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http://webdali.univ-perp.fr/~pgiorgi

ABSTRACT
Efficient block projections of non-singular matrices have re-
cently been used, in [11], to obtain an efficient algorithm to
find rational solutions for sparse systems of linear equations.
In particular a bound of O (̃n2.5) machine operations is ob-
tained for this computation assuming that the input matrix
can be multiplied by a vector with constant-sized entries
using O (̃n) machine operations. Somewhat more general
bounds for black-box matrix computations are also derived.
Unfortunately, the correctness of this algorithm depends on
the existence of efficient block projections of non-singular
matrices and this has been conjectured but not proved.

In this paper we establish the correctness of the algo-
rithm from [11] by proving the existence of efficient block
projections for arbitrary non-singular matrices over suffi-
ciently large fields. We further demonstrate the usefulness of
these projections by incorporating them into existing black-
box matrix algorithms to derive improved bounds for the
cost of several matrix problems — considering, in particu-
lar, “sparse” matrices that can be be multiplied by a vector
using O (̃n) field operations: We show how to compute the
dense inverse of a sparse matrix over any field using an ex-
pected number of O (̃n2.27) operations in that field. A basis
for the null space of a sparse matrix — and a certification of
its rank — are obtained at the same cost. An application of
this technique to Kaltofen and Villard’s Baby-Steps/Giant-
Steps algorithms for the determinant and Smith Form of an
integer matrix is also sketched, yielding algorithms requiring
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Õ (n2.66) machine operations. More general bounds involv-
ing the number of black-box matrix operations to be used
are also obtained.

The derived algorithms are all probabilistic of the Las
Vegas type. That is, they are assumed to be able to generate
random elements from the field at unit cost, and always
output the correct answer in the expected time given.

1. INTRODUCTION
In our paper [11] we presented an algorithm which pur-

portedly solved a sparse system of rational equations consid-
erably more efficiently than standard linear equations solv-
ing. Unfortunately, its effectiveness in all cases was conjec-
tural, even as its complexity and actual performance were
very appealing. This effectiveness relied on a conjecture re-
garding the existence of so-called efficient block projections.
Given a matrix A ∈ F

n×n over any field F, these projections
should be block vectors u ∈ F

n×s (where s is a blocking fac-
tor dividing n, so n = ms) such that we can compute uv or
vtu quickly for any v ∈ F

n×s, and such that the sequence of
vectors u, Au, . . . , Am−1u has rank n.

In this paper, we prove the existence of a class of such
efficient block projections for non-singular n × n matrices
over sufficiently large fields — we require that the size of
the field F exceed n(n + 1). This implies our algorithm
from [11] for finding the solution to A−1b for a “sparse” sys-
tem of equations A ∈ Z

n×n and b ∈ Z
n×1 works as stated

using these projections, and requires fewer bit operations
than any previously known when A is sparse, at least using
“standard” (i.e., cubic) matrix arithmetic. Here, by A be-
ing sparse, we mean that it has a fast matrix-vector product
modulo any small (machine-word size) prime p. In partic-
ular, our algorithm requires an expected Õ (n1.5(log(‖A‖+
‖b‖))) matrix-vector products v 7→ Av mod p for v ∈ Z

n×1
p

plus and additional Õ (n2.5(log(‖A‖ + log ‖b‖))) bit opera-
tions. The algorithm is probabilistic of the Las Vegas type.
That is, it assumes the ability to generate random bits at
unit cost, and always returns the correct answer with con-
trollably high probability. When φ(n) = Õ (n), the implied
cost of Õ (n2.5) bit operations improves upon the p-adic lift-
ing method of [7] which requires Õ (n3) bit operations for
sparse or dense matrices. This theoretical efficiency was re-
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flected in practice in [11] at least for large matrices.
We present several other rather surprising applications

of this technique. Each incorporates the technique into an
existing algorithm in order to reduce the asymptotic com-
plexity for the sparse matrix problem to be solved. In par-
ticular, given a matrix A ∈ F

n×n over an arbitrary field
F, we are able to compute the complete inverse of A with
Õ (n3−1/(ω−1)) operations in F plus Õ (n2−1/(ω−1)) matrix-
vector products by A. Here ω is such that we can multiply
two n × n matrices with O(nω) operations in F. Standard
matrix multiplication gives ω = 3, while the best known
matrix multiplication of Coppersmith & Winograd [6] has
ω = 2.376. If again we can compute v 7→ Av with Õ (n)
operations in F, this implies an algorithm to compute the
inverse with Õ (n3−1/(ω−1)) operations in F. This is always
less than O(nω), and in particular equals Õ (n2.27) oper-
ations in F for the best known ω of [6]. Other relatively
straightforward applications of these techniques yield algo-
rithms for the full nullspace and (certified) rank with this
same cost. Finally, we sketch how these methods can be
employed in the algorithms of Kaltofen and Villard [20] and
[14] to computing the determinant and Smith form of sparse
matrices more efficiently.

