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Monte Carlo calculation of the linear resistance of a three dimensional lattice

Superconductor model in the London limit
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We have studied the linear resistance of a three dimensional lattice Superconductor model in the
London limit London lattice model by Monte Carlo simulation of the vortex loop dynamics. We find
excellent finite size scaling at the phase transition. We determine the dynamical exponent z = 1.51
for the isotropic London lattice model.

The fluctuation regime in high Tc superconductors
(HTCS) is expected to be sufficiently wide that critical
fluctuations are observable [1,2]. In particular the con-
ductivity is supposed to scale as σ ∝ ξ2−d+z [1,2], where
ξ is the correlation length and d is the dimension of the
system. This scaling relation has been applied in recent
experiments on YBCO in zero magnetic field [3]. From
which the value z ≈ 2.6 and ν ≈ 1.2 (ν is the corre-
lation length exponent) was extracted. Accordingly an
accurate determination of z and ν in models of high Tc

superconductors is of great interest. The phenomenology
of superconductors is described by the Ginzburg–Landau
(GL) model. The model is to complicated to allow all de-
grees of freedom to be included in calculations. Among
the standard approximations of the GL model one can
mention: the XY [4,5], Villain [6–8], and the lattice su-
perconductor model in the London limit [9–16].
In the present paper we determine z in the zero field

London lattice model (LLM). The exponent z is known
to be close to 3/2 in the 3 dimensional XY –model, cor-
responding to model (E) [17].
It is of interest to know whether the London model in

which the spin wave degrees of freedom are integrated
out is characterised by the same exponent. Equilibrium
properties of the XY and the LLM for λ = ∞ are known
to be the same since they are connected through the Vil-
lain duality transformation [6]. However, the dynamical
properties might not be the same. It is seen in other sys-
tems where the spin degrees of freedom have an effect on
the dynamics of the topological defects [18]. However, as
we show below, in fact the LLM has z = 1.5. This result
is reassuring given that the model is used to study the
dynamics of vortex systems in the relation to HTCS [19].
Since the magnetic field Hmag = 0 we can limit our

study to the isotropic system. We derive an expression
for the resistance R, based on the Nyquist formula [20]
for voltage fluctuations. From the Nyquist formula we
derive a simple finite size scaling relation for the resis-
tivity at the critical temperature Tc and determine the
critical dynamical exponent z.
The LLM describes the vortex loop fluctuations of

a bulk superconductor. The model originates from a
Ginzburg – Landau description with no amplitude fluctu-

ations and the spin waves integrated out within a Villain
approximation. On a cubic lattice a vortex loop consists
of four line elements forming a closed loop.
The LLM is defined by the partition function Z on a

cubic lattice of side length L using periodic boundary
conditions:

Z = Tr exp[−βH ] (1)

H =
3

∑

α=1

∑

i,j

qαiGα(ri − rj)qαj (2)

where H is the Hamiltonian, the link variables qα rep-
resent the vortex line elements. The are three kinds of
qα, one for each direction ex, ey and ez. The positions,
of qα, are given by ri. The link variables qαi ǫ {−1, 0, 1}
take are 0 and ±1. The sum of qα over a unit qube
equals zero. This is achieved by the trial updating al-
gorithm, only to add closed vortex loops to the system.
The Greens functions Gα(r) [13] are given by:

Gz(r) =
1

L3

∑

k

(

κ2 + d2

4λ2
z

)

π2ei k·(ri−rj)

(

κ2 + d2

4λ2
x

)(

κ2
x + κ2

y +
Jz

Jx
κ2
z +

d2

4λ2
z

) , (3)

Gx(r) = Gy(r) =
1

L3

∑

k

π2ei k·(ri−rj)

