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Algebraic Signal Processing Theory:
Cooley-Tukey Type Algorithms for DCTs and DSTs

Markus Püschel and José M. F. Moura

Abstract— This paper presents a systematic methodology based
on the algebraic theory of signal processing to classify andderive
fast algorithms for linear transforms. Instead of manipulating
the entries of transform matrices, our approach derives thealgo-
rithms by stepwise decomposition of the associated signal models,
or polynomial algebras. This decomposition is based on two
generic methods or algebraic principles that generalize the well-
known Cooley-Tukey FFT and make the algorithms’ derivations
concise and transparent. Application to the 16 discrete cosine
and sine transforms yields a large class of fast algorithms,many
of which have not been found before.

Index Terms— Fast Fourier transform, discrete Fourier trans-
form, discrete cosine transform, DFT, DCT, DST, polynomial
algebra, representation theory
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I. I NTRODUCTION

In [1], [2], [3], we have proposed a new approach to linear
signal processing (henceforth just referred to as signal pro-
cessing or SP), called algebaric signal processing theory.The
approach argues that the assumptions underlying SP provide
structure that includes but goes beyond vector spaces and
linear algebra and places SP more naturally into the context
of the theory of algebras and modules, or therepresentation
theoryof algebras.

In recognizing this structure, we have introduced a general,
axiomatic approach to SP that starts from the concept of a
signal model. Given a signal model, all major SP ingredients
can be derived from it, including signals, filters, convolu-
tion, associated “z-transform,” spectrum, Fourier transform,
and frequency response, among others. These concepts take
different forms for different models, as shown in Table I,
which is explained in detail later in Section II. For example,
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discrete infinite and finite (finite number of samples) 1-D time
are signal models with associatedz-transform and finitez-
transform (defined in [1]) and the DTFT and DFT as associated
Fourier transforms, respectively. Further, we developed signal
models for infinite and finite 1-D space (where space is in the
sense of an undirected graph versus directed graph for time,
and not as 2-D versus 1-D) and showed that for the latter
there are 16 reasonable alternatives corresponding to 16 finite
C-transforms (defined in [2]) and showed that the 16 discrete
cosine and sine transform (DCTs and DSTs) are the associated
Fourier transforms. First results on higher-dimensional SP are
also already available [4], [5], [6], [7], [8].

The algebraic theory provides a methodology for the con-
struction of finite signal models and clarifies the role played
by boundary conditions and their relation to signal extensions.
In particular, we showed that any finite shift-invariant signal
model is described by a polynomial algebra, which captures
all the necessary information about the model. We derived
and discussed in detail the polynomial algebras for the DFT,
DCTs, DSTs, and most other known, as well as some new
trigonometric transforms [2].

Algebraic theory of transform algorithms. In this paper,
we apply the algebraic approach to the derivation and discov-
ery of Fourier transform algorithms. Here, the term Fourier
transform is meant in the general sense of the algebraic theory,
i.e., including DFT, DFTs, DSTs, and other trigonometric like
transforms. In other words, we apply the algebraic SP theory
to derive fast transform algorithms. The paper extends the
preliminary results shown in [9], [10].

There is a large body of literature on fast transform al-
gorithms. With very few exceptions (for example DFT algo-
rithms, discussed below) these algorithms are derived by clever
and often lengthy manipulation of the transform coefficients.
This is hard to grasp, and provides no insight into the structure
or the derivation of the algorithm. Further, without an appro-
priate theory, it is hard to determine if all relevant classes
of algorithms have been found. This is not just an academic
problem as the variety of different implementation platforms
and application requirements makes a thorough knowledge of
the algorithm space crucial.

Our derivation of the fast algorithms is algebraic: we ma-
nipulate the signal model (or polynomial algebra) underlying
a transform rather than the transform itself. We present two
generic theorems for polynomial algebras that generalize the
Cooley-Tukey FFT [11]. Application to the 16 DCTs and
DSTs yields a large set of Cooley-Tukey type algorithms, most
of which have not been found with previous methods. The al-
gorithm derivation is concise (no tedious index manipulations)
and greatly simplified as there is a clear methodology. We
draw attention to the large number of algorithms in this paper.
However, we do not considerall existing classes of algorithms.
In particular, all our algorithms are non-orthogonal, i.e., they
are not built from rotations. More precisely, in this paper,we
will not consider orthogonal algorithms (e.g., [12]), algorithms
that compute DFTs via the DCTs/DSTs [13], [14], prime-
factor type algorithms [15], Rader-type algorithms [16], [17],
[18], or algorithms that do not reduced the operations count
[19]. The algebraic principles behind some of these algorithms

will be the subject of a future paper.
Goal of this paper. This paper has two main goals: First,

to explain how and why algorithms arise and how they can
be derived in a reproducible way. Second, this paper can
serve as a reference for readers whose interest is solely in
the algorithms, for example, for their implementation. Forthis
reason, all algorithms are presented in tables and in a form
from which they can be easily retrieved.

Previous work. The approach taken in this paper to derive
algorithms using polynomial algebras builds on and extends
early work on DFT algorithms. The known interpretation of
theDFTn in terms of the polynomial algebraC[x]/(xn − 1)
was used to derive and explain the (radix-2) Cooley-Tukey
FFT by Auslander, Feig, and Winograd [20] using the Chi-
nese remainder theorem (CRT). Equivalently, Nicholson [21]
explains DFT and FFT using group theory; so does Beth [22],
which generalized the approach to more general groups. Wino-
grad’s DFT algorithms [23], [24], [25], [26] and his results
in complexity theory make heavy use of polynomial algebras
and the CRT. So do extensions of the above work by Burrus
et al. [27], [28]. Nussbaumer [29], [30], [31] uses polynomial
algebras and the CRT to derive efficient 2-D FFTs that save
multiplications compared to the row-column method.

For the DFT it turns out that to derive the most important
FFTs, it is not necessary to work with polynomial algebras,
but sufficient to work with index arithmetic modulon. This
approach is used in [31], [32] to provide a consistent approach
to FFTs. However, this approach provides no insight into how
to approach other transforms, whereas the polynomial algebra
approach does, as we show in this paper. Further, this approach
fits naturally with the algebraic SP theory, since polynomial
algebras are a natural structure from an SP point of view as
explained in [1].

The only (implicit) use of polynomial algebras for the DCTs
or DSTs we found in the literature is the derivation of a DCT,
type 3, algorithm by Steidl [33], [34]. These papers provided
important hints for developing the work in this paper.

Organization of the paper. Section II provides a brief
introduction to the algebraic signal processing theory. Most
relevant are the signal models, or polynomial algebras, asso-
ciated with the DFT and DTTs. Section III introduces notation
to represent algorithms as products of structured matrices. Two
algebraic methods to derive algorithms from a polynomial
algebra are explained in Section IV using the DFT as an
example. Then we apply these methods to derive numerous
Cooley-Tukey type algorithms for the DTTs in Sections V–
X. A visual organization of the most important ones can be
found in Figure 2 in Section VI. Finally, we offer conclusions
in Section XI.

II. BACKGROUND: ALGEBRAIC SIGNAL PROCESSING

THEORY

The algebraic signal processing theory recognizes that the
structure available inlinear signal processing (heretofore,
simply signal processing or SP) goes beyond vector spaces
(or linear spaces) and is actually described byalgebrasand
associatedmodules, which places SP in the context of (ab-
stract) algebra. The algebraic theory provides a consistent and
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TABLE I

1-D DISCRETE INFINITE AND FINITE TIME AND SPACE SIGNAL PROCESSING AS FOUR INSTANTIATIONS OF THE GENERAL ALGEBRAIC SIGNAL

PROCESSING THEORY.

infinite time finite time infinite space finite space generic theory

series inz−n polynomials inz−n series inTn polynomials inTn A (algebra of filters)

series inz−n polynomials inz−n series inCn polynomials inCn M (A-module of signals)

z-transform finitez-transform(s) C-transform(s) finiteC-transform(s) Φ (“z-transform”)

DTFT DFTs DSFTs DCTs/DSTs F (Fourier transform)

generic framework for SP whose instantiations lead to many
known, as well as new, ways of doing SP.

The key concept in the algebraic theory is the signal model
(A,M,Φ). Before we define it, we introduce two algebraic
terms: algebra and associated module, which model the spaces
of filters and signals, respectively.