There has certainly been much important work done on
finding exact solutions to sparse rational systems prior to
[11]. Dixon’s p-adic lifting algorithm [7] performs extremely
well in practice for dense and sparse linear systems, and
is implemented efficiently in LinBox [8], Maple and Magma
(see [11] for a comparison). Kaltofen & Saunders [18] are the
first to propose to use Krylov-type algorithms for these prob-
lems. Krylov-type methods are used to find Smith forms of
sparse matrices and to solve Diophantine systems in paral-
lel in [13, 14], and this is further developed in [20, 9]. See
the references in these papers for a more complete history.
For sparse systems over a field, the seminal work is that
of Wiedemann [23] who shows how to solve sparse n × n
systems over a field with O(n) matrix-vector products and
O(n2) other operations. This research is further developed
in [18, 5, 17] and many other works. The bit complexity of
similar operations for various families of structure matrices
is examined in [12].

2. SPARSE BLOCK GENERATORS FOR
THE KRYLOV SPACE

For now we will consider an arbitrary invertible matrix
A ∈ F

n×n over a field F, and s an integer — the blocking
factor — which divides n exactly. Let m = n/s. For a so-
called block projection u ∈ F

n×s and 1 ≤ k ≤ m, we denote
by Kk(A,u) the block Krylov matrix [u, Au, . . . , Ak−1u] ∈
F
n×ks. Our goal is to show that Km(A, u) ∈ F

n×n is non-
singular for a particularly simple and sparse u, assuming
some properties of A.

Our factorization uses the special projection (which we
will refer to as an efficient block projection)

u =

2

6

4

Is
...
Is

3

7

5

∈ F
n×s (2.1)

which is comprised of m copies of Is and thus has exactly
n non-zero entries. A similar projection has been suggested
in [11] without proof of its reliability (i.e., that the corre-
sponding block Krylov matrix is non-singular). We establish

here that it does yield a block Krylov matrix of full rank,
and hence can be used for an efficient inverse of a sparse A.

Let D = diag(δ1, . . . , δ1, δ2, . . . , δ2, . . . , δm, . . . , δm) be an
n × n diagonal matrix whose entries consist of m distinct
indeterminates δi, each δi occurring s times.

Theorem 2.1. If the leading ks× ks minor of A is non-
zero for 1 ≤ k ≤ m, then Km(DAD, u) ∈ F

n×n is invertible.

Proof. Let B = DAD. For 1 ≤ k ≤ m, define Bk as
the specialization of B obtained by setting δk+1, δk+2, . . . , δm
to zero. Then Bk is the matrix constructed by setting to
zero the last n − ks rows and columns of B. Similarly, for
1 ≤ k ≤ m we define uk ∈ F

n×s to be the matrix constructed
from u by setting to zero the last n− ks rows. In particular
we have Bm = B and um = u.

We proceed by induction on k and show that

rankKk(Bk, uk) = ks, (2.2)

for 1 ≤ k ≤ m. For the base case k = 1 we haveK1(B1, u1) =
u1 and thus rankK1(B1, u1) = rank u1 = s.

Now, assume that (2.2) holds for some k with 1 ≤ k < m.
By the definition of Bk and uk, only the first ks rows of
Bk and uk will be involved in the left hand side of (2.2).
Similarly, only the first ks columns of Bk will be involved.
Since by assumption on B the leading ks× ks minor is non-
zero, we have rankBkKk(Bk, uk) = ks, which is equivalent
to rankKk(Bk,Bkuk) = ks. By the fact that the first ks
rows of uk+1 − uk are zero, we have Bk(uk+1 − uk) = 0, or
equivalently Bkuk+1 = Bkuk, and hence

rankKk(Bk,Bkuk+1) = ks. (2.3)

The matrix in (2.3) can be written as

Kk(Bk,Bkuk+1) =

»

Mk

0

–

∈ F
n×ks,

where Mk ∈ F
ks×ks is nonsingular. Introducing the block

uk+1 we obtain the following matrix:

[uk+1,Kk(Bk,Bkuk+1)] =

2

4

∗ Mk

Is 0
0 0

3

5 . (2.4)

whose rank is (k + 1)s. Noticing that
»

uk+1,Kk(Bk,Bkuk+1)

–

=

»

Kk+1 (Bk, uk+1)

–

,

we are led to

rankKk+1(Bk, uk+1) = (k + 1)s.

Finally, using the fact that Bk is the specialization of Bk+1

obtained by setting δk+1 to zero, we obtain

rankKk+1(Bk+1, uk+1) = (k + 1)s,

which is (2.2) for k+1 and thus establishes the theorem by
induction.

If the leading ks × ks minor of A is nonzero then the
leading ks × ks minor of AT is nonzero as well, for any
integer k.

Corollary 2.2. If the leading ks × ks minor of A is
nonzero for 1 ≤ k ≤ m and B = DAD, then Km(BT , u) ∈
F
n×n is invertible.



