
ar
X

iv
:c

on
d-

m
at

/0
70

16
74

v2
 [

co
nd

-m
at

.s
ta

t-
m

ec
h]

 2
5

M
ar

 2
00

7

Two Dimensional Directed Lattice Walks with

Boundaries

Arvind Ayyer
Department of Physics

136 Frelinghuysen Rd

Piscataway, NJ 08854.

ayyer@physics.rutgers.edu

Doron Zeilberger
Department of Mathematics

110 Frelinghuysen Rd

Piscataway, NJ 08854.

zeilberg@math.rutgers.edu

Abstract

We present general algorithms (fully implemented in Maple) for
calculations of various quantities related to constrained directed walks
for a general set of steps on the square lattice in two dimensions. As
a special case, we rederive results of earlier works.

1 Introduction

Lattice walks form some of the most well-studies problems in combinatorics.
Studies of walks with simple set of steps such as {(1, 1), (1,−1)} (Dyck or
Catalan steps), {(1, 1), (1, 0), (1,−1)} (Motzkin steps) and {(1, 1), (1,−1),
(2, 0)} (Schroeder steps) reveal connections with many classical combinatorial
problems.

On the other hand, one can hope to find combinatorial problems of all
kinds within lattice walks. In particular, there are walks whose enumerating

1

http://arxiv.org/abs/cond-mat/0701674v2

generating functions are rational; there are some which are algebraic; there
are some which are holonomic; and finally, some are not even that - something
more general? Who knows?

We embark on a program of automating the study of lattice walks with
the small-step-but-giant-leap of automating two dimensional directed lattice
walks with boundaries. These are walks which are bounded in one direction
and which take each step from a finite set S such that every step in S has a
strictly positive inner product with the unbounded direction.

The motivation for this study comes from the statistical mechanical study
of polymers held between two close plates [R]. Consider a long linear polymer
in dilute solution constrained between two plates. Naively one would expect
the polymer to exert a force on the plate, simply because the polymer would
not naturally prefer to be confined. However, this can change if there is
an interaction between the plates and the polymer. In the latter case, as
we tune the strength of this interaction, a phase transition can occur which
would change the sign of the overall interaction.

This is a hard problem to tackle, because one would have to calculate
quantities of physical or mathematical interest separately for each model one
considers. However, a nice framework for modelling the polymer is through
a directed walk on a lattice. This is self-avoiding by definition and can
therefore represent the rough configuration of the polymer even though the
microscopic details may differ.

So far this framework has been used to study walks with a specific set of
steps given by (1, 1), (1,−1) [BORW]. In general, this is not quite satisfactory
for a couple of reasons. Firstly, this set of steps allows the polymer to move
at an angle of ±45◦ only and thus severely restricts its configuration space.
For example, a better model would be (1, 2), (2, 1), (1,−2), (2,−1).

Secondly, one would like to consider polymers with different bond lengths.
In other words, suppose that the polymer has various molecules {Xi}. And
the values of the bond lengths between the various species is {lij = |Xi−Xj |},
where |Xi −Xj | denotes the bond length between Xi and Xj .

The simplest way to incorporate parameters representing the interaction
with the walls in these models is to write each walk as a monomial in two
parameters t, s where the power of t is precisely the number of times the walk
has touched the bottom wall and similarly, the power of s is for the top wall.

Until now, the study of the constrained walk with an arbitrary set of
bond lengths has been daunting because there are no general results in this
direction. We present a toolbox of algorithms (implemented in a Maple

2

package named POLYMER) which can be used as a black box to calculate
various quantities of interest such as the generating function and the free
energy as well as plot quantities such as the force in different regimes. We
emphasize that these calculations can be done for any choice of steps at least
in principle. In practice, of course, one is restricted by the limited resources
of the largest computers.

We should mention that, unknown to us, the equations for infinite width
walks were already written down in the elegant piece of work, albeit in slightly
different language, in [Du]. While this work was in preparation, there also
appeared [Bo] where the topic of constrained walks with arbitrary steps is
also treated. The flavor of the work is somewhat different there. While the
results there are of much greater generality, they are existence results. The
results in this paper are more algorithmic in nature.

2 The Setting

Consider a walk constrained in the two dimensional square lattice Z
2by 0 ≤

y ≤ w where w is the width. In Fig. 1 we show a walk with width w = 4
involving the steps (1, 1) and (1,−1).

w

Figure 1: A walk with width w = 4 involving the steps (1, 1) and (1,−1)

Such a walk can always be reinterpreted as a walk in the region given by
0 ≤ x − y ≤ w, y ≥ 0. This is done simply by rotating and reflecting the
above figure in the appropriate way. The line x− y = 0 is the same as y = 0
above and the line x− y = w becomes y = w.