Algebra = Space of filters.An algebra is a vector space that
is also a ring, i.e., it has a defined multiplication of elements,
such that the distributivity law holds. Examples of algebras
include C (complex numbers) andC[x] (set of polynomials
with complex coefficients).

The crucial observation is that the set of filters in a given
signal processing scenario (e.g., infinite discrete time) is
usually assumed to be an algebra. Namely, the multiplication
is the concatenation of filters. For example, in infinite discrete
time, the set of filters (in thez-domain) is the algebra

A = {h(z−1) =
∑

n∈Z

hnz
−n}, (1)

where, for example, the coefficient sequences
(. . . , h−1, h0, h1, . . . ) ∈ ℓ1(Z), i.e., are absolutely summable.

Module = Space of signals.Assume an algebraA is
chosen. Then anA-moduleM is a vector space that permits an
operation of elements ofA on M through linear mappings.
This operation is the algebraic analogue of filtering in SP.
Formally, if h ∈ A, then there is an operation (written as
multiplication)

h : M → M, m 7→ h ·m,

which is linear, i.e.,h(s+s′) = hs+hs′, andh(αs) = α(hs)
for s, s′ ∈ M andα ∈ C.

An example of anA-module isM = A itself with the
operation being the multiplication inA. WhenM = A, M
is called aregular module.

The above properties capture exactly the structure of the
signal space: every filter is a linear mapping on the signal
space. TheA-module usually chosen along withA in (1) in
infinite discrete-time signal processing is

M = {s = s(z−1) =
∑

n∈Z

snz
−n}, (2)

where the coefficient sequences are inℓ2(Z), i.e., of finite
energy.

Signal model.We start with the formal definition consid-
ering infinite and finite discrete complex signalss∈ C

I over
some index domainI. Examples includes∈ CZ or s∈ Cn.

Definition 1 (Signal model)Let V ≤ CI be a discrete vector
space. A signal model forV is a triple(A,M,Φ), whereA is
an algebra,M is an associatedA-module, andΦ is a bijective
linear mapping

Φ : V → M, s 7→ s ∈ M.

We call a signal modelregular if M = A.

An example is the signal model commonly adopted for
infinite discrete-time signal processing. Namely,A is defined
as in (1),M as in (2), andΦ is thez-transform

Φ : s 7→ s =
∑

n∈Z

snz
−n ∈ M.

(A,M,Φ) is a signal model forV = ℓ2(Z).
The purpose of the signal model is to assign a proper notion

of filtering to a discrete sequences, which, taken by itself, does
not specify how this should be done. Once a signal model is
selected, all main concepts for SP can be derived: filtering or
convolution (operation ofA on M), associated “z-transform”
(Φ), spectrum, frequency response, Fourier transform, and
others.

The question now is, which signal models are used or make
sense in SP. A partial answer was provided in [1], [2]: if
shift-invariance is required,A has to be commutative. Further,
we have shown how to derive models from basic principles,
through a suitable definition of the shift operator. Using this
method, we presented in [2] a theory of 1-DspaceSP.

The algebraic theory provides a comprehensive theory for
finite signal models, i.e., models for finite sequencess∈ Cn.
In particular, it identifies for all trigonometric transforms T
the associated signal models, i.e., those that haveT as Fourier
transform, and explain how they are obtained.

In particular, all signal models associated to the trigonomet-
ric transforms are finite, shift-invariant, and most of themare
regular, i.e.,A = M. The only way to obtain such models is
throughpolynomial algebrasas we explain next.

A. Finite Shift-Invariant Regular 1-D Signal Models

If (A,M,Φ) is a shift-invariant signal model for finite
1-D sequencess = (s0, . . . , sn−1), then, necessarily,A =
C[x]/p(x) is apolynomial algebrawith a suitable polynomial
p(x). It is defined as

C[x]/p(x) = {q(x) | deg(q) < deg(p)}.
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In words, givenp(x), C[x]/p(x) is the set of all polynomials of
degree smaller thanp with addition and multiplication modulo
p. If deg(p) = n, thendim(C[x]/p(x)) = n.

In this paper, we restrict ourselves to regular models, i.e.,
models withM = A = C[x]/p(x). With this restriction, a
signal model forV = Cn is uniquely characterized byp(x)
and by a chosen basisb = (p0, . . . , pn−1) of M. Namely,Φ
is given by

Φ : V → C[x]/p(x), s 7→ s =
∑

0≤ℓ<n

sℓpℓ. (3)

By construction,Φ is bijective. Conversely, every finite shift-
invariant regular 1-D signal model can be expressed this way.
Filtering in these models is equivalent to multiplying two
polynomials (signal and filter) modulo the fixed polynomial
p(x). Note that (3) clarifies the role of thez-transform in SP:
the equation shows that the bijective mapΦ, which generalizes
the z-transform, is simply an artifact to fix the basis of the
signal moduleM.

Example: finite z-transform. As an example consider
the modelA = M = C[x]/(xn − 1) with basis b =
(x0, . . . , xn−1) in M and thus, fors= (s0, . . . , sn−1)

T ∈ Cn,

Φ : s 7→ s = s(x) =
∑

0≤k<n

skx
k ∈ C[x]/(xn − 1) (4)

is thefinite z-transform. After applying the model, filtering is
defined, forh = h(x) ∈ A ands = s(x) ∈ M as

h(x)s(x) mod (xn − 1),

which is equivalent to computing the circular convolution of
the coefficient sequencesh ands (e.g., [31]).

Fourier transform. The Fourier transform for signal mod-
els of the form(C[x]/p(x),C[x]/p(x),Φ) is obtained from
the well-known Chinese remainder theorem (or CRT, see
Appendix I). We assume that the zeros ofp(x) are pairwise
distinct, given byα = (α0, . . . , αn−1). Then the CRT provides
the decomposition

F : C[x]/p(x) → ⊕
0≤k<n C[x]/(x− αk),

s(x) 7→ (s(α0), . . . , s(αn−1)).
(5)

The mappingF is theFourier transformfor the signal model,
andC[x]/(x − αk), 0 ≤ k < n, are the spectral components
of M = C[x]/p(x).

To obtain a matrix representation ofF , we choose bases.
The basisb = (p0, . . . , pn−1) of M is provided by the
model (namely byΦ). In each spectral component, which has
dimension 1, we choose the basis(x0). The standard procedure
to derive the matrix representation forF is applyF to the base
vectorspℓ, determine the coordinate vectors of the images, and
place them in the columns of a matrix. By abuse of notation,
we denote this matrix also byF . Because

pℓ(x) ≡ pℓ(αk) mod (x− αk),

we obtain
F = Pb,α = [pℓ(αk)]0≤k,ℓ<n.

We call Pb,α a polynomial transform. It is uniquely deter-
mined by the signal model. This definition is different from
Nussbaumer’s in [29], [31].

Other Fourier transforms for the same model arise through
the degrees of freedom in choosing the bases in the spectral
componentsC[x]/(x − αk). In the most general case, we
choose a basis(βkx

0) in each component, which yields the
generic Fourier transform.

F = diag(1/β0, . . . , 1/βn−1)Pb,α. (6)

Returning to our previous exampleA = M = C[x]/(xn −
1) andΦ given in (4), we compute

C[x]/(xn − 1) →
⊕

0≤k<n

C[x]/(x− ωk
n),

whereωn = e−2πj/n, and thus

Pb,α = [ωkℓ
n ]0≤k,ℓ<n = DFTn

is the discrete Fourier transform, which also motivates the
name finitez-transform for (4).

B. Signal Models for DFTs and DTTs

In this section we provide the signal models for 4 types
of DFTs, the 16 DCTs and DSTs. We refer to the DCTs and
DSTs collectively as DTTs (discrete trigonometric transforms)
even though this class is actually larger (e.g., including discrete
Hartley transform and real discrete Fourier transforms). Fur-
ther, we define 4 types of skew DTTs, which were introduced
in [2], and which are necessary to derive a complete set of
algorithms.

Each of these transforms is a Fourier transform for a finite
shift-invariant regular 1-D signal model. As said before, these
models are uniquely determined byp(x) (defining A =
M = C[x]/p(x)) and the basisb (defining Φ). The model
in turn uniquely determines the associatedpolynomialFourier
transformPb,α. To characterize anarbitrary Fourier transform,
we need to specify in addition the diagonal matrix in (6). We
do this in the following by providing a functionf such that
the diagonal matrix is given by

Df = diag0≤ℓ<n(f(αℓ)),

whereαℓ are, as before, the zeros ofp(x).
Due to lack of space, we will not provide in the paper

detailed derivations of the signal models; we refer the reader
to [1], [2] for details.