Suppose now that A ∈ F
n×n is an arbitrary non-singular

matrix and the size of F exceeds n(n + 1). It follows by
Theorem 2 of Kaltofen and Saunders [18] that there exists
a lower triangular Toeplitz matrix L ∈ F

n×n and an upper
triangular Toeplitz matrix U ∈ F

n×n such that each of the

leading minors of bA = UAL is nonzero. Let B = D bAD; then
the products of the determinants of the matrices Km(B, u)
and Km(BT , u) (mentioned in the above theorem and corol-
lary) is a polynomial with total degree less than 2n(m−1) <
n(n+1) (if m 6= 1). In this case it follows that there is also a
non-singular diagonal matrix D ∈ F

n×n such that Km(B, u)
and Km(BT , u) are non-singular, for

B = D bAD = DUALD.

Now let R = LD2U ∈ F
n×n, bu ∈ F

s×n and bv ∈ F
n×s such

that

buT = (LT )−1D−1u and bv = LDu.

Then

Km(RA,bv) = LDKm(B, u)

and

LTDKm((RA)T , buT ) = Km(BT , u),

so thatKm(RA,bv) andKm((RA)T , buT ) are each non-singular
as well. Since D is diagonal and U and L are triangular
Toeplitz matrices it is now easily established that (R, bu, bv)
is an “efficient block projection” for the given matrix A,
where this is as defined in [11].

This proves Conjecture 2.1 of [11] for the case that the
size of F exceeds n(n+ 1):

Corollary 2.3. For any non-singular A ∈ F
n×n and

s |n (over a field of size greater than n(n + 1)) there exists
an efficient block projection (R,u, v) ∈ F

n×n×F
s×n×F

n×s.

3. FACTORIZATION OF THE MATRIX IN-
VERSE

The existence of the efficient block projection established
in the previous section allows us to define a useful factor-
ization of the inverse of a matrix. This was used to obtain
faster heuristics for solving sparse integer matrices in [11].
The basis is the following factorization of the matrix inverse.

Let B = DAD, where D is an n × n diagonal matrix
whose diagonal entries consist of m distinct indeterminates,
each occuring s times contiguously, as previously. Define

K(r)
u = Km(B, u) with u as in (2.1) and K(ℓ)

u = Km(BT , u)T

(where (r) and (ℓ) refer to projection on the right and left
respectively). For any 0 ≤ k ≤ m − 1 and any two indices
l and r such than l + r = k we have uTBl · Bru = uTBku.
Hence the matrix Hu = K(ℓ)

u · B · K(r)
u is block-Hankel with

blocks of dimension s× s:

Hu =

2

6

6

6

6

4

uTBu uTB2u . . . uTBmu

uTB2u uTB3u . .
. ...

... . .
.

uTB2m−2u
uTBmu . . . uTB2m−2u uTB2m−1u

3

7

7

7

7

5

∈ F
n×n

From Hu = K(ℓ)
u · B · K(r)

u = K(ℓ)
u · DAD · K(r)

u , we have
following corollary to Theorem 2.1, which (together with

Corollary 2.2) implies that K(r)
u and K(ℓ)

u , and thus Hu are
invertible.

Corollary 3.1. If A ∈ F
n×n is such that all leading

ks × ks minors are non-singular, D is a diagonal matrix
of indeterminates and B = DAD, then B−1 and A−1 may
be factored as

B−1 =K(r)
u H−1

u K(ℓ)
u ,

A−1 =DK(r)
u H−1

u K(ℓ)
u D,

(3.1)

where K(ℓ)
u and K(r)

u are block-Krylov as defined above, and
Hu ∈ F

n×n is block-Hankel (and invertible) with s×s blocks,
as above.

We note that for any specialization of the indeterminates in
D to field elements in F such that detHu 6= 0 we get a similar
formula to (3.1) completely over F. A similar factorization
in the non-blocked case is used in [10, (4.5)] for fast parallel
matrix inversion.

4. BLACK-BOX MATRIX INVERSION OVER
A FIELD

Let A ∈ F
n×n be invertible and such that for any v ∈ F

n×1

the matrix times vector product Av or AT v can be com-
puted in φ(n) operations in F (where φ(n) ≥ n). Follow-
ing Kaltofen, we call such matrix-vector and vector-matrix
products black-box evaluations of A. In this section we will
show how to compute A−1 with Õ (n2−1/(ω−1)) black box

evaluations and additional O (̃n3−1/(ω−1)) operations in F.
Note that when φ(n) = Õ (n) — a common characteriza-
tion of “sparse” matrices — the exponent in n of this cost
is smaller than ω, and is Õ (n2.273) with the currently best-
known matrix multiplication.

We assume for the moment that all principal ks× ks mi-
nors of A are non-zero, 1 ≤ k ≤ m.

Let δ1, δ2, . . . , δm be the indeterminates which form the
diagonal entries of D and let B = DAD. By Theorem 2.1
and Corollary 2.2, the matrices Km(B, u) and Km(BT , u)
are each invertible. If m ≥ 2 then the product of the
determinants of these matrices is a non-zero polynomial
∆ ∈ F[δ1, . . . , δm] with total degree less than 2n(m− 1)− 1.

