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Abstract— This paper investigates the relationship between the  The rest of the paper is organized as follows. Sedfion I
rank weight distribution of a linear code and that of its dual code. reviews necessary backgrounds in an effort to make thisrpape
The main result of this paper is that, similar to the MacWilliams self-contained. Sectioi TII3A introduces the conceptsgef

identity for the Hamming metric, the rank weight distributi on of duct anda-derivative for h | ial d
any linear code can be expressed as an analytical expression,pro uct andg-aerivative for homogeneous polynomials, an

of that of its dual code. Remarkably, our new identity has Investigates their properties. Using these tools, SeslifB]
a similar form to the MacWilliams identity for the Hamming  and[Il=Q prove the MacWilliams identity for the rank metric
metric. Our new identity provides a significant analytical tool and Sectiori II-ID derives the relationship between the mo-
to the rank weight distribution analysis of linear codes. We \hanis of the rank distribution of a linear code and thosesof it
use a linear space based approach in the proof for our new dual code. We al id It tive derivai £ e
identity, and adapt this approach to provide an alternative proof _ua ,CO .e. € alSo provide z.;m a erna Ive derivation o r
of the MacWilliams identity for the Hamming metric. Finally , distribution of MRD codes in Sectidn IIIE. Some examples
we determine the relationship between moments of the rank are provided in Sectiop II[3F to illustrate our results. &y,
distribution of a linear code and those of its dual code, and Sectio{1V adapts the approach in SectibnsIl-B &nd 11I-C to
provide an alternative derivation of the rank weight distri bution provide an alternative proof of the MacWilliams identityr fo
of maximum rank distance codes. - . .
the Hamming metric. All the proofs have been omitted due to
| INTRODUCTION limited space, and they will be presented at the conference.
The rank metric has attracted some attention due to its 1. PRELIMINARIES

relevance to wireless communications [1], [2], public-ke
cryptosystems [3], and storage equipments (see, for examp . _ _
[4]). Due to these applications, there is a steady streanodfw  Consider  an  n-dimensional  vector x =

. Rank metric

that focus on general properties of codes with the rank metfito, 21, .., ¥n—1) € GF(¢™)". Assume{ag, a1, ..., am—1}
[4]-[14]. Despite these works, many open problems remdf @ basis set of Gig™) over GHg), then for
for rank metric codes. For example, it is unknown how to=0,1,...,n — 1, ; can be written as;; = Y7 ! @y o,
derive the rank weight distribution for any given linear eodwhere z;; € GF(q) for i = 0,1,...,m — 1. Hence,
except when the code is a maximum rank distance (MRB) can be expanded to am-dimensional column vector
code [5]. Besides the minimum rank distance, the rank weighto.j; #1,j,-- - s Tm—-1,;)7 With respect to the basis set
distribution is an important property of any rank metric epd {@0, @1, ..., @m—1}. Let X be them x n matrix obtained by
and determines its error performance in applications. expanding all the coordinates &f That is,

In this paper, we investigate the rank weight properties of Zoo Zo1 o Tom
linear codes. The main result of this paper is that, simiar t . . . e
the MacWilliams identity for the Hamming metric, the rank X — 1o Lo Lot 7
weight distribution of any linear code can be expressed as : : . :
an analytical expression of that of its dual code. Our new Tm—1,0 Tm—11 --- Tm—1n—1
identity is a significant analytical tool for both rank weigh o
distribution and hence error performance analysis of line¢here z; = 37" " x; ja;. The rank norm of the vector

codes. To our best knowledge, no similar result exists in the (Over GRg)), denoted ask(x|GF(q)), is defined to be
literature. It is also remarkable that our new MacWilliamghe rank of the matrixX over GKgq), i.e., rk(x|GF(q)) def
identity for the rank metric has a similar form to that forank(X) [5]. In this paper, all the ranks are over the base
the Hamming metric. Despite the similarity, our new idgntitfield GHq) unless otherwise specified. To simplify notations,
is proved using a different approach based on linear spaces. denote the rank norm of asrk(x) henceforth.