In Fig. 2 the same walk is redrawn for this situation. Notice that the
steps have also been rotated. They have become [1, 0] and [0, 1]. The former

3

walks are known as Dyck paths and because the latter represent the so-called
ballot problem, we call them ballot paths. For convenience, we represent Dyck
steps with the usual parentheses (,) and ballot steps with square parentheses
[,]. Points on the lattice are always denoted by the usual parentheses (,).

Since we are interested in directed walks, the steps should have a positive
inner product with the vector (1, 0) for Dyck paths and the vector [1, 1] for
ballot paths.

w

Figure 2: The same ballot walk with w = 4 with steps [1, 0] and [0, 1]

3 Calculating Walks

The main idea in counting the number of walks with a general set of steps is
recursion.

3.1 Simple Walks

Consider the number of ballot paths from (0, 0) to the point (m,n) which we
denote as c(m,n). Let us first consider simple steps. For example, [1, 0] and

4

[0, 1]. Then c(m,n) satisfies the simple recurrence relation

c(m,n) = 0 if m < 0, n < 0, m− n < 0 or m− n > w,
c(m,n) = c(m,n− 1) + c(m− 1, n) if m > n > 0, (1)

because using the given steps, one can arrive at the point (m,n) either by the
step [1, 0] from (m− 1, n) or by the [0, 1] steps from (m,n− 1) if m > n > 0
and hence the number of such walks simply adds. On the other hand, one
can never reach (m,n) if m < 0, n < 0, m− n < 0 or m− n > w. Thus, we
only need the initial condition c(0, 0) = 1 (the null walk) to determine all
walks. For example,

c(2, 1) = c(2, 0) + c(1, 1)
= (c(1, 0) + c(2,−1)) + (c(1, 0) + c(0, 1))
= (c(0, 0) + 0) + (c(0, 0) + 0)
= 2 (2)

and one can easily check that there are only two walks from (0, 0) to (2, 1).
Let us take a more complicated example. Suppose the steps are [1, 0], [0, 2]
and [1, 1]. Then the recurrence becomes more complicated and is given by

c(m,n) = 0 if m < 0, n < 0, m− n < 0 or m− n > w,
c(m,n) = c(m,n− 2) + c(m− 1, n) + c(m− 1, n− 1) if m > n. (3)

When there is yet another constraint given by x− y ≤ w, we simply need
to put in another “if” condition and the main recurrence relation remains
unchanged.

This idea can be implemented as an algorithm as follows: Let Steps
represent the set of all possible steps and let Steps[i] denote the ith step.
Then the number of walks c(m,n) from (0, 0) to (m,n) with width w is
calculated as follows:

if m = n = 0 then
RETURN 1

if m+ n < 0 then
RETURN 0

if m− n < 0 or m− n > w then
RETURN 0

if m > n > 0 and m− n < w then
Prev = {(m,n)− Steps[i]|i = 1, 2, ...}

RETURN
∑

i

c(Prev[i])

5

3.2 Walks with Boundary Interactions

In combinatorics, boundary interactions can be implemented with variables
t, s which “record” the number of times the walk touches the left and right
walls respectively. More precisely, each walk is assigned a monomial in t and
s where the degree of the monomial in s(t) is the number of times the walk
touches the left wall (right wall). The initial point does not count.

For example, consider walks from (0, 0) to (2, 2) with steps [1, 0], [0, 1].
There are only two possibilities as shown.

Figure 3: The only possible walks from (0, 0) to (2, 2) using the steps [0, 1]
and [1, 0]

When w = 1, only the left walk is permitted and carries a weight of t2s2

because it touches both walls twice. When w = 2, both walks are permitted
but carry different weights. The left one carries a weight of t2 and the right
one, a weight of ts. When w = 3, the left one still carries a weight of t2

but the right one does not touch the right wall at all and therefore carries a
weight of t. Thus,

c1(t, s) = t2s2 (4)

c2(t, s) = t2 + ts (5)

c3(t, s) = t2 + t (6)

Setting t = s = 1 gives the number of such walks. The algorithm repre-
senting these walks closely resembles simple walks.

if m = n = 0 then
RETURN 1

if m+ n < 0 then

6

RETURN 0
if m− n < 0 or m− n > w then

RETURN 0
if m− n = 0 then

Prev = {(m,n)− Steps[i]|i = 1, 2, ...}
RETURN

∑

i

(t · c(Prev[i]))

if m− n = w then
Prev = {(m,n)− Steps[i]|i = 1, 2, ...}

RETURN
∑

i

(s · c(Prev[i]))

if m > n > 0 and m− n < w then
Prev = {(m,n)− Steps[i]|i = 1, 2, ...}

RETURN
∑

i

(c(Prev[i]))

4 Generating Functions

The generating function is an important tool in combinatorics. It is another
way to package the same information as brute-force counting. It is a formal
power series whose coefficients in the taylor series give precisely the count.
More specifically, if cw(n) is the number of ballot walks from (0, 0) to (n, n)
with width w, the generating function φw(z) is given by

φw(z) =

∞
∑

n=0

cw(n)z
n (7)

We demonstrate the calculation of the generating function for both the
case of finite width and infinite width. The ideas involved in both are quite
different and so they will be treated differently. However, both involve a set
of tricks commonly used in combinatorics. We describe them in detail in
subsequent sections.