Suppose that F has at least 2n(m− 1) elements. Then ∆
cannot be zero at all points in (F \ {0})n. Let d1, d2, . . . , dm
be nonzero elements of F such that ∆(d1, d2, . . . , dm) 6= 0,
let D = diag(d1, . . . , d1, . . . , dm, . . . , dm), and let B = DAD.

Then K
(r)
u = Km(B, u) ∈ F

n×n and K
(ℓ)
u = Km(BT , u)T ∈

F
n×n are each invertible since ∆(d1, d2, . . . , dm) 6= 0, B is

invertible since A is and d1, d2, . . . , dm are all nonzero, and

thus Hu = K
(ℓ)
u BK

(r)
u ∈ F

n×n is invertible as well. Corre-
spondingly, (3.1) suggests

B−1 = K(r)
u H−1

u K(ℓ)
u , and A−1 = DK(r)

u H−1
u K(ℓ)

u D

for computing the matrix inverse.

1. Computation of uT , uTB, . . . , uTB2m−1 and K
(ℓ)
u .

We can compute this sequence, and hence K
(r)
u with

m− 1 applications of B to vectors using O(nφ(n)) op-
erations in F.

2. Computation of Hu.

Due to the special form (2.1) of u, one may then com-
pute wu for any w ∈ F

s×n with O(sn) operations.



Hence we can now compute uTBiu for 0 ≤ i ≤ 2m− 1
with O(n2) operations in F.

3. Computation of H−1
u .

The off-diagonal inverse representation of H−1
u as in

(A.4) in the Appendix can be found with Õ (sωm) op-
erations by Proposition A.1.

4. Computation of H−1
u K

(ℓ)
u .

From Corollary A.2 in the Appendix, we can compute
the product H−1

u M for any matrix M ∈ F
n×n with

Õ (sωm2) operations.

5. Computation of K
(r)
u · (H−1

u K
(ℓ)
u ).

We can compute K
(r)
u M = [u, Bu, . . . , Bm−1u]M , for

any M ∈ F
n×n by splitting M into m blocks of s

consecutive rows Mi, for 0 ≤ i ≤ m− 1:

KuM =

m−1
X

i=0

Bi(uMi)

=uM0 +B(uM1 +B(uM2 + · · ·
· · ·+B(uMm−2 +BuMm−1) · · · ).

(4.1)

Because of the special form (2.1) of u, each product
uMi ∈ F

n×n requires O(n2) operations, and hence all
such products involved in (4.1) can be computed in
O(mn2) operations. Since applying B to an n × n

matrix costs nφ(n) operations, K
(r)
u M is computed in

O(mnφ(n) +mn2) operations using the iterative form
of (4.1)

In total, the above process requires O(mn) applications
of A to a vector (the same as for B), and O(sωm2 +mn2)
additional operations. If φ(n) = Õ (n) the overall number
of field operations is minimized with the blocking factor s =
n1/(ω−1).

Theorem 4.1. Let A ∈ F
n×n, where n = ms, be such

that all leading ks×ks minors are non-singular for 1 ≤ k ≤
m. Let B = DAD for D = diag(d1, . . . , d1, . . . , dm, . . . , dm)
such that d1, d2, . . . , dm are nonzero and each of the matrices
Km(DAD, u) and Km((DAD)T , u) is invertible. Then the

inverse matrix A−1 can be computed using O(n2−1/(ω−1))

applications of A to vectors and an additional Õ (n3−1/(ω−1))
operations in F.

The above discussion makes a number of assumptions.
First, it assumes that the blocking factor s exactly divides

n. This is easily accommodated by simply extending n to
the nearest multiple of s, placing A in the top left corner
of the augmented matrix, and adding diagonal ones in the
bottom right corner.

Theorem 4.1 also makes the assumptions that all the lead-
ing ks × ks minors of A are non-singular and that the de-
terminants of Km(DAD, u) and Km((DAD)T , u) are each
nonzero. While we know of no way to ensure this determin-
istically in the times given, standard techniques can be used
to obtain these properties probabilistically if F is sufficiently
large.

Suppose, in particular, that n ≥ 16 and that #F >
2(m+1)n⌈log2 n⌉. Fix a set SS of at least 2(m+1)n⌈log2 n⌉
nonzero elements of F. We can ensure that the leading
ks × ks minors of A are non-zero by pre-multiplying by a
butterfly network preconditioner U with parameters chosen

uniformly and randomly from SS. If U is constructed us-
ing the generic exchange matrix of [5, §6.2], then it will use
at most n⌈log2 n⌉/2 random elements from S, and from [5,
Theorem 6.3] it follows that all leading ks × ks minors of
eA = UA will be non–zero simultaneously with probability
at least 3/4. This probability of success can be made arbi-
trarily close to 1 with a choice from a larger SS. We note

that A−1 = eA−1U . Thus, once we have computed eA−1 we
can compute A−1 with an additional Õ (n2) operations in
F, using the fact that multiplication of an arbitrary n × n
matrix by an n × n butterfly preconditioner can be done
with Õ (n2) operations.

