that the trajectories associated with the Lagrangian (III.22)

in the noiseless limit are, as we have mentioned, many more than the trajectories of the orig-

inal dynamic system in the absence of noise - they include all the non-zero action solutions.

Also very important is the fact that the dynamics associated with (III.22) differs from the

original dynamics in that the original stable point θ = 0 is now unstable, due the reversal

of the potential. These questions will be relevant in the following sections.

The exact proportion of time spent in attractor τattractor and repellor τrepellor will be

determined by the second, subdominant term. This term then gives an action ∼ ǫE(λ −
1/2)(τrepellor − τattractor). The dominant contribution for the λ-dependent average is given

for large times τ by the trajectories that maximise

− lnP (traj) ∼ −ǫ(λ− 1/2)(τrepellor − τattractor) +Ninstanton∆/ǫ (III.26)

where Ninstanton is the number of climbings from attractor to repellor. If λ = 0 the system is

unbiased and it will prefer to stay in the attractor. If, on the contrary, we wish to compute

the large-deviation function with λ 6= 0, then the trajectories that dominate will share time

in attractor and repellor, so that:

(τrepellor + τattractor)σ̄τ = τrepellorσ̄repellor + τattractor σ̄attractor = (τattractor − τrepellor)E (III.27)

For the probability of work per unit time σ̄ , at small noise level, we get a linear profile as
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in figure 3

−−−−−−−−−−

0

ln P(   )σ

σ−E +E

τ

FIG. 3: lnP (σ) vs. σ for the problem of section II. The profile is linear, and can be seen as the

coexistence curve of two phases with free-energy ±E.

which is in agreement with (III.19).

For infinite times the last term in (III.26) is negligible, but for times such that instanton

configurations weigh comparably to the terms proportional to time: ∆/ǫ ∼ ln τ and we shall

not see reversals. There are then two possibilities: we may consider a set of initial conditions

corresponding to an equilibrium configuration, and get the correct proportion of sejour in

attractor and repellor without needing to perform any activated jumps from attractor to

repellor. This is the transient fluctuation theorem, which holds for zero noise. On the other

hand, if we consider any other initial configuration, we need jumps from attractors to repellor

and back in order to obtain the right proportion of sejours in the large time limit. Clearly,

this second ‘stationary’ fluctuation theorem needs ln τ ≫ ∆/ǫ.

Let us note the close analogy to a one-dimensional Ising model [8] E = −J
∑

i sisi+1 −
h
∑

si with βJ → exp(∆/ǫ) the wall energy (where ∆ is the instanton action), and βh →
ǫ(λ − 1/2). Although in our case ‘climbing’ walls cost, and ‘descending’ ones do not, the

difference is unimportant because the number of instantons and of antiinstantons differ by at

most one. Here ǫ enters in the length needed to accomodate many walls, which is necessary in

the thermodynamic (large-length) limit. The alternative is to consider a properly weighted

set of boundary conditions, so that no walls are necessary: this is analogous to the transient
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fluctuation theorem.

IV. SMALL NOISE LIMIT, GENERAL

We shall now show that the structure of the previous section is quite general, although

there are many instanton-antiinstanton trajectories. Consider the evolution equations (II.3)

and (II.4). We write this as a path integral

P (q,p) =

∫

[paths]

e−
∆path

ǫ =

∫

[paths]

e−
1

ǫ

R

dt (L(q,p)− ǫ
2
σ) (IV.28)

where the paths have the appropriate initial condition in phase-space, and all possible final

configurations.

L = q̂i(q̇i − pi) + p̂i(ṗi + Vi + gijfj) + gij p̂jgilp̂l

= q̂iq̇i + p̂iṗi −H (IV.29)

with

H = q̂ipi − p̂igijfj − p̂iVi − gij p̂jgilp̂l (IV.30)

Here and in what follows we use the notation Vi =
∂V
∂qi

. The second, subdominant term in

the exponent comes from the symmetrisation (cfr. the second of (II.5)):

∂

∂pi
(γpi) =

1

2

[

∂

∂pi
(γpi) + (γpi)

∂

∂pi

]

− σ

2
(IV.31)

where again σ = −(d− 1)γ.