4.1 Finite width

We use the same ideas described above to calculate the generating function
of the number of walks with any set of steps.

We first start with a nontrivial example. We will spell out all the details
here. Consider the steps [1, 0], [0, 2], [1, 1] and width, w = 2. We define three

7

generating functions φi(z), i = 0, 1, 2 for this problem, where φi(z) counts
the number of walks from (0, 0) to (n+ i, n).

In terms of initial conditions, only φ0 has a nontrivial condition, namely
the zero-step walk from (0, 0) to (0, 0). Now, let us consider each of the
generating functions one at a time.

For a walk ending at (n, n), the last step can have two possibilities. It
can either end with a [1, 1] step from (n−1, n−1) (which is also described in
terms of φ0) or it can end with a [0, 2] step from (n, n−2) (which is described
by φ2). Since the weight of the walk depends only on the y-coordinate, we
have the following equation for φ0

φ0 = 1 + zφ0 + z2φ2 (8)

Now, for a walk ending at (n + 1, n), there are two ending possibilities.
The final step can be [1, 0] from (n, n) (described by φ0) or it can be [1, 1]
from (n, n− 1) (described by φ1). The [0, 2] step is not possible because the
walk would have to start outside the prescribed strip. Thus,

φ1 = zφ1 + φ0 (9)

Finally, a walk ending at (n + 2, n) also has two possibilities. The final
step can be [1, 0] from (n + 1, n) (described by φ1) or it can be [1, 1] from
(n+ 1, n− 1) (described by φ2).

φ2 = φ1 + zφ2 (10)

These are now three linear equations in three variables. These, when
solved, for φ0 gives the rational function

φ0 =
1− 2z + z2

1− 3z + 2z2 − z3
(11)

This example contains the essence of the argument to follow. For any
set of steps and width w, we will always have w + 1 linear equations in the
variables φ0, · · · , φw independent of the number and kinds of steps involved.
These equations will be linear precisely because the ending of each walk con-
tributing to φi takes its last step starting from some other walk contributing
to, say, φj. To be precise, for i = 0, · · · , w,

φi = δi,0 +
∑

j
0≤i+Steps[j]y−Steps[j]x≤w

zSteps[j]yφi+Steps[j]y−Steps[j]x (12)

8

Solving this system will always lead to rational solutions for each of the
generating functions φi. And modulo unexpected cancellations, they all have
the same denominator - the determinant of the corresponding matrix in the
linear system!

4.2 Finite Width with Boundary Interactions

We can also calculate the generating function of walks with variables t, s
(called weight enumerators) using essentially the same idea.

Let us consider the same example with steps [1, 0], [0, 2], [1, 1] and width,
w = 2. We again have three generating functions φi(z), i = 0, 1, 2. Since we
have a factor of t everytime we touch the left wall, the equation for φ0 is

φ0 = 1 + tzφ0 + tz2φ2 (13)

The equation for φ1 is unchanged because walks contributing to it are
touching neither of the two walls at the last step.

φ1 = zφ1 + φ0 (14)

The equation for φ2 is affected because walks contributing to it are exactly
on the right wall at the final step.

φ2 = sφ1 + szφ2 (15)

Solving this gives

φ0 =
(1− z)(1 − sz)

1− z − sz − tz + sz2 + tz2 − stz3
(16)

As this example shows, the generating functions for these walks can also
be calculated exactly using the same technique as in the previous section.
In fact, the equations are quite similar unweighted enumeration. For the
extreme generating functions, the modified equations look like

φ0 = 1 +
∑

j
0≤Steps[j]y−Steps[j]x≤w

tzSteps[j]yφSteps[j]y−Steps[j]x (17)

φw =
∑

j
0≤w+Steps[j]y−Steps[j]x≤w

szSteps[j]yφw+Steps[j]y−Steps[j]x (18)

9

while for the remainder, ie i = 1, · · · , w− 1, the equations remain the same.

φi =
∑

j
0≤i+Steps[j]y−Steps[j]x≤w

zSteps[j]yφi+Steps[j]y−Steps[j]x (19)

4.3 Infinite Width

We have to manipulate generating functions in a different way to calculate
them for the infinite width walks. We will need a number of definitions for
this purpose.

First off, define an [ij] walk as one which starts on the line x − y = i
and ends on the line x − y = j. Since we have infinite width, both i, j ≥ 0.
Denote the generating function of such walks by f [ij](z).

Define an irreducible [ij] walk as a walk which, as before, starts on the line
x− y = i and ends on the line x− y = j with the restriction that it touches
the line corresponding to the minimum of i and j only at the corresponding
endpoint. Denote the generating function of such an irreducible walk by
g[ij](z).