(

κ2
x + κ2

y +
Jz

Jx
κ2
z +

d2

4λ2
z

) , (4)

where k are the reciprocal lattice vectors, kx, ky, and
kz = 2πn/L, n = 0, . . . , L − 1, κ2 = κ2

x + κ2
y + κ2

z

and κx = sin (kx/2d), d is the side length of the unit
cell and is set to d = 1. The λx and λz are the
bare magnetic penetration lengths in the x and z direc-
tions. The coupling constants Jx and Jz determine the
anisotropy of the model and are related to the screen-
ing length by Jz/Jx = λ2

x/λ
2
z. In the work presented

in this letter the penetration length is taken to be infi-
nite, λx = λz = ∞, we further restrict the model to the
isotropic case Jx = Jz = 1.
We simulate the model defined by eq. 2 by the stan-

dard Metropolis Monte Carlo method [21]. The trial
move consists of adding a closed vortex loop formed out
of 4 link variables q. The loop is placed at a randomly
chosen position and with one of the 6 different orienta-
tions at random.
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The standard test for superconducting coherence of a
model superconductor has been to sample the helicity
modulus 1/ǫ:

1

ǫ(k)
= 1−

8π2

k2TL3
〈qαkqα−k〉 (5)

In the limit k → 0 the phase transition is detected
in the following way. For temperatures in the supercon-
ducting phase 1/ǫ 6= 0 and above the transition 1/ǫ = 0
In this letter we use an alternative test for the super-

conducting transition namely the vanishing of the resis-
tance [11]. The dissipation in a 3 dimensional super-
conductor is caused by the creation of vortex loops and
expanding them out to the system boundary. Allterna-
tively if there is an external magnetic field that gives
vortex lines through the system, the movement of these
vortex lines will dissipate energy. The linear resistivity
is defined by ρ = E/j for j → 0, where j is the ap-
plied supercurrent density and E is the resulting induced
electric field. The resistance R is given by the Nyquist
formula [20,22]

R =
1

2T

∫ +∞

−∞

dt 〈V (t)V (0)〉. (6)

The integral is evaluated as a sum over discrete time
steps, defined as one MC trial move. The voltage Vx(t)
is defined by the fluctuation of loops and is calculated by
the following procedure. Ṅx+(Ṅx−) denotes the number
of accepted trial moves with a vortex–loop oriented in
the x–direction as x+ (x−) for a MC sweep through the
lattice. The + and − keep track of whether the vortex–
loop is positively or negatively oriented. The voltage
Vx(t) at time t, in the x-direction, is Vx(t) ∝ Ṅx+− Ṅx−.
There are three resistances Rx, Ry and Rz which all are
equal in the isotropic case considered here.
We consider now the finite size scaling. In three di-

mensions 1/ǫ obeys the scaling relation [23,24]

L
1

ǫ
(

k = 2π
L

) ≈ constant at T = Tc and d = 3, (7)

A finite size scaling relation for the resistivity, can be
derived in the following way. The Josephson relation

V ∼
d

dt
∇φ (8)

relates the voltage to the time derivative of the gradient
of the phase φ of the superconducting order parameter
[25]. From eq 8 we conclude that as Tc is approached the
voltage scales as V ∼ 1/τ where τ is the dynamical time
scale. Dimensional analysis of eq. 6 leads to R ∼ 1/τ ,
where τ is related to the correlation length through τ ∼
ξz. At Tc the correlation length is cut off by the finite
size L of the system and we have

R ∼ τ−1 ∼ ξ−z = L−z (9)

In three dimensions we have the following relation for
the resistivity, ρ = RL. Hence, the following finite size
scaling relation for the resistivity:

ρLz−1 ≈ constant at T = Tc and d = 3, (10)

The Meptropolis algorithm does not in itself contain any
reference to time. One can however show [26] that there
is a linear relation between time the scale of Langevin
dynamics and Metropolis MC trial moves. The success
of this similarity has proven itself in many simulations
[10,11].
Now we turn to the results. The analysis is based on

the finite size scaling relation eq. 10. The temperature is
measured in units of Jx. The determination of z is done
by the following minimisation procedure on our Monte–
Carlo data. For a given value of z, we form the data
curves ρ(L, T )Lz−1 as a function of temperature. We
calculate the average separation ST and Sρ between the
crossings of these curves. The index T and ρ indicate the
respective coordinates. For n curves there will be