DFTs. The DFTs are Fourier transforms for finite time
models. We distinguish 4 types, DFT type 1–4. Type 1 and 3
are special cases of aDFT(a), a ∈ C\{0}, all of which are
polynomial transforms.

For example, the signal model associated toDFT(a) is
given by A = M = C[x]/(xn − a) and Φ : s 7→∑

0≤k<n skx
k. The zeros ofxn − a are then nth roots of

a and thus straightforward computation yields

DFT(a) = Pb,α = DFTn diag0≤ℓ<n(
n
√
a
ℓ
), (7)

where n
√
a = |a|1/neνj/n for a = |a|eνj.

DTTs. The 16 DTTs are Fourier transforms for finite space
models, which are defined in Table III. In contrast to the time
models, the basis polynomials are now Chebyshev polynomials
of the first (Tk), second (Uk), third (Vk), or fourth (Wk) kind.
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TABLE II

SIGNAL MODELS ASSOCIATED TO THEDFTS.

F p(x) b f = f(ℓ)

DFT = DFT-1 xn − 1 xk 1

DFT-2 xn − 1 xk α
1/2
ℓ

DFT-3 xn + 1 xk 1

DFT-4 xn + 1 xk α
1/2
ℓ

DFT(a) xn − a xk 1

TABLE III

SIGNAL MODELS ASSOCIATED TO THE16 DTTS (DCTS AND DSTS).

T
-g

ro
up

U
-g

ro
up

V
-g

ro
up

W
-g

ro
up

F p = p(x) b f = f(θ), cos θ = αℓ

DCT-3 Tn Tk 1

DST-3 Tn Uk sin(θ)

DCT-4 Tn Vk cos(θ/2)

DST-4 Tn Wk sin(θ/2)

DCT-1 (x2 − 1)Un−2 Tk 1

DST-1 Un Uk sin(θ)

DCT-2 (x− 1)Un−1 Vk cos(θ/2)

DST-2 (x+ 1)Un−1 Wk sin(θ/2)

DCT-7 (x+ 1)Vn−1 Tk 1

DST-7 Vn Uk sin(θ)

DCT-8 Vn Vk cos(θ/2)

DST-8 (x+ 1)Vn−1 Wk sin(θ/2)

DCT-5 (x− 1)Wn−1 Tk 1

DST-5 Wn Uk sin(θ)

DCT-6 (x− 1)Wn−1 Vk cos(θ/2)

DST-6 Wn Wk sin(θ/2)

See Appendix II for their definition and properties that we will
use in this paper.

As an example consider the most commonly usedDCT-2n.
The associated model is given from Table III byA = M =
C[x]/(x − 1)Un−1. The zeros of(x − 1)Un−1 are given
by αk = cos(kπ/n), 0 ≤ k < n (see Table XXIII in
Appendix II). Thus the unique polynomial Fourier transform
for the model is given by

Pb,α = [Vℓ(αk)]0≤k,ℓ<n =

[
cos k(ℓ+1/2)π

n

cos (k+1/2)π
2n

]

0≤k,ℓ<n

. (8)

Multiplying Pb,α from the left by the scaling diagonal

diag0≤k<n(cos(acos(αk)/2))

cancels the denominator to yield

DCT-2n = [cos k(ℓ+1/2)π
n ]0≤k,ℓ<n,

which identifiesDCT-2 as a Fourier transform for the speci-
fied signal model.

The definitions of all 16 DTTs are given in Table IV. Types
1, 4, 5, 8 are symmetric; types 2, 3 and 6, 7 are transposes of
each other, respectively.

EveryDTT has a polynomial transform counterpart, which
we write asDTT. For exampleDCT-2n is the matrix in (8).

TABLE IV

8 TYPES OFDCTS AND DSTS OF SIZEn. THE ENTRY AT ROWk AND

COLUMN ℓ IS GIVEN FOR0 ≤ k, ℓ < n.

type DCTs DSTs

1 cos kℓ π
n−1

sin(k + 1)(ℓ + 1) π
n+1

2 cos k(ℓ+ 1
2
)π
n

sin(k + 1)(ℓ + 1
2
)π
n

3 cos(k + 1
2
)ℓπ

n
sin(k + 1

2
)(ℓ+ 1)π

n

4 cos(k + 1
2
)(ℓ + 1

2
)π
n

sin(k + 1
2
)(ℓ+ 1

2
)π
n

5 cos kℓ π
n− 1

2

sin(k + 1)(ℓ + 1) π
n+ 1

2

6 cos k(ℓ+ 1
2
) π
n− 1

2

sin(k + 1)(ℓ + 1
2
) π
n+ 1

2

7 cos(k + 1
2
)ℓ π

n− 1
2

sin(k + 1
2
)(ℓ+ 1) π

n+ 1
2

8 cos(k + 1
2
)(ℓ + 1

2
) π
n+ 1

2

sin(k + 1
2
)(ℓ+ 1

2
) π
n− 1

2

TABLE V

4 TYPES OF SKEWDTTS AND ASSOCIATED SIGNAL MODELS. THE

PARAMETERr IS IN 0 ≤ r ≤ 1. FOR r = 1/2 THEY REDUCE TO THE

T -GROUPDTTS.

F p = p(x) b f = f(θ), cos θ = αℓ

DCT-3(r) Tn − cos rπ Tk 1

DST-3(r) Tn − cos rπ Uk sin(θ)

DCT-4(r) Tn − cos rπ Vk cos(θ/2)

DST-4(r) Tn − cos rπ Wk sin(θ/2)

For the DCTs of types 1,3,5,7, the scaling function is 1 (Ta-
ble III) and thus they are equal to their polynomial counterpart.
We will later see that in some cases, the polynomial DTTs
have a lower arithmetic cost than the corresponding DTTs,
which makes them suitable choices in application, where the
transform output is scaled.

We divide the DTTs into 4 groups, calledT -, U -, V -, and
W -group depending onp as shown in Table III. Within each
group, the algebra and module are (almost) the same. This
leads to sparse relationships between DTTs in one group as we
have shown in [2]; examples we will use are in Appendix III.

Further, within a group, DTTs are pairwisedual (they
have flipped associated boundary conditions [2]), which means
that they can be translated into each other without additional
arithmetic operations (see (105) in Appendix III).

Skew DTTs. We introduced the skew DTTs in [3] since
their associated signal models are also reasonable space
models, but, more importantly, because they are important
building blocks of Cooley-Tukey type algorithms as we will
show in this paper. There are 4 types of skew DTTs, each
parameterized by0 ≤ r ≤ 1. They generalize the fourT -
group DTTs (DCT/DST of type 3/4) and have the same scaling
functions as these do. The models that define these transforms
are shown in Table V. The corresponding polynomial versions
are again denoted using a bar as inDCT-3n(r).

To obtain the exact form of these transforms, we need the
zeros of the polynomialTn − cos rπ and choose an order of
these zeros. This is done in the following lemma.
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Lemma 1Let 0 ≤ r ≤ 1. We have the factorization

Tn − cos rπ = 2n−1
∏

0≤i<n

(x− cos r+2i
n π), (9)

which determines the zeros ofTn−cos rπ. We order the zeros
as α = (cos r0π, . . . , cos rn−1π), such that0 ≤ ri ≤ 1,
and ri < rj for i < j. The list of therℓ is given by the
concatenation

(rℓ)0≤ℓ<n =
⋃

0≤i<n/2

( r+2i
n , 2−r+2i

n )

for n even, and by

(rℓ)0≤ℓ<n =
( ⋃

0≤i<n−1

2

( r+2i
n , 2−r+2i

n )
)
∪ ( r+n−1

n )

for n odd. In the particular case ofr = 1/2 or cos rπ = 0,
we thus haveα = (cos(ℓ+1/2)π/n)0≤ℓ<n as in Table XXIII
in Appendix II.

For example, theDCT-3n(r) is given by the matrix

DCT-3n(r) = [cos krℓπ]0≤k,ℓ<n,

where therℓ are provided by Lemma 1.
Relationships between the skew DTTs and skew and non-

skew DTTs are shown in Appendix III.