Now the idea is to relate these generating functions for different values of
i and j where both range from 0 to a certain finite value depending on the
kind of steps.

Consider the following set of steps: {[0, 1], [1, 0], [2, 0], [0, 2]}. First off, a
[00] walk is either the empty walk or it is composed of an irreducible [00]
walk followed by a smaller [00] walk.

f [00] = 1 + f [00]g[00] (20)

Next, a [01] walk is always uniquely composed of an arbitrary [00] walk
followed by an irreducible [01] walk. Similarly, a [10] walk is uniquely com-
posed of an irreducible [10] walk followed by an arbitrary [00] walk.

f [10] = g[10]f [00] (21)

f [01] = g[01]f [00] (22)

A [11] walk either never goes below the first level, in which case it is
simply the same as a [00] walk, or if it does, it is composed of an irreducible
[10] walk followed by an arbitrary [01] walk.

10

f [11] = f [00] + g[10]f [01] (23)

Now, we go on to describe the irreducible walks. In each case, we have
to consider different cases for the starting step and the ending step. First,
an irreducible [00] walk can begin with either the [1, 0] or [2, 0] step and end
with either the [0, 1] or [0, 2] step. If the walk starts with [1, 0] and ends
with [0, 1], then there could be an arbitrary [00] walk in between. If the walk
starts with [1, 0] and ends with [0, 2], there has to be an arbitrary [01] walk
in between. If the walk starts with [2, 0] and ends with [0, 1], there has to be
an arbitrary [10] walk in between. And finally, if the walk starts with [2, 0]
and ends with [0, 2], there is a [11] walk in between. For each of these cases
only the y-coordinate of the steps give the corresponding powers of z.

g[00] = zf [00] + z2f [01] + zf [10] + z2f [11] (24)

For an irreducible [01] walk, we just need to consider the starting steps.
If it starts with [1, 0], the remainder is an arbitrary [00] walk. If it starts with
[2, 0], the remainder is again an arbitrary [10] walk. A very similar argument
on the ending step yields the equation for an irreducible [10] walk.

g[01] = f [00] + f [10] (25)

g[10] = zf [00] + z2f [01] (26)

This finally gives the desired seven equations in seven variables. Notice
that all the equations are algebraic and therefore the solution of this system
will also be algebraic, ie, the solution of a polynomial equation. We are
ultimately interested in f [00] and in this case, eliminating the other variables
and replacing f [00] by F gives

z4F 4 − 2z3F 3 − z2F 3 + 2z2F 2 + 3zF 2 − 2zF + 1− F = 0 (27)

For the generic set of steps, we have the following algorithm. Let

m = max(|Steps[i]x − Steps[i]y|) (28)

Then we define f [ij] and g[ij] for i, j = 0, 1, · · · , m−1. It is these generat-
ing functions we will write down equations for. It turns out the equations for

11

f [ij] are almost completely independent of the kind of steps. In particular,
only f [00] depends on whether there are any steps of the form [k, k].

f [00] = 1 + g[00]f [00] + f [00] ·
∑

(k,k)∈Steps

zk (29)

For f [ll], l = 1, · · · , m− 1, the equation is

f [ll] = f [00] +

l
∑

k=1

g[l−k,0]f [0,l−k] (30)

and for the remainder,

f [ij] =

i
∑

k=1

f [i−k,0]g[k,j] for i < j

j
∑

k=1

f [0,j−k]g[i,k] for i ≥ j

(31)

For the irreducible generating functions, we need to specify only g[0j] and
g[j0] because

g[ij] =

{

g[0,j−i] for i < j
g[i−j,0] for i ≥ j

(32)

simply by definition. For g[00], we need to consider both starting and ending
steps and sum on all possible combinations of these.

g[00] =
∑

(i,j)
X[i],Y [j]>0

zSteps[i]y+Steps[j]yf [X[i],Y [j]] (33)

where X [i] = Steps[i]x − Steps[i]y − 1, Y [j] = Steps[j]y − Steps[j]x − 1.
For the remaining irreducible generating functions, we will need to sum

over only either on the starting steps or on the ending steps depending on
whether we are considering g[0i] or g[i0].

g[0i] =
∑

k
Steps[k]x−Steps[k]y>0

zSteps[k]yf [Steps[k]x−Steps[k]y−1,i−1] (34)

g[i0] =
∑

k
Steps[k]y−Steps[k]x>0

zSteps[k]yf [i−1,Steps[k]y−Steps[k]x−1] (35)

12

Thus we have, for a given m, 2m2 algebraic equations in as many variables
and we should be able to eliminate everything except f [00] and obtain a single
polynomial equation in f [00].

4.4 Infinite Width with Boundary Interaction

Just as for generating functions of finite width, it is possible to automate the
calculation of weight enumerators with one parameter t counting the number
of times the walk touches the line y = x.