We wish to calculate the large-deviation function

〈eλ
R τ

o
dt σ〉 =

∫

[paths]

e−
1

ǫ

R

dt [L(q,p)+ǫ(λ− 1

2
)σ] (IV.32)

Just as in the previous section, in the limit of small noise we have to look for saddle-point

solutions only taking into account the first term in the exponent. The equations of motion

then read:

˙̂qi = −∂H

∂qi
= p̂lglr

∂fr
∂qi

+ p̂l
∂Vl

∂qi

˙̂pi = −∂H

∂pi
= −q̂i − [p̂lfj ++p̂lp̂j]

∂glj
∂pi

q̇i =
∂H

∂q̂i
= pi

ṗi =
∂H

∂p̂i
= −gij(fj + 2p̂j)− Vi (IV.33)
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Eqs. (IV.33) are Hamilton’s equations, and they involve twice as many degrees of freedom

as the original system. In fact, the original phase space variables (qi, pi) have now become

the coordinates, and their conjugate momenta are the new variables (q̂i, p̂i).Multiplying the

third equation by Vi, the fourth by pi and adding, we conclude that all the solutions in the

extended phase-space of (IV.33) are still thermostatted to
∑

p2i + V = constant.

Let us now rewrite the action in Lagrangian form. We first put p̂igijfj = p̂lgligijfj

where we have used gligij = glj. Next, we separate tangential and normal parts of p̂iṗi =

p̂lgliṗi + p̂lpl ṗipi/p
2. We can complete squares and collect the terms, to get the Lagrangian:

L = q̂i(q̇i − pi)−
1

4
[ṗi + gijfj + Vi]

2 +
[

1

2
(ṗi + gijfj + Vi) + gij p̂j

]2

+
p̂lpl
p2

(ṗipi + piVi) (IV.34)

Using the last two equations of motion (IV.33), we see that at the saddle point level the last

two terms cancel. We hence conclude that the action to leading order equals

∆ =

∫

dt L̃(q̈, q̇,q) =

∫

dt [q̈i + gijfj + Vj]
2 (IV.35)

where we have substituted pi = q̇i everywhere in L̃. Note that L̃ has an unusual second time

derivative q̈i. All relevant trajectories are the saddle points of the action (IV.35):

d2

dt2
∂L̃

∂q̈i
− d

dt

∂L̃

∂q̇i
+

∂L̃

∂qi
= 0 (IV.36)

The solutions are determined by initial and final values of both qi and q̇i. In particular,

trajectories of the original system without noise are the ones having zero action:

q̈i + gijfj + Vi = 0 (IV.37)

Furthermore, in order that the action be finite, we must have that q̈i + gijfj + Vi → 0 for

large t. As an example, in the next section we shall construct the solutions of Eq. (IV.36)

for the Lorentz gas.

In a completely chaotic system, we can construct an expansion in terms of (isolated)

trajectories [14, 15], and just as before these will commute between attractor(s) and repel-

lor(s) – defined as dynamically stable and unstable solutions of the equations of motion of

the original system – where they will spend essentially all the time, since otherwise their
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action would be infinite. Because the only difference between attractors and repellors is, by

definition, their stability, the next-to-leading contribution in the action

∆ǫ =

(

λ− 1

2

)
∫

dt σ +
1

2

∫

dt dt′
δ2L̃

δqi(t)δqj(t′)

∣

∣

∣

∣

∣

traj

δqi(t)δqj(t
′) (IV.38)

will decide the length of the sejours in each for each λ.

In this setting, a necessary condition for the Gallavotti-Cohen theorem (i.e. the Fluctua-

tion relation at zero noise) to hold, is that there be orbits with zero action bridging attractor

and repellor.

A. Variational solutions: the zero-action situation.

Given a point on the attractor (qa, pa = q̇a) and a point on the repellor (qr, pr = q̇r)

and two times ti and tf we can obtain the solution going from (qa, q̇a) at ti to (qr, q̇r) at

tf as follows. Starting from any curve (q(t), q̇(t)), contained within the energy surface and

having the correct endpoints, its action will be an upper bound for the true, minimal action.

Deforming the curve so as to minimize the action (IV.35) we reach a solution. The arrival

time may become a variational parameter itself.

If the lowest action ∆min associated with any trajectory joining any two points in the

attractor and repellor is finite, we know that the system will necessarily need a time at least

τ ∼ e∆min/ǫ to exlore them. This can be simply seen by looking at the sum over paths

(IV.32) as a partition function in a space of trajectories at inverse temperature ǫ, with ∆min

its ‘ground state energy’.