III. B ACKGROUND: FAST TRANSFORM ALGORITHMS

In this section, we explain the notation that we use to
represent and manipulate transform algorithms followed by
a brief discussion on the quality of algorithms.

A. Representation of Algorithms

We discuss two representations for transforms1 and their
algorithms. Traditionally, transforms in SP are written as
summation like

yk =
∑

0≤ℓ<n

tk,ℓsℓ, (10)

where s = (s0, . . . , sn−1)
T is the input signal,y =

(y0, . . . , yn−1)
T the output signal, andtk,ℓ the transform

coefficients. This representation is usually adopted because
these transforms are thought of as truncated versions of infinite
series expansions. Correspondingly, algorithms are written as
sequences of such summations, cleverly organized to reduce
the operations count.

A different approach, equivalent in content, represents trans-
forms as matrix-vector products

y = T s, whereT = [tk,ℓ]0≤k,ℓ<n. (11)

The transform matrix isT , and transform algorithms corre-
spond to factorizations ofT into a product of sparse structured
matrices. This approach was adopted for the DFT in [35], [32],
but also for other transforms in various research papers on fast
transform algorithms.

1By “transforms,” we mean here those computing some sort of spectrum
of finite length discrete signals like the DFT or DTTs.

In the algebraic signal processing theory, we adopt the
second approach for two reasons. First, transforms (in a very
general sense) arise in the theory as matrices, namely as
decompositions of signal models (which includes a chosen
basis) into its spectral components by base changes. More
importantly, transform algorithms are derived in the algebraic
theory through a decomposition of the model in steps, where
the steps correspond to sparse base changes or sparse matrices.

Second, we will argue below that there are many advan-
tages of the matrix representation from an algorithmic and
implementation point of view.

Notation. As mentioned above, we represent transform
algorithms as sparse structured matrix factorizations. These
are built from basic matrices and operators.

As basic matrices, we use then× n identity matrixIn, the
opposite identity matrixJn (In with the columns in reversed
order), and the butterfly matrix

F2 =

[
1 1
1 −1

]
.

Further, we use permutation matrices; most importantly the
n × n stride permutation matrix, which can be defined for
m|n by

Ln
m : i2

n
m + i1 7→ i1m+ i2, 0 ≤ i1 < n

m , 0 ≤ i2 < m.
(12)

This definition shows thatLn
m transposes anm × m matrix

stored in row-major order. Alternatively, we can write

Ln
m : i 7→ im modn− 1, for 0 ≤ i < n− 1,

n− 1 7→ n− 1.

Since the last pointn−1 is fixed, we can define anoddstride
permutation̂L for m | n+ 1 as the restriction ofLn+1

m to the
first n points,

L̂
n

m : i 7→ im modn. (13)

Analogous to the stride permutation,(L̂
n

m)−1 = L̂
n

(n+1)/m,
and

Ln
m = L̂

n−1

m ⊕ I1 .

Other permutation matrices may be defined by their corre-
sponding permutation

P : i 7→ f(i), 0 ≤ i < n,

which means that the matrixP has in rowi the entry 1 at
position f(i) and 0 else. In this paper, matrix indices start
with 0.

Diagonal matrices are written asdiag(α0, . . . , αn−1).
Other matrices that serve as building blocks will be defined

as needed.
Further we use matrix operators, like the product of matri-

ces, the direct sum

A⊕B =

[
A

B

]
,

and the Kronecker or tensor product

A⊗B = [ak,ℓB]k,ℓ, for A = [ak,ℓ].
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Often, we will also construct a larger matrix as a matrix of
matrices, e.g., [

A B
B A

]
.

Transposition and Inversion. If an algorithm for a trans-
form is given as a product of sparse matrices built from
the constructs above, then an algorithm for the transposed
or inverse of the transform can be readily derived using
mathematical properties including

(AB)T = BTAT , (AB)−1 = B−1A−1,

(A⊕B)T = AT ⊕BT , (A⊕B)−1 = A−1 ⊕B−1,

(A⊗B)T = AT ⊗BT , (A⊗B)−1 = A−1 ⊗B−1.

Permutation matrices are orthogonal, i.e.,PT = P−1. The
transposition or inversion of diagonal matrices is obvious. Note
that in general the inverse of a sparse matrix is not sparse.

Advantages of representation.We believe the structured
representation of matrices to be advantageous because of the
following reasons: 1) The representation is more visual and
thus easier to grasp by human readers than nested sums
with many indices. 2) Algorithms can be easier manipulated,
e.g., transposed or inverted, using mathematical properties.
3) Properties of the algorithm, e.g., orthogonality, or which
parts can be computed in parallel, can be readily identified.
4) Finally, the sparse matrix product representation can be
automatically translated into programs using SPIRAL [36],
[37].

Even though our approach simplifies the derivation of
algorithms, the sheer number of matrices and cost formulas in
the remainder of the paper makes it hard to assure correctness.
We solved this problem using two computer algebra systems.
Firstly, we used SPIRAL, which includes a modified version
of GAP/AREP [38], [39], and provides infrastructure for
working with structured matrices as shown here. This way,
all formulas in the paper were formally verified (for several
problem sizes). Secondly, we used Maple [40] to solve the
numerous recurrences in our cost analysis.

Quality of algorithms. There are many different factors
that determine the quality of a given transform algorithm;
the relative importance of these factors is determined by the
chosen implementation platform and the specific requirements
of the application context. While traditionally the arithmetic
cost of transform algorithms is the focus of analysis, the
characteristics of modern platforms make the algorithmic
structure an equally important feature. Further, the numerical
stability of an algorithm is important to ensure the accuracy
of the output, in particular for fixed-point implementation.
Because of this, the knowledge of the entire algorithm space
for a transform is not just of academic interest.

Arithmetic cost. We will analyze the number of operations
of the algorithms presented below; we will use the notation
of a triple (a,m,m2), wherea is the number of additions or
subtractions,m2 the number of multiplications by a 2-power
not equal to 1, andm the number of remaining multiplications
by constants not equal to−1. The total operations count is then
given byf = a+m+m2.

C[x]/p(x)

))TTTTTTTTTTTTTTT

F

��

partial decomposition

yytttttttttttttttttttt

⊕
C[x]/(x− αℓ)

Fig. 1. Basic idea behind the algebraic derivation of Cooley-Tukey type
algorithms for a Fourier transformF .

In many SP publications the term complexity is used for the
operations count or arithmetic cost . In a strict sense this is
not correct, since complexity is a property of a problem (like
computing a DFT), not of an algorithm (like a specific FFT).
Thus we will use the term cost.

IV. A LGEBRAIC DERIVATION OF FAST TRANSFORM

ALGORITHMS FOR1-D POLYNOMIAL ALGEBRAS

In this section, we start with our algebraic theory of Fourier
transform algorithms, where the term “Fourier transform” is
meant in the general sense of the algebraic signal processing
theory (e.g., including the DCTs, DSTs, and other trigonomet-
ric transforms). As mentioned before, we consider only finite
shift-invariant regular signal models, i.e., models of theform
A = M = C[x]/p(x) and

Φ : C
n → M, s 7→

∑

0≤ℓ<n

sℓpℓ,

where b = (p0, . . . , pn−1) is a basis forM. Further, we
assume thatp has pairwise different zeros, which causes the
spectrum to consist of distinct one-dimensional submodules.
The Fourier transform in these cases is given by the CRT (5)
and is viewed as a matrix (6).

Assume a transformF is given as a matrix. The algebraic
approach derives algorithms by manipulating the associated
signal model (A,M,Φ), not by manipulating the matrix
entries ofF . Fig. 1 visualizes this approach forA = M =
C[x]/p(x). We saw in (6) thatF decomposesC[x]/p(x)
into one-dimensional polynomial algebras: its spectrum. Fast
algorithms arise, as we will show, by performing this decom-
position in steps using an intermediate submodule and associ-
ated subalgebra. This technique naturally leads to recursive
algorithms, i.e., algorithms that decompose transforms into
a product of sparse matrices including smaller transforms of
the same or a different type. The advantage of the algebraic
derivation is that it identifies a few general principles that
account for many different algorithms when instantiated for
different transforms. Further, the derivation is often greatly
simplified, as we hope it will become clear, since the only
task required is reading of base change matrices.