Once again let ∆ be the products of the determinants
of the matrices Km(DAD, u) and Km((DAD)T , u), so that
∆ is nonzero with total degree less than 2n(m − 1). If
we choose randomly selected values from SS for δ1, . . . , δm,
since #S ≥ 2(m + 1)n⌈log2 n⌉ > 4 deg∆, the probability
that ∆ is zero at this point is at most 1/4 by the Schwartz-
Zippel Lemma [22, 24].

In summary, for randomly selected butterfly precondi-
tioner B, and independently and randomly chosen values

d1, d2, . . . , dm the probability that eA = UA has non-singular
leading ks× ks minors for 1 ≤ k ≤ m and ∆(d1, d2, . . . , dm)
is non-zero is at least 9/16 > 1/2 when random choices are
made uniformly and independently from a finite subset SS
of F \ {0} with size at least 2(m+ 1)n⌈log2 n⌉.

When #F ≤ 2(m + 1)n⌈log2 n⌉ we can easily construct
a field extension E of F which has size greater than 2(m +
1)n⌈log2 n⌉ and perform the computation in that extension.
Since this extension will have degree O(log#F n) over F, it
will add only a logarithmic factor to the final cost. While we
certainly do not claim that this is not of practical concern,
it does not affect the asymptotic complexity.

Finally, we note that it is easily checked whether the ma-
trix returned by this algorithm is the inverse of the input by
using n multiplications by A by the columns of the output
matrix and corresponding each to the corresponding column
of the identity matrix. This results in a Las Vegas algorithm
for computation of the inverse of a black-box matrix with
the cost as given above.

Theorem 4.2. Let A ∈ F
n×n be non-singular. Then the

inverse matrix A−1 can be computed by a Las Vegas algo-
rithm whose expected cost is Õ (n2−1/(ω−1)) applications of

A to a vector and Õ (n3−1/(ω−1)) additional operations in F.

ω Black-box Blocking Inversion
applications factor s cost

3 (Standard) 1.5 1/2 Õ (n2.5)

2.807 (Strassen) 1.446 0.553 Õ (n2.446)

2.3755 (Cop/Win) 1.273 0.728 Õ (n2.273)

Table 4.1: Exponents of matrix inversion with a ma-

trix × vector cost φ(n) = Õ (n).

Remark 4.3. The structure (2.1) of the projection u plays
a central role in computing the product of the block Krylov
matrix by a n×n matrix. For a general projection u ∈ F

n×s,
how to do better than a general matrix multiplication, i.e.,



how to take advantage of the Krylov structure for computing
KuM , appears to be unknown.

Applying a Black-Box Matrix Inverse to a Ma-
trix
The above method can also be used to compute A−1M for
any matrix M ∈ F

n×n with the same cost as in Theorem 4.2.
Consider the new step 1.5:

1.5. Computation of K
(ℓ)
u ·M .

Split M into m blocks of s columns, so that M =
[M0, . . . ,Mm−1] whereMk ∈ F

n×s. Now consider com-

puting K
(ℓ)
u ·Mk for some k ∈ {0, . . . ,m−1}. This can

be accomplished by computing BiMk for 0 ≤ i ≤ m−1
in sequence, and then multiplying on the left by uT to
compute uTBiMk for each iterate.

The cost for computing K
(ℓ)
u Mk for a single k by the

above process is n − s multiplication of A to vectors
and O(ns) additional operations in F. The cost of
doing this for all k such that 0 ≤ k ≤ m − 1 is thus
m(n − s) < nm multiplications of A to vectors and
O(n2) additional operations. Since applying A (and
hence B) to an n×n matrix is assumed to cost nφ(n)

operations in F, K
(ℓ)
u ·M is computed in O(mnφ(n) +

mn2) operations in F by the process described here.

Note that this is the same as the cost of Step 5, so the
overall cost estimate is not affected. Since Step 4 does not

rely on any special form for K
(ℓ)
u , we can replace it with

a computation of H−1
u · (K(ℓ)

u M) with the same cost. We
obtain the following:

Corollary 4.4. Let A ∈ F
n×n be non-singular and let

M ∈ F
n×n be any matrix. We can compute A−1M using a

Las Vegas algorithm whose expected cost is Õ (n2−1/(ω−1))

multiplications of A to vectors and Õ (n3−1/(ω−1)) additional
operations in F.

The estimates in Table 4 apply to this computation as
well.

5. APPLICATIONS TO BLACK-BOX MA-
TRICES OVER A FIELD

The algorithms of the previous section have applications
in some important computations with black-box matrices
over an arbitrary field F. In particular, we consider the
problems of computing the nullspace and rank of a black-
box matrix. Each of these algorithms is probabilistic of the
Las Vegas type. That is, the output is certified to be correct.