Using the same approach, we give an alternative proof of theThe rank norm ofx is also the number of coordinates in
MacWilliams identity for the Hamming metric. Based on ouxk that are linearly independent ovéiF(q) [5]. The field
new identity, we also derive an expression that relates mesneGF (¢™) may be viewed as am-dimensional vector space
of the rank distribution of a linear code to those of its dualver GF(q). The coordinates af thus span a linear subspace
code, and provide an alternative derivation for the ranigiwei of GF(¢"™), denoted as&(x), and the rank ofx is the
distribution of MRD codes. dimension of&(x).
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Forallx,y € GF(¢™)", itis easily verified thatl.(x,y) &' Gaussian binomial [16], defined d8] = a(n,u)/a(u, ).

rk(x — y) is a metric over GRg™)", referred to as theank Note that["] is the number ofi-dimensional linear subspaces
metric henceforth [5]. Theminimum rank distancef a code, of GF(q)". We also define3(m, 0) def 1 and B(m, ) def

denoted asly, is simply the minimum rank distance over aIIHzL:Ol [™=7] for u > 0, which are used in SectiénIIIA. These
possible pairs of distinct codewords. terms are closely related to the Gaussian binongiat:, u) =

B. The Singleton bound and MRD codes (] 8(u, w) and B(m + u,m + u) = [ 7] B(m, m)B(u, w).

The minimum rank distance of a code can be specifically || M ACWILLIAMS IDENTITY FOR THE RANK METRIC
bounded. First, the minimum rank distandg of a code
of length n over GF(¢™) is obviously bounded above byA. g-product andg-derivative of homogeneous polynomials
min{m, n}. Codes that satisfy, = m are studied in [8]. Also,  pefinition 4 ¢-product): Let alz,y;m) =
it can be shown thad; < d, [5], whered, is the minimum s~ . (;m)yizm = and b(z,y;m) = S5 bj(m)y’z*~7 be
Hamming distance of the same code. Due to the Singletgflo homogeneous ponnomiaIs:iznandJy_of degrees ands

bound on the minimum Hamming distance of block cod&gspectively with coefficients;(m) and b;(m) respectively.
[15], the minimum rank distance of a block code of length a;(m) andb;(m) for 4,7 > 0 in turn are real functions of

(n <m) and cardinalityM over GF(¢g™) thus satisfies m, and are assumed to be zero unless otherwise specified.
d <1 —logym M +1. 1) The g-product ofa(z,y; m) gnd b(x,y; m) is defined todge
_ _ o the homogeneous polynomial of degrget+ s) c¢(x,y;m) =
As in [5], we refer to codes that achieve the equality in ED. bz, y;m) * b(z, y;m) = e e (m)ytar s, with
as MRD codes. It is also shown that the dual of any MRD
code is also an MRD code [5]. Clearly MRD codes are the “ _
counterparts of maximum distance separable (MDS) codes. cu(m) = Z ¢ ai(m)by—i(m — ).
1=0

C. Weight enumerator and Hadamard transform Forn > 0 the n-th g-power ofa(x, y: m) is defined recur-

We restrict our attention to the Hamming metric and thﬁvely:a(a:,y;m)[ol =1 anda(z, y; m)[" = a(z,y;m)"—1 «
rank metric only henceforth in this paper. a(z,y;m) forn > 1.

De‘:L”TO” 1 (Weight function)Let d be a metric over o jjystrate they-product, we provide some examples of the
GF(qm)n, and definew(v) :m (i(O,v) as a weight over g-product. We havexy = yz, yxz = qur, yr+z = qyr?, and
GF(¢™)™. Supposev € GF(¢™)™ has weightr, then the yzk (g™ —1)y = (¢™ —q)y>z. Note thatexy # y+z. Itis easy

weight function ofv is defined asfy, (v) = y"2""". _to verify that theg-product is in general non-commutative.
We shall henceforth denote the Hamming weight functioowever. it is commutative for some special cases.

and the rank weight function af and f; respectively. Note
thatn is the maximum weight for bottf, and f.

