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Abstract— We adress the problem of the algebraic decoding
of any cyclic code up to the true minimum distance. For this,
we use the classical formulation of the problem, which is to find
the error locator polynomial in terms of the syndroms of the
received word. This is usually done with the Berlekamp-Massey
algorithm in the case of BCH codes and related codes, but for
the general case, there is no generic algorithm to decode cyclic
codes. Even in the case of the quadratic residue codes, whichare
good codes with a very strong algebraic structure, there is no
available general decoding algorithm.

For this particular case of quadratic residue codes, several
authors have worked out, by hand, formulas for the coefficients
of the locator polynomial in terms of the syndroms, using the
Newton identities. This work has to be done for each particular
quadratic residue code, and is more and more difficult as the
length is growing. Furthermore, it is error-prone.

We propose to automate these computations, using elimina-
tion theory and Gröbner bases. We prove that, by computing
appropriate Gr öbner bases, one automatically recovers formulas
for the coefficients of the locator polynomial, in terms of the
syndroms.

Index Terms—Algebraic decoding, general cyclic codes, New-
ton identities, elimination theory, Gröbners bases.

I. I NTRODUCTION

There is a longstanding problem of efficiently decoding
binary quadratic residue codes. For each prime numberl such
that 2 is a quadratic residue modulol, there exists essentially
one such code. It is a cyclic code of lengthl, whose defining
set if the set of the quaratic residue modulol. It is proven that
the minimu distance of these codes is at least⌊

√
l⌋ (the square-

root bound). But compiled tables show that the minimum
distance of these codes is much better than this bound, and itis
an open question to find or to estimate the minimum distance
of these codes, althought some progress has been achieved [1].

Up to date, there is no general decoding algorithm for
the whole class of quadratic residue codes. Several efforts
have been put up for particular cases, that is to say for each
particular length, mainly by Chen, Truong, Reed, Helleseth
and others [2], [3], [4], [5], [6], [7], [8], [9], for the lengths
31, 23, 41, 73, 47, 71, 79, 97, 103 and 113. All these decoding
algorithms are based on the Newton identities, which involve
the so-callederror locator polynomialand thesyndromsof
the received word. These Newton identites are to be written
for each particular length, and then to be worked out for
isolating the coefficients of the locator polynomial in terms of
the syndroms, while eliminating theunknown syndroms, which
appear in the Newton identities. This elimination procedure

is hand crafted by the authors. So it is tedious, prone to
errors, and the authors eventually fail to find formulas for the
coefficients of the locator polynomial.

A separate path of research has been to use the theory of
Gröbner bases for decodinganycyclic code. It was originated
by Cooper [10], [11], [12], althought the results were un-
proven. Cooper uses an algebraic system of equations, closely
related to the decoding problem, but different from the Newton
identities. These works only deal with BCH codes. Later, these
algebraic systems have been studied by Loustaunau and von
York [13], Caboara and Mora [14], for any cyclic code, and
they give proofs of the statements by Cooper. In this vein
of research, one studies the ideal generated by the system
of equations, and tries to prove that the symbolic locator
polynomial belongs to this ideal. Then this polynomial can
be found by the computation of a Gröbner with respect to a
relevant ordering on the monomials.

Another system defined by the Newton identities has been
considered by Chen, Helleseth, Reed and Truong [15] (see
also [16], [17]). In that case, the aim is to prove that the
ideal generated by the Newton identities contains, for each
coefficient σi of the locator polynomial, a polynomial of
whose leading monomial is of degree one inσi, and that this
polynomial does not involve the unkown syndroms.

II. OUR CONTRIBUTION

We have already discussed the use of Gröbner bases for
decoding cyclic codes [18] with a system different from the
Newton identities. At that time, we discussed the computation
of Gröbner basss online: for each received word, one computes
the syndroms, and subsitutes them into an algebraic system of
equations. Then the computation of the Gröbner basis gives
the coefficients of the locator polynomials, which are sought
for.