∑n−1
i=1 i

crossings. The minimum S indicates the z for which the
scaling relation eq. 10 is full filled, and it determines
the critical temperature Tc. In figure 1 the functions ST

and Sρ are plotted versus z − 1. The lattice sizes in the
figure are L = 8, 10, 12, 14, 16. Both functions have a
clear minimum, which occurs at nearly the same value
z − 1 = 0.51. Less well converged data will not have co-
inciding minima for the ST and Sρ functions. We have
also tried to exclude some of the lattice sizes in the cal-
culation of ST and Sρ but this does not change the result
for z, at maximum 3% . Including lattice sizes L = 4 and
6 will change the determination of z. Especially L = 4
is outside the scaling regime and including both L = 4
and 6 would change z to 1.51. The critical temperature
is determined as the average intersection at the z that
minimised ST and Sρ and is found to be Tc = 5.99.
One might also note that if the data had not been well

converged. The minimum in figure 1 would have been
less well pronounced. This is because the scaling expo-
nent z − 1 is found to be small. For high temperatures
there will always be the trivial scaling as there are no
finite size effects in ρ for temperatures far above Tc, and
eventually one would find z = 1 far above Tc. The in-
set of figure 1 shows the calculated critical temperature
versus the scaling exponent z − 1. From the inset we see
that a large change of the scaling exponent z − 1 only
gives a moderate change in Tc. Taken together with the
well defined minimum in ST and Sρ we infer that the
procedure to determine z is stable.
In figure 1b the finite size scaling is shown for 1/ǫ in

accordance with eq. 7. The evaluated critical tempera-
ture corroborates the result achieved with the resistivity
scaling. The critical temperature determined is in good
agreement with determinations for the 3 dimensional Vil-
lain model [8]. There are no adjustable parameters in this
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procedure and we can clearly see there is a small finite
size effect, as the the curves for larger lattices intersect
at slightly lower temperatures. One might also note that
as the scaling relation for 1/ǫ works it indicates that the
statitic scaling exponents are the same as for the 3 di-
mensional XY –model.
In figure 2 the resistance scaling is shown for the z

that minimised the spread in figure 1. The data shows
a very good splay at Tc and eq. 10 is obeyed to high
precision. The inset shows the resistivity as a function of
temperature. From figure 2 it is evident that there is a
small finite size effect. The curves for larger lattices cross
at higher temperatures. The effect is small and Tc will
have its upper bound given from the 1/ǫ scaling shown
in figure 1b. From the inset in figure 1a an approximate
value for z would be 1.5.
We have used the Nyquist relation to determine Tc di-

rectly from the vanishing resistivity. From the size scaling
near Tc we determine the dynamical critical exponent z
to be z = 1.51 ± 0.03. This result is interesting since it
is equivalent to superdiffusive behaviour. Most models
have subdiffusive behaviour, i.e. z > 2 [27]. It is also
worth to emphasis that the result establish that the 3d
XY –model and the 3d London lattice model has the same
dynamical critical behaviour not only the same equilib-
rium exponents. It is interesting to compare our result
to a recent work by Wengel and Young [16] a study of
the Lattice superconductor in the limit λ = 0 was pre-
sented. In this limit of the model they find z = 3. The
difference between our result and their result is consis-
tent with the fact that LLM for λ < ∞ is not equivalent
to the XY –model.
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FIG. 1. Monte Carlo results for the LLM. Shown in figure
a are results for the scaling relation eq. 10. The functions
Sρ (dashed curve) and ST (solid curve) are drawn as function
of the dynamical exponent z. The lattice sizes employed in
the determination are L = 8, 10, 12, 14 and 16. The minimum
occurs at z = 1.51. The critical temperature of the system
is determined to Tc = 5.99. The inset shows the determined
Tc as a function of z. In figure b the results for the scaling
relation eq. 7 are shown. Lattice sizes L are 4 = stars, 6 =
open circles, 8 = filled circles, 10 = open squares, 12 = filled
squares, 14 = triangles and 16 = plusses. One can clearly see
the curves for larger lattices intersect at lower temperatures.

FIG. 2. Monte Carlo results for the scaled resistivity. The
function ρ(T )Lz−1 is plotted against temperature. The dy-
namical exponent is determined from figure 1a z = 1.51. Lat-
tice sizes L are 4 = stars, 6 = open circles, 8 = filled circles, 10
= open squares, 12 = filled squares, 14 = triangles and 16 =
plusses. There is a finite size effect present, intersections for
the larger lattices take place at a slightly higher temperature.
The inset shows ρ as a function of T .
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