The algorithm here is similar to that of the previous section and in fact,
we will need the generating functions f [ij] calculated earlier for the same set
of steps.

We begin with the same example as in the previous section, namely with
steps {[0, 1], [1, 0], [0, 2], [2, 0]}. Now, let H(z, t) be the weight enumerator.
Notice that the only difference between H and f [00] is this extra parameter t
in the former. We need only one extra equation for H apart from the other
ones. This one is almost exactly like the one for f [00]. Namely,

H = 1 + t
(

zf [00] + z2f [01] + zf [10] + z2f [11]
)

H. (36)

All this is saying is that H is either the empty walk or it is composed of all
possible starting and ending steps with a factor of t contributing towards the
ending step followed by a smaller such walk. The calculations of f [ij] have
to be done using the same equations as in the previous section.

This gives the following algebraic equation for H .

1 + 3t2H2 − 2tzH + 3tH − 4H + t3H3 + 3t3z2H3 + 2t2z2H2 + 6tzH2

−3t2zH2 − 3t3z2H4 + t4z2H4 + 2t2z2H4 + 2t3z3H4 − 2t4z3H4 − 2t3z3H3

+t4z4H4 + t4zH4 − 6H3tz − 3t2H4z − 9tH2 + 6H2 + 2H4tz − 6t2H3

+H4 + 9H3t− 4H3 − t3H4 + 3H4t2 − 3H4t + 6t2zH3 − 4t2z2H3 = 0(37)

which is of fourth order in H , just as before.
When there is a general set of steps, we have the same equations as before

with an additional equation for H ,

H = 1 + t ·

∑

(k,k)∈Steps

zk

H + tg[00]H. (38)

Solving this system will give us the required algebraic equation for H .

13

5 Empirical Guessing

We say that a sequence of rational functions {Fw(z)}∞w=0 belongs to AZL(w, z)
if each function Fw(z) can be written in the form

Fw(z) =
Pw(z)

Pw+1(z)
(39)

where the polynomials {Pw(z)}∞w=0 satisfy a recurrence of order L in w with
constant (in w) coefficients,

L
∑

i=0

ai(z)Pw+i(z) = 0 (40)

For any given set of steps, one can empirically check if the generating
functions φw(z) belong to the class AZL(w, z). This is done by using the
holonomic ansatz [Z] and searching for a recurrence of order L among the
numerators Pw(z).

For most steps, it does turn out that the numerator of φw(z) is precisely
the denominator of φw−1(z). The generating functions of many classes of
steps do turn out to belong to AZL(w, z) for some L. For example, steps of
the form {[0, 1], [n, 0]} always lead to generating functions which belong to
AZn+1(w, z). Yet another nontrivial example is as follows: Steps of the form
{[0, 1], [1, 0], [n, n+ 2], [n+ 2, n]} with n ≥ 0 belong to AZ5(w, z) [AZ]!

It is an open problem whether the generating functions of all set of steps
belong to AZ(w, z).

6 Free Energy

One can define the free energy for this system as follows. Let cw(n) denote
the number of walks from (0, 0) to (n, n). Then the free energy κw is defined
by

κw = lim
n→∞

1

n
log cw(n) (41)

In general, this is the smallest real positive singularity of the generating
function. Since the generating function for the walk with any fixed w is

14

rational, one can expand it in partial fractions and this number is given by
the natural logarithm of the largest zero of the denominators.

There are well-established algorithms [SZ, C], to find the recurrence re-
lation satisfied by the sequence {an} given the generating function φ(z) =
∑

anz
n. We denote this operator as P (N, n). In Maple, this is implemented

in the package titled GFUN [SZ]. Now, given this polynomial, there exists
an algorithm [BT, WiZ] to find the asymptotic behaviour of the generating
function. This is implemented in the package GuessHolo2 [Z].

One can therefore calculate the free energy for walks with a given set of
steps at any finite width as well as for infinite width.

One can also calculate the free energy as a function of the variables t, s.
Unfortunately there is no explicit formula for the free energy as a function of
t, s, but given any specific values of t and s, these can be calculated exactly.
This is mainly because we do not have a general formula for the roots of
polynomials of degree ≥ 5. For the same reason, one cannot calculate the
free energy for the infinite width case as a function of the parameter t.

7 Force

The force exerted on the plates is given, in the discrete case, by

F (w) = κw+1 − κw (42)

In the limit when w is very large, the force is defined by the derivative of
the free energy with respect to w. One can also calculate the force for any
specific values of the variables t, s. For the same reason as in the previous
section, this calculation cannot be done keeping t and s arbitrary.

The structure of the phase diagram is most clearly seen by plotting the
force as a function of t, s. The region where the force is positive is the
desorbing region and where the force is negative is the adsorbing region.