Kaltofen & Saunders [18] present algorithms for comput-
ing the rank of a matrix and for randomly sampling the
nullspace, building upon work of Wiedemann [23]. In par-
ticular, they show that for random lower upper and lower
triangular Toeplitz matrices U,L ∈ F

n×n, and random di-

agonal D, that all leading k × k minors of eA = UALD are

non-singular for 1 ≤ k ≤ r = rankA, and that if f
eA ∈ F[x] is

the minimal polynomial of eA, then it has degree r+1 if A is
singular (and degree n if A is non-singular). This is proven
to be true for any input A ∈ F

n×n, and for random choice of
U , L and D, with high probability. The cost of computing

f
eA (and hence rankA) is shown to be O(n) applications of

the black-box for A and O(n2) additional operations in F.
However, no certificate is provided that the rank is correct
within this cost (and we do not know of one or provide one
here). Kaltofen & Saunders [18] also show how to generate
a vector uniformly and randomly from the nullspace of A
with this cost (and, of course, this is certifiable with a single
evaluation of the black box for A). We also note that the
algorithms of Wiedemann and Kaltofen & Saunders require
only a linear amount of extra space, which will not be the
case for our algorithms.

We first employ the random preconditioning of [18]: eA =
UALD as above. We will thus assume in what follows that
A has all leading i × i minors non-singular for 1 ≤ i ≤ r.
While an unlucky choice may make this statement false, this
case will be identified in our method. Also assume that we
have computed the rank r of A with high probability. Again,
this will be certified in what follows.

1. Inverting the leading minor.

Let A0 be the leading r × r minor of A and partition
A as

A =

„

A0 A1

A2 A3

«

Using the algorithm of the previous section, compute
A−1

0 . If this fails, then the randomized conditioning or
the rank estimate has failed and we either report this
failure or try again with a different randomized pre-
conditioning. If we can compute A−1

0 , then the rank
of A is at least the estimated r.

2. Applying the inverted leading minor.

Compute A−1
0 A1 ∈ F

r×(n−r) using the algorithm of
the previous section (this could in fact be merged into
the first step).

3. Confirming the nullspace.

Note that
„

A0 A1

A2 A3

« „

A−1
0 A1

−I

«

| {z }

N

=

„

0
A2A

−1
0 A1 − A3

«

= 0

and the Schur complement A2A
−1
0 A1 − A3 must be

zero if the rank r is correct. This can be checked with
n− r evaluations of the black box for A. We note that
because of its structure, N has rank n− r.

4. Output rank and nullspace basis.

If the Schur complement is zero, then output the rank
r and N , whose columns give a basis for the nullspace
of A. Otherwise, output fail (and possibly retry with
a different randomized pre-conditioning).

Theorem 5.1. Let A ∈ F
n×n have rank r. Then a basis

for the nullspace of A and rank r of A can be computed with
an expected number of Õ (n2−1/(ω−1)) applications of A to a

vector, plus an additional expected number of Õ (n3−1/(ω−1))
operations in F. The algorithm is probabilistic of the Las
Vegas type.

6. APPLICATIONS TO SPARSE RATIONAL
LINEAR SYSTEMS

Given a non-singular A ∈ Z
n×n and b ∈ Z

n×1, in [11]
we presented an algorithm and implementation to compute



A−1b with Õ (n1.5(log(‖A‖+ ‖b‖))) matrix-vector products
v 7→ A mod p for a machine-word sized prime p and any v ∈
Z

n×1
p plus Õ (n2.5(log(‖A‖+‖b‖))) additional bit-operations.

Assuming that A and b had constant sized entries, and that a
matrix-vector product by A mod p could be performed with
O (̃n) operations modulo p, the algorithm presented could
solve a system with Õ (n2.5) bit operations. Unfortunately,
this result was conditional upon the unproven Conjecture 2.1
of [11]: the existence of an efficient block projection. This
conjecture was established in Corollary 2.3 of the current
paper. We can now unconditionally state the following:

Theorem 6.1. Given any invertible A ∈ Z
n×n and b ∈

Z
n×1, we can compute A−1b using a Las Vegas algorithm.

The expected number of matrix-vector products v 7→ Av mod
p is in Õ (n1.5(log(‖A‖ + ‖b‖))), and the expected num-
ber of additional bit-operations used by this algorithm is in
Õ (n2.5(log(‖A‖+ ‖b‖))).

Sparse integer determinant and Smith form
The efficient block projection of Theorem 2.1 can also be
employed relatively directly into the block baby-steps/giant-
steps methods of [20] for computing the determinant of an
integer matrix. This will yield improved algorithms for the
determinant and Smith form of a sparse integer matrix. Un-
fortunately, the new techniques do not obviously improve
the asymptotic cost of their algorithms in the case for which
they were designed, namely, for computations of the deter-
minants of dense integer matrices.

We only sketch the method for computing the determinant
here following the algorithm in Section 4 of [20], and esti-
mate its complexity. Throughout we assume that A ∈ Z

n×n

is non-singular and assume that we can compute v 7→ Av
with φ(n) integer operations, where the bit-lengths of these
integers are bounded by Õ (log(n+ ‖v‖+ ‖A‖)).

Preconditioning and setup.