In this paper, we focus on explaining and deriving, as we
will call them, “Cooley-Tukey type” algorithms. As the name
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suggests, these algorithms will include, as well as generalize,
the equally named algorithms for the DFT. The latter will serve
as examples in this section. Our main focus in the remainder of
this paper will then be the derivation of analogous algorithms
for the DCTs and DSTs, most of which have not been reported
in the literature. All these new algorithms are non-orthogonal,
i.e., are not constructed exclusively from butterflies and2× 2
rotations. Orthogonal algorithms do exist and will be captured
algebraically in a future paper. Also “Rader” type algorithms,
which apply when the above decomposition methods fail (for
the DFT in the case of a prime size), will be explained in a
future paper.

The existence and usefulness of algorithms for one of the
above signal models relies on bothp(x) and b. Specifically,
algorithms may arise from two different basic principles,
which manifest themselves as a property ofp:

1) Cooley-Tukey type (factorization): p(x) = q(x) · r(x)
factorizes; and

2) Cooley-Tukey type (decomposition): p(x) = q(r(x)) de-
composes.

Clearly, 1) is always possible (if we consider the basefieldC),
but 2) is a special property ofp. In each of these cases, as we
will show, we obtain a matrix factorization ofF ; its usefulness
as a fast algorithm, however, depends onb.

In the remainder of this section, we derive the general form
of two types of recursive algorithms based on the above. In
each case the algorithm is derived by a stepwise decomposition
of M = C[x]/p(x) with basis b. We focus on Fourier
transforms that are polynomial transformsF = Pb,α. Since
general Fourier transforms have the formF = D diagPb,α,
D a diagonal matrix, the results can be readily extended.

A. Cooley-Tukey Type Algorithms: Factorization

A simple way to decomposeC[x]/p(x) in steps is to use a
factorizationp(x) = q(x) ·r(x) of p. Formally, letk = deg(q)
andm = deg(r), then

C[x]/p(x)

→ C[x]/q(x) ⊕ C[x]/r(x) (14)

→
⊕

0≤i<k

C[x]/(x− βi)⊕
⊕

0≤i<m

C[x]/(x− γj) (15)

→
⊕

0≤ℓ<n

C[x]/(x− αℓ). (16)

Here theβi are the zeros ofq and theγj are the zeros ofr,
i.e., both are a subset of the zerosαk of p. Both steps (14) and
(15) use the Chinese remainder theorem, whereas (16) is just
a reordering of the spectrum. The corresponding factorization
of the Fourier transform is provided in the following theorem.

Theorem 1 (Cooley-Tukey Type Algorithm by Factorization)
Let p(x) = q(x) · r(x), andc andd be a basis ofC[x]/q(x)
andC[x]/r(x), respectively. Further, denote byβ and γ the
lists of zeros ofq andr, respectively. Then

Pb,α = P (Pc,β ⊕ Pd,γ)B,

In particular, the matrixB corresponds to the base change in
(14) mapping the basisb to the concatenation(c, d) of the

basesc andd, andP is the permutation matrix mapping the
concatenation(β, γ) to the list of zerosα in (16).

Note that the factorization ofPb,α in Theorem 1 is useful
as a fast algorithm, i.e., reduces the arithmetic cost, onlyif
B is sparse or can be multiplied with efficiently. Referring to
Fig. 1, the “partial decomposition” is step (14).

We consider next two examples: the DFT, which will justify
why we refer to algorithms based on Theorem 1 as “Cooley-
Tukey type,” and then the more general case of a Vandermonde
matrix, which is a (polynomial) Fourier transform for the
generic finite time model.

Example: DFT. The DFT is a (polynomial) Fourier trans-
form for the regular signal model given byA = M =
C[x]/(xn − 1) with basis b = (1, x, . . . , xn−1). For the
example, we assumen = 2m and use the decomposition
xn − 1 = (xm − 1)(xm + 1). Applying Theorem 1 yields
the following decomposition steps:

C[x]/(xn − 1)

→ C[x]/(xm − 1)⊕ C[x]/(xm + 1) (17)

→
⊕

0≤i<m

C[x]/(x− ω2i
n )⊕

⊕

0≤i<m

C[x]/(x− ω2i+1
n )(18)

→
⊕

0≤ℓ<n

C[x]/(x− ωℓ
n). (19)

As bases in the smaller modulesC[x]/(xm − 1) and
C[x]/(xm + 1), we choosec = d = (1, x, . . . , xm−1). We
note that from this point on the derivation of the algorithm is
entirely mechanical.

First, we derive the base change matrixb corresponding to
(17). To do so, we have to express the base elementsxk ∈ b
in the basis(c, d) (concatenation); the coordinate vectors are
the columns ofB. For 0 ≤ k < m, xk is actually contained
in c andd, so the firstm columns ofB are

B =

[
Im ∗
Im ∗

]
,

where the entries∗ are determined next. For the base elements
xm+k, 0 ≤ k < m, we have

xm+k ≡ xk mod (xm − 1),

xm+k ≡ −xk mod (xm + 1),

which yields the final result

B =

[
Im Im
Im − Im

]
= DFT2 ⊗ Im .

Next, we consider step (18).C[x]/(xm − 1) is decomposed
by a DFTm and C[x]/(xm + 1) by a DFT-3m (Table III).
Finally, the permutation in step (19) is the perfect shuffleLn

m,
which interleaves the even and odd spectral components (even
and odd exponents ofωn). The algorithm obtained is

DFTn = Ln
m(DFTm ⊕DFT-3m)(DFT2 ⊗ Im).

To obtain a better known form, we apply the fact that
DFT-3m = DFTm ·Dm, whereDm = diag0≤i<m(ωi

n) to
get

DFTn = Ln
m(DFTm ⊕DFTm Dm)(DFT2 ⊗ Im)

= Ln
m(I2 ⊗DFTm)(Im ⊕Dm)(DFT2 ⊗ Im)
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The last expression is a radix-2 decimation-in-frequency
Cooley-Tukey FFT; the corresponding decimation-in-time ver-
sion is obtained by transposition using that the DFT is symmet-
ric. The entries of the diagonal matrixIm ⊕Dm are commonly
called twiddle factors.

Example: Vandermonde matrix. As a second example,
we consider now the general case of a separable polynomial
p(x) with zerosαk, 0 ≤ k < n, but keep the basisb =
(1, x, . . . , xn−1) of C[x]/p(x). The associated regular signal
model is the generic case of a finite time model, the “time-
ness” being due to the chosen basis, see [1]. The corresponding
(polynomial) Fourier transform is given by the Vandermonde
matrix

F = [αℓ
k]0≤k,ℓ<n.

To derive a fast algorithm forF , we assume thatn = 2m.
We choose an arbitrary factorizationp(x) = q(x) · r(x) with
deg(q) = deg(r) = m and use Theorem 1 to obtain a
factorization of the form

F = P (F1 ⊕F2)B, (20)

whereF1,F2 are Vandermonde matrices forC[x]/q(x) and
C[x]/r(x), respectively, andB has the form

B =

[
Im A
Im A′

]
.

It can be shown thatA and A′ are both a product of two
Toeplitz matrices [41] and can thus be multiplied with using
O(n log(n)) operations. Ifn is a 2-power, then recursive
application of (20) hence yields anO(n log2(n)) algorithm
for F .

Remarks. Theorem 1 is well-known, as it is the CRT
for polynomials expressed in matrix form. The above DFT
example is equivalent to the derivation in [20]. Theorem 1 is
also used as the first step in the derivation of Winograd DFT
algorithms [26]. There, the polynomialxn − 1 is completely
factored over the rational numbers, and the DFT decomposed
accordingly.

The algorithm derivation method in Theorem 1 is always
applicable if the basefield isC, but in general the base
change matrixB will be dense and without useful structure.
Otherwise, every polynomial transform would have a fast
algorithm, which by the current state of knowledge is not the
case. The subsequent methods are different in that respect,
they require a special property ofp(x), and only this property
leads to the typical Cooley-Tukey FFT structure for general
radices.

B. Cooley-Tukey Type Algorithms: Decomposition

A more interesting factorization ofF = Pb,α can be derived
if p(x) decomposesinto two polynomials,p(x) = q(r(x)).
If deg(q) = k and deg(r) = m, then deg(p) = n = km,
i.e., the degree ofp is necessarily composite. In this case, the
polynomialr(x) generates a subalgebraB of A = C[x]/p(x)
consisting of all polynomials inr(x). Settingy = r(x) makes
the structure ofB evident:B = C[y]/q(y).