In this work, we discuss the idea of precomputing the
Gröbner basis of a system in which the syndroms are left as
indeterminates. Then we show that this Gröbner basis leadsto
formulas for the coefficients of the locator polynomial. This
is calledone-step decoding.

Still, there is the problem that these formulas for the
coefficientsσi’s of the locator polynomial are of the form
piσi + qi = 0, wherepi, qi involve only the syndroms. Thus
finding σi can be done as follows

σi =
qi

pi
,
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which may lead to a division by zero, when the actual values
of the syndromes are substituted intopi.

Our second contribution is to introduce a new ideal, which
contains formulas of the formσi + qi = 0. Thus finding the
σi’s do not involve any division after substitution.

III. D EFINITIONS

We consider only binary cyclic codes. Letn be the length,
which is odd, andα be a primitiven-th root of unity in some
extensionF2m of F2. To each binary wordc = (c0, . . . , cn−1)
of lengthn, is associated the polynomialc0 + c1X + · · · +
cn−1X

n−1. The Fourier Transform ofc is the vectorS =
(S0, . . . , Sn−1), with Si = c(αi). A cyclic code is built by
considering adefining setQ = {i1, . . . , il} ⊂ {0, 1, . . . , n −
1}. The cyclic codeC of defining setQ is then the set of
words whose Fourier Transform satisfies

Si1 = · · · = Sil = 0.

Let y ∈ F
n
2 the received word, to be decoded. As usual, we

write y = c+ e, wherec is the codeword, ande is the error.
We compute the Fourier TransformS of y, and fori ∈ Q, we
have:

Si = y(αi) = c(αi + e(αi) = e(αi), i ∈ Q,

sincec ∈ C. The Si’s, i ∈ Q are called thesyndromsof e,
and theSj ’s, j 6∈ Q are theunknown syndroms. The decoding
problem is to finde given the syndromsSi’s, i ∈ Q, under the
constraint that the weight ofe is bounded byt = ⌊d−1

2
⌋, where

d is the minimum distance ofC, and thedecoding radiusof
C.

IV. T HE NEWTON’ S IDENTITIES

Let the errore be of weightw, and letu1, . . . , uw the indices
of the non zero coordinates ofe. These indices are encoded
in the locator polynomialσ(Z), defined as follows:

σ(Z) =
w
∏

i=1

(1− αuiZ) =
w
∑

i=0

σiZ
i,

whereσ1, . . . , σw are theelementary symmetric functionsof
αu1 , . . . , αul , which are called thelocatorsof e. We note by
Z1, . . . , Zw the locators ofe. Findinge is equivalent to finding
σ(Z), and the problem is considered to be solved whenσ(Z)
is found, thanks to the Chien search [19].

The Newton identities relate the elementary symmetric
functions of the locators ofe to the coefficients of the Fourier
Transform ofe. They have the following form (see [20]):























Si +

i−1
∑

j=1

σjSi−j + iσi = 0, i ≤ w,

Si +

w
∑

j=1

σjSi−j = 0, w < i ≤ n+ w.

(1)

Note that the indices of theSi are cyclic, i.e.Si+n = Si. In
these equations, there are theσi’s, that we are looking for, the
Si, i ∈ Q, and theSi’s, i 6∈ Q, that we try to eliminate. Our
objective is to find an expression of theσi’s in terms of the
Si’s, i ∈ Q.

V. ELIMINATION THEORY

We consider the idealIN,w, generated by the Newton
identities:

IN,w :

〈 Si +

i−1
∑

j=1

σjSi−j + iσi, i ≤ w

Si +

w
∑

j=1

σjSi−j , n+ w ≥ i > w

〉

. (2)

Let us note byσ the set of the variablesσ1, . . . , σw, by SQ

the set{Si; i ∈ Q}, andSN the set{Si, i 6∈ Q}. Then we have
thatIN,w is an ideal in the polynomial algebraF2[σ, SQ, SN ].