Definition 2: Let C be a code of lengtn over GF(¢™).
Suppose there arg; codewords irC with weighti, then the
weight enumerator of, denoted asVc¢(z,y), is defined as

Lemma 1:Supposex(z,y;m) = a is a constant indepen-
dent from m, then a(z,y;m) x b(z,y;m) = b(z,y;m) *
a(z,y;m) = ab(z,y;m). Also, if degle(z,y;m)] =
degla(z, y;m)], thenla(z, y;m) + c(z, y;m)] * b(z, y;m) =
a(x,y; m)xb(xz,y; m)+c(z, y; m)«b(x, y; m), andb(z, y; m)*

" . la(z, y; m)+c(z, y;m)] = b(z, y; m)*a(z, y;m)+b(z, y; m)*
We'(z,y) d:efz Jw(v) = Z Agy'z"" c(z,y;m). o

Definition 3 (Hadarﬁlgrcd transforFﬁ(J[15])Let C be the The homogeneousd ?olynom|ai$(:v,y;m) = o+ (¢" -
field of complex numbers. Letw € GF(¢™) and let 1)y]! andbi(z,y;m) = (x —y)! turn out to be very impor-
{1,01,...,am_1} be a basis set ofiF(¢™). We thus have tant to our derivations below. The following lemma provides
0 = ao + a101 + ... + 10, 1. Finally, let¢ € C be the analytical expressions f(z, y; m) andbi(z, y; m).

a primitive g-th root of unity. We definey(a) &' ¢a0. For ~ Lemma 2:Fori > 0, o &ef G-l Forl > 0, we have
a mappingf from F to C, the Hadamard transfornmof f, yl =q¢%'y! andzY = z!. Furthermore,
denoted agf, is given by

l
l —Uu
fv) def Z x(u-v)f(u). ) ai(x,y;m) = Z L] a(m, U)yuxl ) 3

uck

0

. l —u

D. Notations by(z,y;m) = Z [u:| (_1)uqauyuxl _ ()
In order to simplify notations, we shall occasionally denot u=0 )

the vector spac€&F(¢™)" as F. We denote the number of Note that a;(x,y;m) is the rank weight enumerator of

vectors of ranku (0 < uw < min{m,n}) in GF(¢™)" as GF(‘JT)_I-_ ]
N, (¢™,n). It can be shown thaiV, (¢™,n) = [”]a(m,u), Definition 5 @-transform): We define theg-transform of

Uu.

where a(m,u) is defined as follows:a(m,0) = 1 and @ y;m) = 31 _gai(m)y’a""" as the homogeneous poly-

a(m,u) = [['2) (g™ — ¢') for u > 1. The ["] term is the nomial a(a, y;m) = 35i_, ai(m)y + b=,



Definition 6 @-derivative [17]): For ¢ > 2, the ¢-
derivative forz # 0 of a real-valued functiorf () is defined

as

det f(qz) — f(2)
(¢—Dz
The g-derivative operator is linear. For> 0, we shall denote
the partialv-th g-derivative of f(z,y) (with respect tor) as
fW)(z,y). The 0-th g-derivative of f(z,y) is defined to be
f(z,y) itself.

Lemma 3:For v < n, the v-th g-derivative of the function
z™ is given by S(n,v)z"" Y. Also, the v-th g¢-derivative
of f(z,y) = Yiofiw'a""" is given by f*)(x,y)
S, fiB(i v)zi .

Lemma 4 (Leibniz rule)For two homogeneous polynomi-
als f(x,y) = Yi_ fiy'a™" and g(x,y) = >5_, gjpla*
with degrees ands respectively, the-th (v > 1) g-derivative
of their ¢g-product is given by

V()

174 - 4
(f(z,y) * g,y = > L
=0
FO(@,y) = g¥ D (x,y). ()
Next, we derive theg-derivatives ofa;(z,y;m) = [z +
(q™ = Dy andby (z, y;m) = (z —y)I.

}qw—n(r—l) .

Lemma 5:For v <[ we have
o’ (e, y;m) = B v)a—,(z,y;m) (6)
B (@ yim) = BULw)bi—y(,y;m). (7)

B. The dual of a vector

As an important step toward our main result, we derive

the rank weight enumerator d’)™, wherev € GF(¢™)"
is an arbitrary vector andv) . {av :a € GF(¢™)}. It is
remarkable that the rank weight enumeratofof- depends
on only the rank ofv.