Let β = (β0, . . . , βk−1) be the zeros ofq and letα′
i =

(α′
i,0, . . . , α

′
i,m−1) be the zeros ofr(x)−βi, 0 ≤ i < k. Then

p(x) =
∏

0≤i<k

(r(x) − βi)

=
∏

0≤i<k

∏

0≤j<m

(x− α′
i,j).

In particular, eachα′
i,j is a zeroαℓ of p. Now we decompose

C[x]/p(x) in the following steps:

C[x]/p(x) → C[x]/q(r(x)) (21)

→
⊕

0≤i<k

C[x]/(r(x) − βi) (22)

→
⊕

0≤i<k

⊕

0≤j<m

C[x]/(x− α′
i,j) (23)

→
⊕

0≤ℓ<n

C[x]/(x− αℓ). (24)

Steps (22) and (23) use the Chinese remainder theorem.
To derive the corresponding factorization ofPb,α into four
factors, we choose a basisc = (q0, . . . , qk−1) for C[y]/q(y),
and for eachC[x]/(r(x) − βi) in (22) the same basisd =
(r0, . . . , rm−1) . Then, in the first step (21), we do not change
A but only make a base change inA from the given basisb
to the new basis

b′ = (r0q0(r), . . . , rm−1q0(r),
. . .
r0qk−1(r), . . . , rm−1qk−1(r)),

(25)

which is a product of the “coarse” basis of the subalgebra
B ≤ A with the “fine” common basis of theC[x]/(r(x)−βi).
We callB the base change matrix forb → b′.

Next, we compute the base change matrixM corresponding
to the coarse decomposition (22) with respect to the basisb′

in C[x]/p(x) and the basisd in each summand on the right
hand side. Letrℓ(x)qj(r(x)) ∈ b′. Then

rℓ(x)qj(r(x)) ≡ rℓ(x)qj(βi) mod (r(x) − βi),

which is qj(βi) times theℓth base vectorrℓ(x) in d. Thus we
get

M = [qj(βi) · Im]0≤i,j<k = Pc,β ⊗ Im .

The third step (23) decomposes the summands in (22) by
Fourier transformsPd,α′

i
, respectively. The final step (24)

reorders the one-dimensional summands by a suitable per-
mutationP . We summarize the resulting factorization in the
following theorem.

Theorem 2 (Cooley-Tukey Type Algorithms by Decomposition)
Let p(x) = q(r(x)). Using previous notation,

Pb,α = P
( ⊕

0≤i<k

Pd,α′

i

)
(Pc,β ⊗ Im)B,

whereB is the base change matrix mappingb to b′, andP is
the permutation matrix mapping the concatenation of theα′

i

ontoα in (24).
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As in Theorem 1, the usefulness of the factorization as fast
algorithm depends on the base change matrixB. Referring to
Fig. 1, the “partial decomposition” is step (22).

Note that the intermediate decomposition step in (22) has
k summands, whereas the intermediate step in (14) has only
2 summands. However, this difference is not the point, as
Theorem 1 could be easily extended to more than 2 sum-
mands. It is the decomposition property ofp(x) that creates a
subalgebra generated byr(x), which ensures that the conquer
step is sparse and has the Kronecker product structurePc,β ⊗
Im, which intuitively is a “coarse” polynomial transform for
C[x]/p(x).

As an example we consider again the DFT.
Example: DFT. Let A = M = C[x]/(xn − 1) with basis

b = (1, x, . . . , xn−1) be the regular signal model associated to
theDFTn. Further, assume thatn = km, which is necessary
for decomposition.

The polynomialp(x) = xn − 1 then decomposes

xn − 1 = (xm)k − 1, (26)

i.e., p(x) = q(r(x)) with q(x) = xk − 1 and r(x) = xm.
Thus Theorem 2 is applicable. The zeros ofq(x) areβi = ωi

k,
0 ≤ i < k. Using this theorem’s notation, we choosec =
(1, x, . . . , xk−1) as basis inC[x]/q(x), d = (1, x, . . . , xm−1)
as basis in the modulesC[x]/(xm − ωi

k). We find thatb′ = b
in (25), which impliesB = In.

Thus, the matrixDFTk ⊗ Im performs the following coarse
decomposition corresponding to (22):

C[x]/(xn − 1) →
⊕

0≤i<k

C[x]/(xm − ωi
k).

The modulesC[x]/(xm − ωi
k) are decomposed, respectively,

by (7), which takes the form

DFTm(ωi
k) = DFTm · diagm−1

j=0 (ωij
n ),

namely as

C[x]/(xm − ωi
k) →

⊕

0≤j<m

C[x]/(x− ωjk+i
n ).

At this point, corresponding to (23),C[x]/p(x) is completely
decomposed, but the spectrum is ordered according tojk+ i,
0 ≤ i < m, 0 ≤ j < k (j runs faster). The desired order is
im+ j. Thus, we need to apply the permutation

jk + i 7→ im+ j,

which is exactly the stride permutationLn
m in (12).

In summary, we obtain the Cooley-Tukey decimation-in-
frequency FFT with arbitrary radix:

Ln
m

( ⊕

0≤i<k

DFTm · diagm−1
j=0 (ωij

n )
)
(DFTk ⊗ Im)

= Ln
m(Ik ⊗DFTm)Tn

m(DFTk ⊗ Im), (27)

where the matrixTn
m is diagonal and usually called the

twiddle matrix. Transposition of (27) yields the corresponding
decimation-in-time version.

Again, we note that after recognizing the decomposition
property (26), the derivation is completely mechanical.

Remarks. Theorem 2 makes use of the CRT (in (22)
and (23)), but it is the decomposition property ofxn − 1
that produced the typical structure. The previous work on
the algebraic derivation of this FFT did not make use of
decompositions. As we briefly discuss next, the decomposition
is a special case of a more general algebraic principle.

C. Remarks on Algebraic Principles

The algorithms derived in this section are based on the
factorization or decomposition of the polynomialp(x) in the
signal model provided byC[x]/p(x) (and basisb). This is
pleasantly simple, but it is also of interest to identify the(more
general) principle from the representation theory of algebras
that lies behind that. This is important, as other signal models
may not be regular or represented by a polynomial algebra in
one variable, but the algebraic principle may still apply.

We focus on the decomposition property ofp(x) and be
brief, assuming some familiarity with representation theory.
The key concept underlying Theorem 2 isinductionas implicit
in step (21). Namely,r(x) generates a subalgebraB =
〈r(x)〉 ≤ A, which is isomorphic (settingy = r(x)) to
C[y]/q(y). Further,d = (r0, . . . , rm−1) is a transversal of
B in A, which meansA is a direct sum of the vector spaces
riB:

A = r0B ⊕ . . .⊕ rm−1B. (28)

This shows that the regularA-module is an induction of the
regularB-module with transversald: A = B ↑d A. The natural
basis of this induction isb′ in (25), which has a structure
corresponding to (28). The purpose of step (21) is to make this
induction explicit, and Theorem 2 is a decomposition theorem
for inductions of (regular modules of) polynomial algebras.

This is a satisfying insight since in prior work [42], [43] we
derived the corresponding theorem for inductions of (modules
of) group algebras, which has a very similar form [42, Th. 2
in the appendix]. Further, we have shown (also in [42]) that
at least some of theorthogonalDTT algorithms are based on
it. Further, we have used already a different generalization of
Theorem 2, namely to polynomial algebras intwo variables
(which provide two-dimensional signal models) to derive a
Cooley-Tukey type algorithm in [5] for the new transform
introduced in [4].

V. COOLEY-TUKEY TYPE DTT ALGORITHMS

(FACTORIZATION)

In this section, we derive recursive DTT algorithms by
applying Theorem 1, i.e., by factorizing the polynomialp in
the moduleC[x]/p(x) associated to a givenDTTn. To do so,
we will use the followingrational factorizations of Chebyshev
polynomials.

Lemma 2The following factorizations hold for the Chebyshev
polynomialsT, U, V,W :

i) T3 = x(4x2 − 3)
ii) U2n−1 = 2Un−1Tn.

iii) U2n = VnWn.
iv) V3n+1 = 2Vn(T2n+1 − 1/2).
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v) W3n+1 = 2Wn(T2n+1 + 1/2).