Precondition A ← B = D1UAD2, where D1, D2 are
random diagonal matrices, and U is a unimodular pre-
conditioner from [23, §5]. While we will not do the
detailed analysis here, selecting coefficients for these
randomly from a set S1 of size n3 is sufficient to en-
sure a high probability of success. This precondition-
ing will ensure that all leading minors are non-singular
and that the characteristic polynomial is squarefree
with high probability (see [5] Theorem 4.3 for a proof
of the latter condition). From Theorem 2.1, we also
see that Km(B, u) has full rank with high probability.

Let p be a prime which is larger than the a priori bound
on the coefficients of the characteristic polynomial of
A; this is easily determined to be (n log ‖A‖)n+o(1).
Fix a blocking factor s to be optimized later, and as-
sume n = ms.

Choosing projections. Let u ∈ Z
n×s be an efficient block

projection as in (2.1) and v ∈ Z
n×s a random (dense)

block projection with coefficients chosen from a set S2

of size at least 2n2.

Forming the sequence αi = uAiv ∈ Z
s×s.

Compute this sequence for i = 0 . . . 2m. Computing
all the Aiv takes Õ (nφ(n) ·m log ‖A‖) bit operations.
Computing all the uAiv takes Õ (n2 · m log ‖A‖) bit
operations.

Computing the minimal matrix generator.

The minimal matrix generator F (λ) modulo p can be
computed from the initial sequence segment α0, . . . , α2m−1.
See [20, §4]. This can be accomplished with Õ (msω ·
n log ‖A‖) bit operations.

Extracting the determinant.

Following the algorithm in [20, §4], we first check if
its degree is less than n and if so, return “failure”.
Otherwise, we know detFA(λ) = det(λI−A). Return
detA = detF (0) mod p.

The correctness of the algorithm, and specifically the block
projections, follows from fact that [u, Au, . . . , Am−1u] is of
full rank with high probability by Theorem 2.1. Since the
projection v is dense, the analysis of [20, (2.6)] is applicable,
and the minimal generating polynomial will have full degree
m with high probability, and hence its determinant at λ = 0
will be the determinant of A.

The total cost is Õ ((nφ(n)m+n2m+nmsω) log ‖A‖) bit
operations, which is minimized when s = n1/ω. This yields
an algorithm for the determinant which requires Õ ((n2−1/ωφ(n)+

n3−1/ω) log ‖A‖) bit operations. This is probably most in-
teresting when ω = 3, where it yields an algorithm for deter-
minant which requires Õ (n2.66 log ‖A‖) bit operations on a
matrix with pseudo-linear cost matrix-vector product.

We also note that a similar approach allows us to use the
Monte Carlo Smith form algorithm of [14], which is com-
puted by means of computing the characteristic polynomial
of random preconditionings of a matrix. This reduction is
explored in [20] in the dense matrix setting. The upshot
is that we obtain the Smith form with the same order of
complexity, to within a poly-logarithmic factor, as we have
obtained the determinant using the above techniques. See
[20, §7.1] and [14] for details. We make no claim that this
is practical in its present form.

APPENDIX

A. APPLYING THE INVERSE OF A BLOCK-
HANKEL MATRIX

In this appendix we address asymptotically fast techniques
for computing a representation of the inverse of a block Han-
kel matrix, for applying this inverse to an arbitrary matrix.
The fundamental technique we will employ is to use the off-
diagonal inversion formula of Beckermann & Labahn [1] and
its fast variants [15]. An alternative to using the inversion
formula would be to use the generalization of the Levinson-
Durbin algorithm in [19].

For an integer m that divides n exactly with s = n/m, let

H =

2

6

6

6

6

4

α0 α1 . . . αm−1

α1 α2 . .
. ...

... . .
.

α2m−2

αm−1 . . . α2m−2 α2m−1

3

7

7

7

7

5

∈ F
n×n

(A.1)
be a non-singular block-Hankel matrix whose blocks are s×s
matrices over F, and let α2m be arbitrary in F

s×s. We follow
the lines of [21] for computing the inverse matrixH−1. Since
H is invertible, the following four linear systems (see [21,



(3.8)-(3.11)])

H [qm−1, · · · , q0]t = [0, · · · , 0, I ] ∈ F
n×s,

H [vm, · · · , v1]t = − [αm, · · ·α2m−1α2m] ∈ F
n×s,

(A.2)

and

[q∗m−1 . . . q∗0 ]H = [0 . . . 0 I ] ∈ F
s×n,

[v∗m . . . v∗1 ]H = − [αm . . . α2m−1 α2m] ∈ F
s×n,

(A.3)
have unique solutions given by the qk, q

∗

k ∈ F
s×s, (for 0 ≤

k ≤ m − 1), and the vk, v
∗

k ∈ F
s×s (for 1 ≤ k ≤ m). Then

we have (see [21, Theorem3.1]):

H−1 =

2

6

6

6

6

4

vm−1 . . . v1 I
... . .

.
. .
.

v1 . .
.

I

3

7

7

7

7

5

2

6

4

q∗m−1 . . . q∗0
. . .

...
q∗m−1

3

7

5

−

2

6

6

6

6

4

qm−2 . . . q0 0
... . .

.
. .
.

q0 . .
.