Definition 7: For s > 1 the s-th order B-elementary
extension of an(n,k) linear codeC, is the (n + s,k +

s) linear code defined a<; def {(coy.--,Cnis—1) €
GF(g™)"*|(co,---s¢n1) — (Cny---sCnis—1)B € Cols
where B is an s x n matrix over GF(q). The 0-th order
elementary extension @, is defined to b, itself.

Lemma 6:Let Cy be an(n,k) linear code ovelGF(¢™)
with generator matrixG, and parity-check matrixl,. The
s-th order B-elementary extension af, is the (n + s,k +
s) linear codeCs; over GF(¢™) with a generator matrix

Go| O
G B | I
( Ho | ~HoBT ).

Corollary 1: Supposev = (vq, ...,v,—1) € GF(¢™)" has

rankr > 1. Then£ = (v)" is equivalent to thgn — r)-th

and a parity-check matrixt

S

MRD codes has been derived in [5]. However, we will use
our results to give an alternative derivation of the rankghei
distribution of MRD codes later, and thus we shall not use the
result in [5] here.

Lemma 7:For r > 1, supposev, = (vg,...,0r—1) €
GF(¢™)" has rankr < m. Then the number of vectors in
L, = <vr>l with rankr, denoted asd, ., depends on only
and satisfies!,. , = a(m,r—1)—¢""'A,_1 1. Furthermore,
the rank weight enumerator &, is given by

R

2@y =a " e+ @ = Dy + 0" - D@ -y
The following lemma relates the rank weight enumerator of
a code to that of any of its-th order elementary extensions.
Lemma 8:Let Cy C GF(¢™)" be a linear code with rank
weight enumeratoiV¢ (z,y), and fors > 0, let W¢ (z,y)
be the rank weight enumerator of i¥sh orderB-elementary
extensionC,. Then W¢ (z,y) does not depend oB and is
given by

WE (2,y) = W (2,9) * [z + (¢" — Dyl (8)
Combining Corollanf 1L, Lemm@al 7, and Leminla 8, the rank
weight enumerator ofv)" can be determined at last.
Proposition 1: For v € GF(¢™)™ with rank » > 0, the
rank weight enumerator of = <v>L depends on only, and
is given by

WE(z,y)

g {[w + (g =y + (g 1)
(2 =yl + (@ =1y} @

C. MacWilliams identity

Using the results shown in Sectibn 1M1-B, we now derive the
MacWilliams identity for rank metric codes.

Lemma 9:Suppose that for allh € GF(¢™)* and all
u € F, we havew(Au) = w(u). For v € GF(¢™)", let
us denote(v)" as L. Then the Hadamard transform of the
weight functionf,,, denoted as,,, satisfies

WE(@y) = ¢ " [WEy) + (@ = DAG)] . (10)
Lemma 10:Supposev € GF(¢"™)™ has rankr. Then the
Hadamard transform of the rank weight function is given by

fev) =@ =y sz + (@™ =1y (1)
Let C be an (n,k) linear code overGF(¢™), and let
We(z,y) = >, Aiy'a™~" be its rank weight enumerator
and Wi, (z,y) = Z?:o B;ylx™~7 be the rank weight enu-
merator of its dual cod€-.
Theorem 1:For any linear cod€ and its dual cod€*,
1

|C|VVCR (‘T—i_(qm_l)yax_y)v (12)

cRL (l’,y) =

order elementary extension of &nr — 1) linear code with whereW¢ is theg-transform of Wg. Equivalently,

dr = 2.
It is easy to verify that ther,r — 1) code withd;, = 2 is
actually an MRD code as defined in Section]I-B.

We hence derive the rank weight enumerator oflan —

Z Bjijn—j _ qm(k—n) ZAz(x_y)[z]*[x + (qm _ 1)y][nfz] .
J=0 i=0
(13)

1,2) MRD code. Note that the rank weight distribution of AlSO, B;’s can be explicitly expressed in terms 4f’s.