Proof: Follows from the closed form of the polynomials
given in Table XXIII and trigonometric identities.

The factorizations in Lemma 2 give rise to size 3 algorithms
for DTTs in theT -group and recursive algorithms for DTTs in
theU -, V -, andW -groups. These are derived in the following.
We will not provide a cost analysis in this section, since
most of the following algorithms are special cases of more
general Cooley-Tukey algorithms to be introduced starting
from Section VI.

A. T -Group DTT Algorithms for Size 3

We derive algorithms based on Lemma 2, i), i.e., for DTTs
in the T -group (DTTs of type 3 and 4) of size 3. As an
example, we consider aDCT-43. We start with the polynomial
versionDCT-43, which is a polynomial transform forC[x]/T3

with V -basis(V0, V1, V2) = (1, 2x − 1, 4x2 − 2x − 1). The
zeros ofT3 are (

√
3/2, 0,−

√
3/2). The factorizationT3 =

x(4x2 − 3) yields the stepwise decomposition

C[x]/T3

→ C[x]/x⊕ C[x]/(x2 − 3
4 ) (29)

→ C[x]/x⊕
(
C[x]/(x−

√
3
2 )⊕ C[x]/(x +

√
3
2 )

)
(30)

→ C[x]/(x−
√
3
2 )⊕ C[x]/x⊕ C[x]/(x +

√
3
2 ). (31)

We start with the base change in (29) and choose in all three
algebras aV -basis. The base change matrixB is computed
by mapping(V0, V1, V2) and expressing it in the basis on the
right side of (29). The coordinate vectors are the columns
of B. The first column is(1, 1, 0)T . Because ofV1 = 2x −
1 ≡ −1 mod x, the second column is(−1, 0, 1)T . The last
column is obtained fromV2 = 4x2 − 2x − 1 ≡ −1 mod x
and 4x2 − 2x − 1 ≡ −2x + 2 = −V1 + V0 mod 4x2 − 3
as(−1, 1,−1)T . Step (30) requires polynomial transforms for
C[x]/x andC[x]/(x2 − 3/4) with V -bases, which are given
by

[1] and
[

V0(
√
3/2) V1(

√
3/2)

V0(−
√
3/2) V1(−

√
3/2)

]
=

[
1

√
3−1

1 −
√
3−1

]

respectively. Finally we have to exchange the first two spectral
components in (31). The result is

DCT-43 =
[
0 1 0
1 0 0
0 0 1

] [ 1 0 0
0 1

√
3−1

0 1 −
√
3−1

] [
1 −1 −1
1 0 1
0 1 −1

]
.

The corresponding algorithm forDCT-43 is obtained by scal-
ing from left with diag(cos(π/12), cos(3π/12), cos(5π/12))
to get

DCT-43 =
[
0 1 0
1 0 0
0 0 1

]


√

1/2 0 0

0 cos(π/12)
√

1/2

0 cos(5π/12) −
√

1/2



[
1 −1 −1
1 0 1
0 1 −1

]
.

Similarly we get algorithms for the other DTTs of size 3 in
the T -group. Those, which are among the best known ones,
are collected in Table VIII in Section VII.

B. U -Group DTT Algorithms

We use Lemma 2, ii) and iii), to derive a complete set
of recursive algorithms for DTTs that are in theU -group,
i.e., for all DTTs of type 1 and 2. As an example, we
consider theDCT-2n, n = 2m, with associated module
M = C[x]/(x− 1)Un−1(x) andV -basisb = (V0, . . . , Vn−1).
From Table XXIII, the zeros of(x − 1)Un−1(x) are given
by αk = cos kπ/n, 0 ≤ k < n. Using Lemma 2, ii) we
decomposeM in steps as

C[x]/(x− 1)Un−1

→ C[x]/(x− 1)Um−1 ⊕ C[x]/Tm (32)

→
⊕

C[x]/(x − α2k)⊕
⊕

C[x]/(x− α2k+1) (33)

→
⊕

C[x]/(x − αk). (34)

We also choose aV -basis b′ = (V0, . . . , Vm−1) in both
smaller algebras in (32); thus we know they are decomposed
by DCT-2m and DCT-4m, respectively. To determine the
base change matrixB for b → (b′, b′) we need to compute
Vi mod (x − 1)Um−1 andVi mod Tm for 0 ≤ i < 2m. For
0 ≤ i < m this is trivial,

Vi ≡ Vi mod (x− 1)Um−1, Vi ≡ Vi mod Tm.

For m ≤ i < 2m this is precisely the signal extension of
the two smaller algebras in (32) (see [2]). Since the signal
extension is monomial,B is sparse. The equations are

Vm+j ≡ Vm−j−1 mod (x− 1)Um−1, and

Vm+j ≡ −Vm−j−1 modTm.

Thus, the base change matrix is given by

B2m =

[
Im Jm
Im − Jm

]
= (DFT2 ⊗ Im)(Im ⊕ Jm). (35)

The two summands in (32) are decomposed recursively by
DCT-2m and byDCT-4m, respectively, to yield (33). Finally,
we obtain (34) by the permutation matrixL2m

m (see (12)),
which interleaves the even and oddαk. As a result, we obtain
the well-known recursive algorithm [12]:

DCT-2n = L2m
m (DCT-2m ⊕DCT-4m)B2m.

Analogous computations for all transforms in theU -group
yield the full set of recursive algorithms due to Lemma 2,
which are shown in Table VI(a). The formulas use the follow-
ing building blocks. The base change matricesB2m in (35)
and

B2m+1 =



Im 0 Jm
0 1 0
Im 0 − Jm


 . (36)

Further, they use the stride permutation matricesL2m
m , and the

odd stride permutation matriceŝL
2m+1

m+1 defined in (13), which
reorder the one-dimensional summands into the proper order.

Note that the base change matricesB2m and B2m+1 are
sparse in the lastm columns (see (35) and (36)) because of the
monomial signal extension characteristic for the DTTs. This
provides another motivation for considering these extensions.
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These four algorithms appeared first in the literature (to
our best knowledge) in [44], [45], [12], and [46], respectively.
Combining Table VI(a) with the many ways of translating
DTTs into each other given by duality or base change (see
Appendix III) gives a large number of different recursions,
many of them, however, with suboptimal arithmetic cost. Apart
from the references above, special cases have been derived in
[47], [48], [49].

Table VI(a) is complemented by the decompositions in
Table VI(b) which are due to Lemma 2, iii). We did not find
these in the literature.

As one application, we can use Table VI(b) to obtain DTT
algorithms for small sizes, where the smaller DTTs of type
5–8 are base cases. As a simple example, we get

DCT-23 = L̂
3

2(DCT-62 ⊕DCT-81)B3

=
[
1 0 0
0 0 1
0 1 0

] ([
1 1

1/2 −1

]
⊕

√
3
2 · I1

) [
1 0 1
0 1 0
1 0 −1

]
.

(37)

Transposition yields aDCT-33 algorithm, equivalent to the
one obtained in Section V-A.

C. V -Group DTT Algorithms

In this section, we derive algorithms from Lemma 2, iv), for
all DTTs in theV -group, i.e., for all DTTs of type 7 and 8.
Since the second factor in this factorization isT2n+1−1/2, the
skew DTTs (see Section II-B) introduced in [2] come into play.
We use1/2 = cosπ/3. We do not give the detailed derivation,
which is analogous to the one in the previous section, but only
state the result in Table VI(c) using the following base change
matrices and permutations.

B
(C7)
3m+2 =




1/2

I2m+1 Im
− Jm

1 −1

Im − Jm − Im




B
(S7)
3m+1 =




Im
I2m+1 Jm

0 ··· 0

Im Jm
0
···
0 − Im




B
(C8)
3m+1 =




Im
I2m+1 0 ··· 0

− Jm

Im
0
···
0 − Jm − Im




B
(S8)
3m+2 =




Im
I2m+1 2

Jm
Im Jm − Im

1 −1




To give the permutation, we decompose the indexi into
the radix-3 formati1 + 3i2. ThenP 3m+2

m operates on the set

{0, . . . , 3m+ 1} and is given by

P 3m+2
m = i1 + 3i2 7→





2i2, for i1 = 0;

i2 + 2m+ 1, for i1 = 1;

2i2 + 1, for i1 = 2;

= L̂3m+2
m+1



Im+1

Im+1

Im


 (L̂2m+1

2 ⊕ Im+1).