A Gröbner basisof an ideal I is a particular set of
generators ofI, which is well behaved with respect to various
operations: it enables to test equalities of ideals, to testideal
membership and so on. Due to lack of space, we will not
recall to formal definition here, which can be found in [21].
We recall that this notion depends on a monomial ordering: for
each particular monomial ordering there exists a corresponding
Gröbner basis. Of utmost importance for us are the following
considerations [21].

Definition 1: Let I ⊂ F2[x1, . . . , xm]. Then the ideal

Ik = I ∩ F2[xk+1, . . . , xm]

is the k-th elimination ideal. It is the set of all the relations
that can be obtained onxk+1, . . . , xm, by elimination of the
k first variablesx1, . . . , xk.

Proposition 1: Let I ⊂ F2[x1, . . . , xm] be an ideal and let
G be a Gröbner basis for the lexicographical ordering, with
x1 > · · · > xn. Then, the set

Gk = G ∩ F2[xk+1, . . . , xm]

is a Gröbner basis of thek-th elimination ideal Ik =
IF2[xk+1, . . . , xm].
Thus it is sufficient to compute a single GröbnerG, and to
retain the relevant polynomials, to eliminate the unwanted
variables. For the problem of decoding, we get:

Proposition 2: Let be given a monomial ordering such that
theSi’s, i 6∈ Q are greater than theSi’s, i ∈ Q, and theσi’s.
Let G be a Gröbner basis ofIN,w for this ordering. Then

G ∩ F2[σ, SQ]

is a Gröbner basis of the elimation idealIN,w ∩ F2[σ, SQ].
This means that, if we compute a Gröbner basis ofIN,w for

a relevant ordering, we find a (finite) basis of all the relations
between theσi’s and theSi’s, i ∈ Q. The problem is that
these relations may not be of degree one in theσi’s. Our aim
is to prove that there exists relations of the formpiσi + qi in
this ideal, wherepi, qi ∈ F2[SQ].

VI. T HE VARIETY ASSOCIATED TO THENEWTON

IDENTITIES

First we have to studyV (IN,w) the variety associatedto
the idealIN,w. It is the set of allσi’s, Si’s, which satisfy the
Newton identities. Note that we consider this variety inF2,



the algebraic closure ofF2. We have the following Theorem,
which is an extension of the main result of [22].

Theorem 1:Let (σ, S) be in V (IN,w), with σ =
(σ1, . . . , σw) ∈ F

w

2 and S = (S0, . . . , Sn−1) ∈ F
n

2 . Let e
be the inverse Fourier Transform ofS. Note thata priori e
has coordinates inF2. Then

1. the weight ofe is less thanw;
2. e has indeed coordinates inF2;
3. if σ(Z) is the polynomial

1 +

w
∑

i=1

σiZ
i,

and if σe(Z) is the locator polynomial ofe, then there exists
an integerl and a polynomialG(Z) such that

σ(Z) = σe(Z)G(Z)2Z l.

Proof: Ommitted due to lack of space.
From the NullStellenSatz [21], we have:

Corollary 1: Let IN,w ∩ F2[SQ, SN ] be the elimination
ideal of theσi’s. If IN,w is radical, thenIN,w ∩ F2[SQ, SN ]
is the set of all the relations between the coefficients of
the Fourier Transform of the binary words of weight less
than w. Furthermore, if we eliminate theSi’s, i 6∈ Q, then
IN,w ∩ F2[SQ] is the set of all the relations betwen the
syndroms of the words of weight less thanw ≤ t.

Corollary 2: Let SQ,e be the set of syndroms of some word
e. LetTw be a basis ofIN,w∩F2[SQ], thene has weightw ≤ t

if and only if

t(SQ,e) = 0, for all t ∈ Tv, for all v ≤ w. (3)

VII. R ADICAL IDEALS

In the above, we have stumbled on the difficulty on proving
that IN,w is a radical ideal. We believe it is, but we have not
been able to prove it. To overcome this difficulty, we consider
the idealI0N,w, where we add the “field equations” to ensure
that theσi’s and theSi’s belong to the fieldF2m . It is the
ideal

I0N,w = IN,w +

〈

S2
m

i + Si, i ∈ {0, . . . , n− 1},
σ2

m

i + σi, i ∈ {1, . . . , w}

〉

. (4)

Thanks to these field equations, the idealI0N,w is radical, and
has dimension zero (it has a finite number of solutions). It is
a consequence of [23, Chap. 2, Prop. 2.7], which implies that,
if an ideal contains, for each variable, a squarefree univariate
polynomial in this variable, then it is radical.