8 Examples

We use the algorithms outlined above and some others to calculate quantities
of interest for different sets of steps. We emphasize that these are not indi-
vidually calculated for these particular set of steps but are simply outputs of
algorithms described in previous sections. These algorithms are implemented
in Maple.

15

8.1 {(1, 1), (1,−1)} Steps

We repeat some of the calculations in [BORW] with standard Dyck steps to
demonstrate the power of this approach. The corresponding ballot steps are
[0, 1], [1, 0].

The generating function at any finite width can be calculated for even
reasonably large widths in short enough times. For example, when w = 3,

φ3(z) =
1− 2z

1− 3z + z2
(43)

We can calculate the equation satisfied by infinite the width generating
function.

− F (z) + 1 + zF (z)2 = 0 (44)

Let Pw(z), Qw(z) be the numerators and denominators of φw(z). One can
conjecture a recurrence relation in w for the Qw’s. For these steps, it turns
out that

zQw(z)−Qw+1(z) +Qw+2(z) = 0 (45)

Figure 4 shows the free energy plotted for a range of widths. We also
plot the free energy for a particular width for a set of weight-enumerating
parameters in Figure 5. Notice that even such a small value of w shows the
characteristics of the phase diagram in Figure 7 of [BORW]. For 0 ≤ t, s ≤ 2,
the value of the free energy is more or less constant and outside, it seems to
grow more or less linearly and we can clearly notice the non-analyticity at
the line t = s.

We can also plot the free energy of the infinite width case as a function
of the parameter t which counts the number of times the walk touches the
diagonal x = y. This is done in Figure 6. To see how the phase diagram
looks, one can also plot the force for a reasonable large value of the width.
As seen in Figure 7, this looks like the derivative of Figure 5. There is a
strong positive force in the region 0 ≤ t, s ≤ 2, which is the desorbed region.
There is also the clear attraction regime around the line t = s as shown in
Figure 8 of [BORW].

16

1.25

0.75

Width

Free Energy

1.0

0.5

0.25

0.0

108642

Figure 4: Free energy for steps {[0, 1], [1, 0]} plotted from w = 1 to w = 10

17

10
s5

1.5

t

5

Free Energy 2.0

10

2.5

Figure 5: Free energy for steps {[0, 1], [1, 0]}, w = 10 and t, s = 1, · · · , 12

18

4

1.75

t

108

Free Energy

6

2.25

2.0

1.5

2

Figure 6: The infinite width free energy for steps {[0, 1], [1, 0]}, and t =
1, · · · , 10

19

10
8

6 s
4

−2.5

2

0.0

4

t

Force
2.5

6
2

5.0

8

7.5

10

10.0

10−3

Figure 7: Force for steps {[0, 1], [1, 0]}, w = 10 and t, s = 1, · · · , 10

20

8.2 {(1, 1), (2, 2), (1,−1), (2,−2)} Steps

For a more nontrivial example, consider the following ballot steps: {[1, 0],
[2, 0], [0, 1], [0, 2]} [AZ]. Figure 8 shows the free energy plotted for a range
of widths. Notice that the behaviour is very similar to that of the previous
example in Figure 4. We know that the behavior must be monotonically
increasing with the width and is a concave function, which is true for both
figures.

We also plot the free energy for a particular width for a set of weight-
enumerating parameters in Figure 9. Here too, the free energy increases with
increasing values of t, s. However, unlike Figure 5, there is no apparent loss
of analyticity. That might be because the width is too small here.

To see how the phase diagram looks, one can also plot the force for a
reasonable large value of the width. Figure 10 shows this. The sheet in this
figure is smoother than in the analogous sheet in the previous example Figure
7. And there is again a similarity between the two figures simply because
there is a similarity between the corresponding plots for the free energy.

21

4

1.0

0.0

Width

1086

Free Energy

1.5

0.5

2

Figure 8: Free energy for steps {[0, 1], [1, 0], [2, 0], [0, 2]} plotted from w = 1
to w = 10

22

10
8

6 s
41.8

2

2.0

4

t

Free Energy
2.2

6
2

2.4

8 10

2.6

Figure 9: Free energy for steps {[0, 1], [1, 0], [2, 0], [0, 2]}, w = 6 and t, s =
1, · · · , 10

23

10
8

6 s
4

2

−0.025

4

Force

t

0.0

6
2

0.025

8

0.05

10

Figure 10: Force for steps {[0, 1], [1, 0], [2, 0], [0, 2]}, w = 5 and t, s = 1, · · · , 10

24

9 Acknowledgements

The authors would like to thank Jacques Carette for help in programming
with Maple, and Joel Lebowitz and Mireille Bousquet-Melou for discussions.
The work of the first author was supported in part by NSF grant DMR-044-
2066 and AFOSR grant AF-FA 9550-04-4-22910.

References

[AZ] Arvind Ayyer and Doron Zeilberger, The Number of [Old-Time] Basket-
ball games with Final Score n:n where the Home Team was never losing
but also never ahead by more than w Points, Elec. J. of Combinatorics,
14(1) (2007), R19.