Corollary 2: We have We remark that the above rank distribution is consistent wit
that derived by Gabidulin in [5].

1 n
B, = — A;P;(i;m,n), (14)
Tl ; ’ F. Examples
where In this section, we illustrate Theorenh 1 and Proposifibn 2
det O [i1 T — i _ using some examples. Fat > 2, consider the(3,2) linear
Py(izm,n) ) H [j B l] (—1)'¢"¢" " Da(m —1,j—1). codeC; over GF(¢™) with generator matrix
=0
(15) ( 1 a1 )
it g G = 1 0/’
D. Moments of the rank distribution @

Next, we investigate the relationship between moments wherea is a primitive element of3F(¢™). It can be verified
the rank distribution of a linear code and those of its duéat the rank weight enumerator@f is given byW¢ (z,y) =
code. Our results parallel those in [15, p. 131]. 234+ (¢ — Dya® + ¢2(¢" — DyPx + (¢™ — ¢*) (g™ — 1)y°.

First, applying Theoreml 1 t6+, we obtain Applying TheorenTll, we obtaifV;, (z,y) = «° + (¢™ —

n i nei_ m(ken) n 1)y?z. We can verify by hand thalﬁ/g% (z,y) is indeed the
Z Ai'a™ =g Z Bjbj(w,ysm) + an—j(x,4;m)- g weight enumerator @f{-, which has a generator matrix
=0 7=0 @6) Hi=(—a 1 0).ForC, both sides ofl(17) are given by
By g-differentiating Eq. [(IB)~ times with respect ta: and ¢>", q" 7], (¢ —1+[7]), andl forv = 0, 1,2, 3 respectively.
using the Leibniz rule in Lemmia 4 as well as the results fyote that the results hold when =2 < n = 3.

LemmalB, we obtain For m > 4, let us now consider thé4,2) codeC, over
Proposition 2: For0 < v < n, GF(¢™) with the following generator matrix
n—v o v o 1 a OLQ a3
n ? m(k—v n J —
Z{ v ]Ai_q " )Z{n—u}Bj' a7 “ <1 al o a3q>'
=0 j=0

. i= J= .
As in [15], we refer to the left hand side of Eq. {17) ag, is actually a(4,2) MRD code withd, = 3. Hence, its
moments of the rank distribution af. We remark that the dual codeCy- is also a(4,2) MRD code withd, = 3.
cases where = 0 andv = n are trivial. Also, Propositiofl2 The rank weight enumerators of boty and Cy can be
can be simplified ifv is less than the minimum distance ofeadily obtained using Propositidd 3, and they are given
the dual code. / i by W§, (z,y) = Wi, (z,y) = zt + [ﬂ (g™ — 1)y3z! +
Corollary 3: Let d’, be the minimum rank distance . m m 2 e
o d ?hen R {* —1-[1](q - 1)} y*. ltcan be verified thal/’z, (=, y)
R! and WE. (z,y) satisfy Theoreni]l. FoC,, it can also be
n—v o . 2 . m 4] ,m [4 4
Z n—1 A; = gn) n (18) verified that both sides of:_(].?) arg™, [\]¢™, [5]. [1]. and
v v 1forv=0,1,---,4 respectively.

=0 . . 4 .
E. Rank distribution of MRD codes Fmglly, consider the(77_4) codeCs over GF(2%) with the
following generator matrix

The rank distribution of MRD codes was first given in [5].

Based on our results in Section 11l-D, we provide an altéveat 100 0 p* p5 p2

derivation of the rank distribution of MRD codes. In this G._| 0100 g g2 0

subsection, we assume< m. 0010 g2 0 |
First, we obtain the following results necessary for our o001 0 g p°

alternative derivation of the rank distribution.

Lemma 11:Let {a;}\_, and {b;}._, be two sequences
of real numbers. Suppose that for < j < [ we have
a; = S0, [f:;]bz Then for0 < i < [ we haveb;, =
Y io(—1) g7 [T ay.