One can prove the following.
Theorem 2:For each binary worde of weightw less thant,

for eachi ∈ {1, . . . , w}, the idealI0N,w contains a polynomial

piσi + qi,

with pi, qi ∈ F2[SQ] such thatpi(SQ,e) 6= 0, whereSQ,e is
the set of the syndroms ofe.

Proof: Ommitted due to lack of space.
Thus the decoding algorithm could be:
1) (precomputation) For eachw ∈ {1, . . . , t}, compute a

Gröbner basisGw of I0N,w, for an ordering such that

the Si, i 6∈ Q, are greater than theσi’s which in turn
are greater than theSi’s, i ∈ Q;

2) (precomputation) from each Gröbner basisGw, for each
i, collect all the relationspiσi + qi, call Σw,i this set;

3) (precomputation) from each Gröbner basisGw, collect
the polynomials inGw ∩ F2[SQ], call Tw this set of
polynomials;

4) (online) for each received wordy, compute the syndroms
SQ,y = SQ,e, wheree is the error to be found;

5) (online) find the weightwe of e using the criterion (3).
6) (online) for eachi ∈ {1, . . . , we}:

a) find the relationpiσi + qi ∈ Σwe,i such that
pi(SQe

) 6= 0
b) solve forσi:

σi =
pi(SQe

)

qi(SQe
)

There are two difficulties with this approach. First, the
Gröbner basis can contain many polynomials of the form
piσ+qi, i ∈ {1, . . . , w}, as we have observed on examples.
Second, the field equations of the typeσ2

m

i +σi, andS2
m

i +Si

can be of large degree, even though the length of the code is
moderate. For instance, in the case of the quadratic residue
code of length 41, the splitting field isF220 = F1048576.
This means thatI0N,w contains equations of degree more than
one million, and the computation of the Gröbner basis is
intractable.

It is natural to try to remove the field equations, and to
consider the idealIN,w without the field equations.

VIII. A N AUGMENTED IDEAL

The difficulty, as mentionned above, is that we have not
proven thatIN,w is a radical ideal, which is a necessary
ingredient, among others, to prove Theorem 2. We will build
an ideal which containsIN,w, which is radical, and which
will contain “nice” formulas. First we introduce the idealIσ
corresponding to the definitions of the elementary symmet-
ric functions, andIS corresponding to the definition of the
coefficients of the Fourier Transform:

Iσ =

〈

σi −
∑

1≤j1<···<ji≤w

Zj1 . . . Zji ; i ∈ {1, . . . , w}
〉

;

and

IS =

〈

Si −
∑w

j=1
Zi
j , i ∈ {1, . . . , n+ w};

Si+n − Si, i ∈ {1, . . . , w}

〉

.

Note this ideal belongs to the polynomial ring
F2[σ, S, Z1, . . . , Zw]. When we eliminate theZ ′

is, we
have the following

Proposition 3:

(IS + Iσ) ∩ Fq[S, σ] = IN
Proof: Omitted due to lack of space.

Let us introduce the following polynomial:

∆(Z1, . . . , Zw) = Z1 · · ·Zw

∏

1≤i<j≤w

(Zi − Zj) .



This polynomial has the property that, if the weightwe of e
of the error is less thanw, then one can extend the locators
Z1, . . . , Zwe

into Z1, . . . , Zw, in a way such thatZ1, . . . , Zw

are zeros of∆. In other words, it captures, in some sense, the
property of being of weight strictly less thanw.