Clearly, for the Gallavotti-Cohen theorem to apply, a necessary condition is that ∆min =

0. For this to happen, attractor and repellor have to be interwoven so that just advancing

from (qa, q̇a) along a zero-action trajectory satisfying (IV.37) we reach a point that is as close

as we wish to some (qr, q̇r), providing a zero-action ‘bridge’. However, the condition ∆min = 0

only implies that the time for bridging attractor and repellor grows in a subexponential — for

example power law τ ∼ ǫ−µ — way, and is not necessarily finite as ǫ → 0. One can imagine

such a situation arising in a case in which attractor and repellor have closures of dimension

d1, but these intersect in a manifold of dimension d2 < d1. Without noise a trajectory might

have vanishing probability of leaving the attractor and entering the repellor, since the time

spent in the overlapping region would be negligible; the addition of noise will coarsen both
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attractor, repellor and intersection by introducing a width, hence making the passage more

likely.

V. INSTANTONS FOR THE LORENTZ GAS

We shall consider here a Lorentz gas [16], a system with a single thermostatted particle

under the action of an electric field as in section II, but with in addition obstacles where the

particle bounces, introducing chaos The Lagrangian (III.22) reads

L̃ =
1

4
(θ̇ + E sin θ)2 = pθθ̇ −H

H = E = 2pθ (pθ − E sin θ) (V.39)

with E defined in (III.23) and

pθ =
1

2
(θ̇ + E sin θ) (V.40)

The motion is punctuated by bounces on the wall. Between bounces, the trajectories satisfy

(III.23):

dθ = ±
√

4E + E2 sin2 θdt

dx = cos θdt =
cos θ

θ̇
dθ = ± cos θ√

E2 sin2 θ + 4E
dθ

dy = sin θdt =
sin θ

θ̇
dθ = ± sin θ√

E2 sin2 θ + 4E
dθ (V.41)

which yields the parametric equations for the trajectory segment. One also has that

ṗθ = −2E cos θ pθ = 2E pθ ẋ

pθ(t) = pθ(to) e
2E x|to (V.42)

where to is the initial time of the segment. The action for the trajectory segment reads:

∆ =

∫

dt p2θ(t) = p2θ(to)

∫

dt e4E x|to (V.43)

where x|to =
∫

dt ẋ is the total distance along x, without subtracting the windings if the

space is periodic. It is positive if the particle moved downhill, and negative if it moves

contrary to the force.

Next, we need to consider bounces. Because we are solving the instanton dynamics, rather

than the original one, we could wonder what happens during a bounce. To make this point
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clear, in the Appendix we compute a bounce by considering the wall as a limit of continuous

potentials. The result is that: i) the reflection law holds, ii) the contribution of the bounce

to the action vanishes in the hard wall limit, and iii) pθ does not change from just before to

just after the bounce. Instead, E is not conserved in bounces, since:

E|afterbefore = 2pθE sin θ|afterbefore (V.44)

which is nonzero in general, except when pθ = 0.

Segments of trajectories belonging to the attractor and repellor of the original noiseless

dynamics have zero action and pθ(t) = E = 0: this is preserved by both trejectories and

bounces at all times (cfr. Eqs. (V.43) and (V.44)).

Trajectories have a starting point (x, y, θ, θ̇). Thanks to bounces, they move uphill and

downhill with respect to the field. Those that diffuse uphill have a smaller and smaller value

of pθ ( Eq. (V.43)). Furthermore, as pθ → 0 also E → 0 (although E can still increase

somewhat in a bounce). Hence, a trajectory that had bounces allowing it to diffuse a long

way uphill becomes more and more closely a zero-action trajectory. Moreover, it is (or

rather, it shadows) a trajectory belonging to the repellor, since trajectories in the attractor

move on average downhill.

Suppose next that the starting point is a very small perturbation with pθ 6= 0 of a point

on the attractor. At the beginning the point will continue to move on average downhill.

However, this implies that the value of pθ grows exponentially ( Eq. (V.43)). In other words,

in the full dynamics with instantons, true attractor trajectories are unstable, a general fact

already mentioned in the previous sections. After some time, these trajectories will bounce

uphill and downhill. A few of these perturbations will diffuse a large amount uphill, and

as described above those will then be very close to the repellor. Hence, we have identified

the instantons interpolating between attractor and repellor as the (rare) trajectories that

have initial conditions close to the attractor and such that they keep diffusing on average

upwards. Their action is just the integral of the exponential of the uphill distance - a finite

quantity.