[Bo] Mireille Bousquet-Melou, Discrete Excursions, Preprint located at
http://www.arXiv.org/abs/math.CO/0701171

[BORW] R. Brak, A.L. Owczarek, A. Rechnitzer, S.G. Whittington, A di-
rected walk model of a long chain polymer in a slit with attractive walls,
J. Phys. A, 38, 2005, 4309-4325.

[BT] G. Birkhoff, Formal theory of irregular difference equations, Acta
Math., 54, 1930, 205-46,
G. Birkhoff, W. Trjitzinsky, Analytic theory of singular difference equa-
tions, Acta Math., 60, 1932, 1-89.

[C] L. Comtet, Calcul pratique des coefficients de Taylor d’unefonction al-
gebrique. L’Enseignement Mathematique 10, 1964, 267-70.

[Du] Philippe Duchon, On the enumeration and generation of generalized
Dyck words. Formal power series and algebraic combinatorics, Discrete
Math. 225 (2000), no. 1-3, 121-135.

[R] E.J. Janse van Rensburg, The statistical mechanics of interacting walks,
polygons, animals and vesicles, Oxford Lecture Series in Mathematics
and its Applications, 18. Oxford University Press, Oxford, 2000.

[SZ] Bruno Salvy, Paul Zimmerman, GFUN: a Maple package for the ma-
nipulation of generating and holonomic functions in one variable, ACM
Transactions on Mathematical Software, 20,2, 1994, 163-77.

25

[WiZ] Jet Wimp and Doron Zeilberger, Resurrecting the asymptotics of linear
recurrences, J. Math. Anal. Appl., 111, 1985, 162-76.

[Z] Doron Zeilberger, The HOLONOMIC ANSATZ I. Foundations and Ap-
plications to Lattice Path Counting, submitted. Preprint at
http://www.math.rutgers.edu/∼zeilberg/
mamarim/mamarimhtml/ansatzI.html.

A Usage

Here we describe the basic procedure for using the program to determine the
necessary information for your favorite polymer.

First off, download the package POLYMER from the webpage of Doron
Zeilberger or by downloading the source of this paper from
http://arXiv.org/cond-mat/0701674 . Start Maple and at the prompt,
type

> read ‘POLYMER‘ :

If you start Maple in a different directory, you have to specify the path
where you saved the package. For example, if you saved it in C:\Packages
or in /tmp/Packages (depending on the OS), type

> read ‘C : \ \ Packages \ \POLYMER‘ :

> read ‘/tmp/Packages/POLYMER‘ :

To see the list of programs, type

> Help();

We now describe the main tools of the package. The basic syntax is
as follows. Any point (x1, y1) is represented as [x1, y1]. The set of steps is
represented within curly braces. For example, the steps shown in Figure 3
are depicted by {[0, 1], [1, 0]}.

A.1 Walks

The most basic program in the package is the one that computes the number
of walks from any point (x1, y1) to any other point (x2, y2) using any set of
steps and any width w.

26

http://www.math.rutgers.edu/~zeilberg/

A.1.1 Simple Walks

For example, to see the number of ways of getting from the origin to the
point (2, 2) using the steps above with the constraint given by 0 ≤ x− y ≤ 3
is

> polymerBE({[0, 1], [1, 0]}, [0, 0], [2, 2], 3);
2

while the same walk with the stronger constraint 0 ≤ x− y ≤ 1 is

> polymerBE({[0, 1], [1, 0]}, [0, 0], [2, 2], 1);
1

To see why that is true, look at Figure 3.

A.1.2 Walks with Boundary Interactions

We repeat the calculation for exactly the same situation in the cases where
the width, w = 1, 2, 3.

> WEpolymerBE({[0, 1], [1, 0]}, [0, 0], [2, 2], 1, t, s);
t2s2

This is because the only walk touches both walls twice. For w = 2,

> WEpolymerBE({[0, 1], [1, 0]}, [0, 0], [2, 2], 2, t, s);
t2 + ts

which is because there are two walks now and one walk does not touch the
wall on the far right at all. And for w = 3,

> WEpolymerBE({[0, 1], [1, 0]}, [0, 0], [2, 2], 3, t, s);
t2 + t

which is because neither of the two walks touches the wall on the far right.

27

A.2 Generating Functions

The package can be used to compute this generating function for any finite
width as well as the special case of the infinite width.

As a simple example, consider the same steps as before. Then, for w = 1,
there is only one way of getting to the point (n, n), which is by the zigzag
route extending the walk on the left of Figure 3. Therefore, the generating
function is given by

φ1(z) = 1 + z + z2 + z3 + · · ·
=

1

1− z
(46)

To verify this, type

> rigorgf({[0, 1], [1, 0]}, 1, z);
1

1− z

For a more nontrivial example, see what happens for w = 3.