We need the definition of a saturated ideal, with respect to
a polynomial.

Definition 2: Let I ⊂ F[x1, . . . , xn] be an ideal, andf ∈
F[x1, . . . , xn] be given. The saturated ideal ofI with respect
to f , denotedI : f∞, is the ideal

I : f∞ = {g ∈ F[x1, . . . , xn] : f
mg ∈ I for somem > 0}

(5)
One has that, under some restrictions, the variety associated
to the saturated idealI : f∞, does not contain the zeros off .

Proposition 4: Let I = 〈f1, . . . , fs〉 ⊂ F[x1, . . . , xn] be
an ideal andf ∈ F[x1, . . . , xn] be given. Lety be a new
indeterminate. Consider

Ĩ = 〈f1, . . . , fs, 1− fy〉 ⊂ F[x1, . . . , xn, y],

thenI : f∞ = Ĩ ∩ F[x1, . . . , xn].
Thus the saturated ideal can be computed by a Gröbner basis
computation and elimination. Now we introduce the saturated
ideal

(Iσ + IS) : ∆
∞ (6)

Then
Proposition 5: The ideal

(Iσ + IS) : ∆
∞

contains the polynomials

Zn
i + Zi, i ∈ {1, . . . , w},

σ2
m

i + σi, i ∈ {1, . . . , w},
S2

m

i + Si, i ∈ {0, . . . , n− 1}.
Proof: Ommitted due to lack of space.

In particular, it is a radical ideal. Then, by elimination ofthe
Zi’s, we have the idealI∞N,w:

I∞N,w = ((Iσ + IS) : ∆
∞) ∩ F2[σ, S] ⊃ IN,w

Note that a basis ofI∞N,w can be computed by computing a
Gröbner basis ofIS+Iσ+(1−y∆) for an ordering eliminating
y andZi’s, and by retaining the polynomials in terms of the
σi’s and theSi’s. Note also thatI∞N,w is a radical ideal.

The variety associated toI∞N,w can be described as follows:
Theorem 3:The varietyV (I∞N,w) is exactly the set of the

elementary symmetric functions and the elementary power-
sum functions of the words of weight exactlyw.

Proof: Ommitted due to lack of space.
In particular, we have:

Corollary 3: Let SQ,e be the set of syndroms of some word
e. Let Tw be a basis ofI∞N,w ∩ F2[SQ], thene has weightw
if and only if

t(SQ,e) = 0, for all t ∈ Tw. (7)
Armed with this Theorem, and with the radicality ofI∞N,w,

we can prove:

Theorem 4:For each i ∈ {1, . . . , w}, I∞N,w contains a
polynomial of the formσi + qi, with qi ∈ F2[SQ].
Note that this polynomial will appear in a Gröbner basis of
I∞N,w, computed as above.

The algorithm for decoding is

1) (precomputation) For eachw ∈ {1, . . . , t}, compute a
Gröbner basisGw of I∞N,w, written for the weightw;

2) (precomputation) From eachGw, for eachi, pick the
polynomialqi,w which appears in the polynomialσi +
qi,w in Theorem 4.

3) (precomputation) From eachGw, pick all the polynomi-
als inGw ∩ F2[SQ], call Tw this set of polynomials;

4) (online) for each received wordy, compute the syndroms
SQ,y = SQ,e, wheree is the error to be found;

5) (online) for each possible weightw of the error, find the
weightwe of the error using the criterion (7).

6) (online) computeσi = qi,we
(SQ,e).

Thus we have removed the problem of the field equations,
and the problem of the division by zero.

IX. CONCLUSION

For the decoding of any cyclic code, up to the true minimum
distance, we have shown how to find relations of degree one
for the coefficients of the locator polynomials, in terms of the
syndroms. These relations can be computed from the Newton
identities. Then we have introduced an ideal containing the
ideal generated by the Newton identities, which give formulas
for the coefficient of the locator polynomial, with no leading
terms (and thus avoiding the problem of dividing by zero).
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