As is typical with instantons, we need some sort of ‘shooting’ method to find those

solutions that actually end up in (or shadowing an orbit in) the repellor, otherwise a generic

solution will just evolve away. Secondly, we see that there are many of these solutions, and

not essentially one as in the case without obstacles.
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VI. CONCLUSIONS

We have recasted the problem of the deterministic Fluctuation Theorem as the vanish-

ing noise limit of stochastic one. Large-deviation functions in this limit need not coincide

with the zero-noise result, but one can always postulate that this is so in a practical case,

thus making an alternative Chaotic Hypothesis [9]: Considering the energy-conserving

noise described above (and more generally noise respecting all the constants of motion of

the dynamics), a reversible many-particle system in a stationary state can be regarded as

stochastically stable for the purposes of computing probabilities over trajectories of macro-

scopic observables. The advantage of this formulation is that it is immediately testable in a

numerical (and perhaps also in a real) experiment.

We have argued here that if there are orbits with zero action that bridge attractor and

repellor, then the time needed in order that the Fluctuation Relation is satisfied is subex-

ponential in the noise ǫ ln τ → 0. We have, however, fallen short of proving the Gallavotti-

Cohen theorem for that case, since we argue that subexponential yet slowly divergent growth

of τ as ǫ → 0 is likely to arise, perhaps in systems in which the closures of attractor and

repellor are simultaneously dense in a manifold of low dimension. It seems an interesting

question to obtain estimates of passage times in terms of the noise (or temperature) in such

cases.
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VII. APPENDIX. INSTANTONS AND HARD WALLS

To model the bounce, we consider walls as regions with a constant repulsive force (per-

pendicular to the wall), and then take the limit of large force. We shall rotate the axis to

a new axes (x′, y′) so that outside the wall region the field is (E1, E2) and inside the wall

region the field is (Ew, 0), Ew → ∞ as shown in the figure.

E
w

 1    2(E   , E   )

FIG. 4: Bounce trajectory in a wall region.

In general, in a region of fields (E1, E2) the Lagrangian reads

L =
1

4
(θ̇ + E1 sin θ − E2 cos θ)

2

H = 2pθ (pθ −E1 sin θ + E2 cos θ) (VII.45)

with

pθ =
1

2
(θ̇ + E1 sin θ −E2 cos θ) (VII.46)

The forces Ei jump when the particle crosses the wall. Across this jump, θ is continuous,

but θ̇ jumps. To calculate this, we write the equations of motion:

2
d

dt
(θ̇ + E1 sin θ − E2 cos θ)− 2(θ̇ + E1 sin θ − E2 cos θ)(E1 cos θ + E2 sin θ) = 0 (VII.47)

which implies that in regions of constant fields:

d

dt
ln(θ̇ + E1 sin θ − E2 cos θ) = 2(E1ẋ+ E2ẏ)

ln
∣

∣

∣
θ̇ + E1 sin θ −E2 cos θ

∣

∣

∣

t

o
= 2(E1x+ E2y)|to = 2x • E|to (VII.48)
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On entering the wall region, equation (VII.47) implies that

pθ(t) =
1

2
(θ̇ + E1 sin θ − E2 cos θ) (VII.49)

is continuous across discontinuities of the potential. Instead, the numerical value of H = E
jumps when the trajectory bounces, except if pθ = 0.

θ θ0 π

−E sin
2θ

π /2
outin

FIG. 5: The angle evolves in a potential ∼ −E sin2 θ, entrance and exit angle a symmetrically

disposed, since the distance along x moved is the integral of cos θ(t), which is exactly zero if

π/2− θin = θout − π/2.

Within the wall region:

L =
1

4
(θ̇ −Ew sin θ)2 (VII.50)

The conserved quantity is:

E = θ̇2 − E2
w sin2 θ (VII.51)

and we have:

θ̇ = ±
√

E2
w sin2 θ + 4E (VII.52)

This is shown in figure 5, and it is clear that the reflection law will hold, since the trajectory

inside the wall region is symmetric. In terms of the coordinates normal and parallel to the

wall:

dx′ = cos θdt =
cos θ

θ̇
dθ =

cos θ
√

E2
w sin2 θ + 4E

dθ

dy′ = sin θdt =
sin θ

θ̇
dθ =

sin θ
√

E2
w sin2 θ + 4E

dθ (VII.53)
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We have ẋ′ = cos θ and (VII.48) reads:

(θ̇ − Ew sin θ)t = (θ̇ − Ew sin θ)t=0 e
−2Ewx′

(VII.54)

It is then clear that, in the limit of strong Ew, the time spent in the wall region tends to

zero, while the integrand in the action e4Ewx′

is itself of order one (since the penetration

x′ ∼ O(1/Ew)). We conclude that the action during the bounce tends to zero as |Ew| → ∞.

Note that the argument is valid for quite general bounces.
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