> rigorgf({[0, 1], [1, 0]}, 3, z);
1− 2z

1− 3z + z2

To get the number of walks up to (n, n), one simply needs to look at the nth
Taylor coefficient.

We can also calculate the generating functions of walks with variables
t, s. As an example, we take the same steps as before with w = 1

> rigorgfWE({[0, 1], [1, 0]}, 3, z, t, s);
1− z − sz

1− z − sz − tz + stz2

For the case of infinite width, one can again calculate the generating
function. The program returns the polynomial equation that it satisfies.

> RGF2D({[0, 1], [1, 0]}, z,F);
{1− F + zF 2}

28

This means that F (z) satisfies the equation 1−F (z)+ zF 2(z) = 0. Since
this is a quadratic equation in F , it can be solved easily.

F (z) =
1±

√
1− 4z

2z
(47)

Since we want a formal power series and the taylor coefficients to be
non-negative, we take the negative root. Taking the Taylor expansion gives

> taylor((1− sqrt(1 − 4z))/(2z), z = 0, 10);

1 + z + 2z2 + 5z3 + 14z4 + 42z5 + 132z6 + 429z7 + 1430z8 +O(z9)

These coefficients are precisely the Catalan numbers [S].
One can also calculate the weight enumerator for the same set of walks

with infinite width, where t is the parameter whose coefficient counts the
number of times the walk touches the diagonal.

> RGF2DWE({[0, 1], [1, 0]}, z,F, t);
{1 + (t− 2)F + (t2z + 1− t)F 2}

and plugging in t = 1 gives the unweighted generating function, as expected.

A.3 Empirical Guessing

That is, let P (w,W) be an operator where W acts by shifts: WQw(z) =
Qw+1(z). The degree of W in P is called the order of the recurrence and the
degree of w in P is called the degree of the recurrence. Note that P implicitly
depends on z.

Suppose we have a walk with steps [0, 1], [1, 0]. Let us try to find a
recurrence of order 2 and degree 0 as [BORW] suggests.

> stepsrec({[1, 0], [0, 1]}, 0, 2, z,w,W);

z −W +W 2

Similarly, we can find recurrences for the weight enumerators. The pre-
vious steps satisfy exactly the same recurrence for their weight enumerators!
Consider the walk with steps [0, 1], [1, 1], [1, 0] and order 4 and degree 0, we
find

> stepsrecWE({[1, 0], [1, 1], [0, 1]}, 0, 2, z,w,W, t, s);

W 2 + (z − 1)W + z

29

We remind the reader that these are essentially empirical results. To
actually prove these, one has to write down the corresponding nonlinear
recurrence relations for the generating functions φw(z) and prove them on a
case-by-case basis.

A.4 Free Energy

The package can be used to calculate the free energy for any specific width,
plot the free energy (using the weight enumerating generating function) at
a specific width for ranges of t, s as well as plot the ordinary generating
function in a range of widths.

Suppose we want to calculate the free energy for a specific width. As an
example, consider the same steps and w = 3.

> FE({[0, 1], [1, 0]}, 3);

ln

(

3

2
+

√
5

2

)

One could also, for example, plot the free energies for the same walk from
widths of 1 to 10.

> plotFE({[0, 1], [1, 0]}, 1, 10);
The asymptotic value is 1.386294361

The output is Figure 4.
For the weight enumerators, one can plot free energies for a fixed width

and range of t and s parameters. Unfortunately, we cannot get asymptotic
values here. For instance, with the same steps as before, we can look at the
case when w = 3 and the range t = 1, ..., 10, s = 1, ..., 10. The

> plotFEWE({[0, 1], [1, 0]}, 10, 1, 12, 1, 12);

The output is Figure 5.
And lastly, one can plot the free energy as a function of the variable t for

the infinite width case.

> plotinfFE({[0, 1], [1, 0]}, 1, 10);

The output is Figure 6.

30

A.5 Force on Walls

Using essentially the same algorithm as for the free energy, one can plot the
force to get an idea of the adsorption/desorption phase diagram.

For example, for the walk with steps (1, 0), (0, 1) and w = 10, we can plot
the force in the range t, s = 1, · · · , 10.

> ForceWE({[0, 1], [1, 0]}, 10, 1, 10, 1, 10);

The output is Figure 7.

31

	Introduction
	The Setting
	Calculating Walks
	Simple Walks
	Walks with Boundary Interactions

	Generating Functions
	Finite width
	Finite Width with Boundary Interactions
	Infinite Width
	Infinite Width with Boundary Interaction

	Empirical Guessing
	Free Energy
	Force
	Examples
	{ (1,1),(1,-1) } Steps
	{ (1,1),(2,2),(1,-1),(2,-2) } Steps

	Acknowledgements
	Usage
	Walks
	Simple Walks
	Walks with Boundary Interactions

	Generating Functions
	Empirical Guessing
	Free Energy
	Force on Walls