0

3

7

7

7

7

5

2

6

4

v∗m . . . v∗1
. . .

...
v∗m

3

7

5

.

(A.4)

The linear systems (A.2) and (A.3) may also be formulated
in terms of matrix Padé approximation problems. We asso-
ciate to H the matrix polynomial A =

P2m
i=0 αix

i ∈ F
s×s[x].

The s × s matrix polynomials Q,P,Q∗, P ∗ in F
s×s[x] that

satisfy

A(x)Q(x) ≡ P (x) + x2m−1 mod x2m,

where degQ ≤ m− 1 and degP ≤ m− 2,

Q∗(x)A(x) ≡ P ∗(x) + x2m−1 mod x2m,

where degQ∗ ≤ m− 1 and degP ∗ ≤ m− 2

(A.5)

are unique and provide the coefficients Q =
Pm−1

i=0 qix
i and

Q∗ =
Pm−1

i=0 q∗i x
i for constructing H−1 using (A.4) (see [21,

Theorem 3.1]). The notation “mod xi” for i ≥ 0 denotes
that the terms of degree i or higher are forgotten. The s× s
matrix polynomials V,U, V ∗, U∗ in F

s×s[x] that satisfy

A(x)V (x) ≡ U(x) mod x2m+1, V (0) = I,

where deg V ≤ m and degU ≤ m− 1,

V ∗(x)A(x) ≡ U∗(x) mod x2m+1, V ∗(0) = I,

where degQ∗ ≤ m− 1 and degP ∗ ≤ m− 2,

(A.6)

are unique and provide the coefficients V = 1 +
Pm

i=1 vix
i

and Q∗ = 1 +
Pm

i=1 v
∗

i x
i for (A.4).

Using the matrix Padé formulation, the matrices Q, Q∗,
V , and V ∗ may be computed using the σ-basis algorithm
in [2], or its fast counterpart in [15, §2.2] that uses fast ma-
trix multiplication. For solving (A.5), the σ-basis algorithm
with σ = s(2m− 1) solves

[A − I ]

»

Q
P

–

= Rx2m−1 mod x2m,

[Q
∗

P
∗

]

»

A
−I

–

= R∗x2m−1 mod x2m,

with Q,P ,Q
∗

, P
∗ ∈ F

s×s[x] that satisfy the degree con-

straints degQ ≤ m − 1,degQ
∗ ≤ m − 1, and degP ≤

m − 2, degP
∗ ≤ m − 2. The residue matrices R and R∗ in

F
s×s are non-singular, hence QR−1 and (R∗)−1Q

∗

are so-

lutions Q and Q
∗

for applying the inversion formula (A.4).
For (A.6), the σ-basis algorithm with σ = s(2m + 1) leads
to

[A − I ]

»

V
U

–

= modx2m+1,

[V
∗

U
∗

]

»

A
−I

–

= modx2m+1

with deg V ≤ m,deg V
∗ ≤ m, and degU ≤ m− 1,degU

∗ ≤
m−1. The constant terms V (0) and V

∗

(0) in F
s×s are non-

singular, hence V = V (V (0))−1 and V ∗ = (V
∗

(0))−1V
∗

are solutions for applying (A.4). Using Theorem 2.4 in [15]
together with the above material we get the following cost
estimate.

Proposition A.1. Computing the expression (A.4) of the
inverse of the block-Hankel matrix (A.1) reduces to multiply-
ing matrix polynomials of degree O(m) in F

s×s, and can be
done with Õ (sωm) operations in F.

Multiplying a block triangular Toeplitz or Hankel matrix
in F

n×n with blocks of size s×s by a matrix in F
n×n reduces

to the product of two matrix polynomials of degree O(m),
and of dimensions s×s and s×n. Using the fast algorithms
in [4] or [3], such a s × s product can be done in Õ (sωm)
operations. By splitting the s× n matrix into s× s blocks,
the s×s by s×n product can thus be done in Õ (m×sωm) =
Õ (sωm2) operations.

For n = sν let ω(1, 1, ν) be the exponent of the problem
of s× s by s×n matrix multiplication over F. The splitting
considered just above of the s× n matrix into s× s blocks,
corresponds to taking ω(1, 1, ν) = ω + ν − 1 < ν + 1.376

(ω < 2.376 due to [6]), with the total cost Õ (sω(1,1,ν)m) =
Õ (sωm2). Depending on σ ≥ 1, a slightly smaller bound
than ν + 1.376 for ω(1, 1, ν) may be used due the matrix
multiplication techniques specifically designed for rectangu-
lar matrices in [16]. This is true as soon as ν ≥ 1.171, and
gives for example ω(1, 1, ν) < ν + 1.334 for ν = 2, i.e., for
s =
√
n.

Corollary A.2. Let H be the block-Hankel matrix of (A.1).
If the representation (A.4) of H−1 is given then computing
H−1M for an arbitrary M ∈ F

n×n reduces to four s× s by
s× n products of polynomial matrices of degree O(m). This

can be done with Õ (sω(1,1,ν)m) or Õ (sωm2) operations in
F (n = sν = ms).
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