Based on Corollar|3 and using Lemind 11, we can deri

whereg is a primitive element oGF(24). Its rank weight enu-
merator is given byV§ (x,y) = 7 +105y%z + 7350y +
58080y*2z3, Theorem[lL indicates that the rank weight enu-
merator of its dual code is given chF} (r,y) = 27 +
6@53;3:54 + 3630y*z3, which can be verified using exhaustive
the rank distribution of MRD codes when< m: search. It can also be verified that both sides[of (17)pr

16
Proposition 3 (Rank distribution of MRD coded)et ¢ be €2 ",520192, 682752, 196416, 22416, 2772, 127, and 1 for
an (n,k,d;) MRD code overGF(¢™) (n < m), and let v=0,1,---,7 respectively.
We(z,y) = 3o Aiy'z" " be its rank weight enumerator. |\, \ Ac\wiLLiaMS IDENTITY FOR THE HAMMING METRIC

We then havedy = 1 and for0 < i < n — dg,
- In this section, we adapt the approach used in our proof of

Adpri = [ " } Z(—l)i_jq”i*f [dR + Z] (qm(j+1) _ 1) ~ Theorendil to provide an alternative proof of the MacWilliams
dr+i ; dr +J identity for the Hamming metric. We first derive the Hamming
(19) weight enumerator o(v)L, wherev is an arbitrary vector.



Then, using this result and properties of the Hadamard traie remark that the MacWilliams identities for the Hamming
form, we obtain the MacWilliams identity for the Hammingand the rank metrics given in Theorefds 2 and 1 respectively
metric. have exactly the same form except for thdransform in
Definition 8: For s > 1, the s-th order coordinate extensionEq. [12). Note that Theorefd 2 is precisely the MacWilliams
of an(n, k) linear codeCy is defined as thén+s, k+s) code identity for the Hamming metric given by Theorem 13 in
Cs d:ef{(coj,,,,cnﬂfl) € GF(¢™)"**|(co, ... ,cn1) € Co}. [15, Chap. 5], although our proof is different from that in

The 0-th order coordinate extension ¢ is defined asC, [15, Chap. 5]. Finally, we remark that Theorem 13 in [15,

itself. Chap. 5] is a special case of the MacWiliams Theorem
We remark that the-th order coordinate extension is a specidPr complete weight enumerators (see Theorem 10 in [15,
case of thes-th orderB-elementary extension witB = 0. Chap. 5]). For the rank metric, it is not clear how we can

Lemma 12:Let Cy be an(n, k) linear code oveGF (¢™), adapt the concept of complete weight enumerator to give a
with a generator matrixG, and a parity-check matrix proof of the MacWilliams identity.
H,. ThenCs over GF(¢™) has a generator matri&G, =
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. . metric,” Proc. IEEE Int. Symp. on Information Theorgp. 121-123,
Proposition 4: For v € GF(¢™)™ with wy(v) = r, the Sept. 2005.
Hamming weight enumerator of = <v>L depends on only [14] P. Loidreau, “Properties of codes in rank metric,” piep
(V) and is given b [15] F. MacWilliams and N. Sloanélhe Theory of Error-Correcting Codes
WalV), 9 y Amsterdam: North-Holland, 1977.

" —m m n m [16] G. E. Andrews,The Theory of Partitionsser. Encyclopedia of Mathe-
W (z, y) = 4q { [x + (g™ — 1)y] +(q" — 1) s matics and its Applications, G.-C. Rota, Ed. Reading, MAd&dn-
Wesley, 1976, vol. 2.
(gg — y)T [x + (qm — 1)y]"_r . (21) [17] G. Gasper and M. RahmarmBasic Hypergeometric Serie@nd ed.,
. . ser. Encyclopedia of Mathematics and its Applications. Badge
Lemma 15:Supposev € GF(¢™)" has Hamming weight University Press, 2004, vol. 96.

r. Then the Hadamard transform of the Hamming weight
function is given by

fo(v) = (& =y)" [z 4+ (¢" = Dy]" " (22)
Using Lemma[Ib, we finally establish the MacWilliams
identity for the Hamming metric.
Theorem 2:For any linear cod€, we have

WEL (z,y) = l%lwc“ (4 (@™~ Dyz—y).  (23)
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