To give a visual impression of the structure we showP 11
3 as

an example:

P 11
3 =

2
666666666666664

1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0
0 1 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0
0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1

3
777777777777775

.

The permutationP 3m+2
m leaves the last point fixed. By

restrictingP 3m+2
m to the set{0, . . . , 3m}, we obtain and define

the permutation̂P 3m+1
m .

D. W -Group DTT Algorithms

The correspondingW -group (DTTs of type 5 and 6) algo-
rithms are given in Table VI(d) with

B
(C5)
3m+2 =




1 1

Im Jm Im
−1/2

I2m+1 − Im
− Jm




B
(S5)
3m+1 =




Im − Jm
0
···
0

Im

− Im
I2m+1 Jm

0 ··· 0




B
(C6)
3m+2 =




Im Jm Im
1 1

− Im
I2m+1 −2

− Jm




B
(S6)
3m+1 =




Im
0
···
0 − Jm Im

− Im
I2m+1 0 ··· 0

Jm




andQ3m+2
m operates on{0, . . . , 3m+ 1} as

Q3m+2
m = i1 + 3i2 7→





i2, for i1 = 0;

2i2 +m+ 1, for i1 = 1;

2i2 +m+ 2, for i2 = 2.

= L̂3m+2
m+1

[
Im+1

I2m+1

]
(L̂2m+1

2 ⊕ Im+1).
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TABLE VI

DTT ALGORITHMS BASED ON FACTORIZATION PROPERTIES OF THECHEBYSHEV POLYNOMIALS. TRANSPOSITION YIELDS A DIFFERENT SET OF

ALGORITHMS. REPLACING EACH TRANSFORM BY ITS POLYNOMIAL COUNTERPART YIELDS ALGORITHMS FOR THE POLYNOMIALDTTS.

(a) U -group: Based onU2n−1 = 2Un−1Tn

DCT-12m+1 = bL2m+1

m+1 (DCT-1m+1 ⊕DCT-3m)B2m+1

DST-12m−1 = bL2m−1

m (DST-3m ⊕DST-1m−1)B2m−1

DCT-22m = L2m
m (DCT-2m ⊕DCT-4m)B2m

DST-22m = L2m
m (DST-4m ⊕DST-2m)B2m

(b) U -group: Based onU2n = VnWn

DCT-12m = L2m
m (DCT-5m ⊕DCT-7m)B2m

DST-12m = L2m
m (DST-7m ⊕DST-5m)B2m

DCT-22m+1 = bL2m+1

m+1 (DCT-6m+1 ⊕DCT-8m)B2m+1

DST-22m+1 = bL2m+1

m+1 (DST-8m+1 ⊕DST-6m)B2m+1

(c) V -group: Based onV3n+1 = 2(T2n+1 − 1/2)Vn

DCT-73m+2 = P 3m+2
m (DCT-32m+1(

1
3
)⊕DCT-7m+1)B

(C7)
3m+2

DST-73m+1 = bP 3m+1
m (DST-32m+1(

1
3
)⊕DST-7m)B

(S7)
3m+1

DCT-83m+1 = bP 3m+1
m (DCT-42m+1(

1
3
)⊕DCT-8m)B

(C8)
3m+1

DST-83m+2 = P 3m+2
m (DST-42m+1(

1
3
)⊕DST-8m+1)B

(S8)
3m+2

(d) W -group: Based onW3n+1 = 2Wn(T2n+1 + 1/2)

DCT-53m+2 = Q3m+2
m (DCT-5m+1 ⊕DCT-32m+1(

2
3
))B

(C5)
3m+2

DST-53m+1 = bQ3m+1
m (DST-5m ⊕DST-32m+1(

2
3
))B

(S5)
3m+1

DCT-63m+2 = Q3m+2
m (DCT-6m+1 ⊕DCT-42m+1(

2
3
))B

(C6)
3m+2

DST-63m+1 = bQ3m+1
m (DST-6m ⊕DST-42m+1(

2
3
))B

(S6)
3m+1

The permutationQ3m+2
m leaves the first point 0 fixed. By

restrictingQ3m+2
m to the points1 ≤ i ≤ 3m + 1 we obtain

and define the permutation̂Q3m+1
m . If we rename the index

set into{0, . . . , 3m}, we have

Q̂3m+1
m = i1 + 3i2 7→





2i2 +m, for i1 = 0;

2i2 +m+ 1, for i1 = 1;

i2, for i1 = 2.

The usefulness of the above algorithms depends on the
initial transform size and on the availability of algorithms for
the occurring skew DTTs. These algorithms will be introduced
later.

E. Polynomial DTTs

Every DTT in Table VI is decomposed into two DTTs that
have the same base polynomials. Thus they have the same
scaling function (see Table III:b andf are connected), which
is the reason why we see no scaling factors in the equations. As
an important consequence, we get algorithms correspondingto
Table VI for the polynomial transformsDTT.

As an example, we derive the polynomial equivalent of (37):

DCT-23 =
[
1 0 0
0 0 1
0 1 0

] ([
1 1
1 −2

]
⊕ I1

) [
1 0 1
0 1 0
1 0 −1

]
, (38)

whereDCT-23 = diag(1,
√
3
2 , 1

2 ) · DCT-23. The algorithm
requires 4 additions and 1 multiplication and is thus 1 multi-
plication cheaper than its non-polynomial equivalent (37).

F. Final Remarks

The algorithms given in this section are based on Lemma 2,
which provides factorizations of the Chebyshev polynomials
T, U, V,W . Since all these polynomial factorizations are ra-
tional, the associated matrix factorizations are also rational. In
Lemma 2, ii) and iii), the factors are again Chebyshev poly-
nomials, and thus the smaller transforms in the decomposition
are again DTTs. In Lemma 2, iv) and v), the second factor
T2n+1−1/2 leads to skew DTTs (see Table V). The complete

rational factorization of the Chebyshev polynomialsTn, Un for
arbitraryn is given in [50]. The rational factorization ofVn

andWn can be derived using [50] and Lemma 2, iii). These
factorizations can be used to decompose a DTT, but the smaller
transforms obtained are in general no DTTs or skew DTTs.

All algorithms in Table VI can be manipulated in numerous
ways using the identities in Appendix III or transposition to
obtain different algorithms.

VI. COOLEY-TUKEY TYPE DTT ALGORITHMS

(DECOMPOSITION)

In this section, we give a first overview on DTT algorithms
that are based on Theorem 2, i.e., on a decompositionp(x) =
q(r(x)) of the polynomialp in the associated algebraC[x]/p.
These algorithms are, structural and in a precise mathematical
sense, the equivalent of the Cooley-Tukey FFT (27), which we
derived based on the decomposition ofxn − 1 = (xm)k − 1.

We will see that all 16 DTTs possess such algorithms,
and that in many cases there are several reasonable variants
with different characteristics to choose from. Some of these
algorithms generalize the ones we introduced in Section V.

Each of these “Cooley-Tukey-like” DTT algorithms exhibits
the same flexible recursion and regular and versatile structure
that has been the success of the FFT. As a consequence, all
FFT variants optimized for, e.g., parallel or vector computation
will have counterparts for the 16 DTTs. See [32] for more
details on FFT variants.

Only very few special cases of these algorithms have been
found before. Again, our algebraic methods show their power:
the derivation using Theorem 2 is comparatively easy, since
only base changes have to be computed; in contrast, a deriva-
tion based on matrix entries becomes hopelessly complicated,
and, furthermore, does not provide a guideline to which entry
and how manipulations should be performed to obtain an
algorithm.

Decomposition of Chebyshev polynomials.The DTT al-
gorithms are based on the following lemma, which provides
decomposition properties of the Chebyshev polynomials.
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Lemma 3The Chebyshev polynomialsT, U, V,W have the
following decomposition properties:

i) Tkm = Tk(Tm); Tkm − a = Tk(Tm)− a, a ∈ C.
ii) Ukm−1 = Um−1 · Uk−1(Tm).
iii) V(k−1)/2+km = Vm · V(k−1)/2(T2m+1).
iv) W(k−1)/2+km = Wm ·W(k−1)/2(T2m+1).
v) Tkm+m/2 = Tm/2 · Vk(Tm).
vi) Ukm+m/2−1 = Um/2−1 ·Wk(Tm).

Proof: Straightforward using the closed form ofTn from
Table XXIII. In particular i) is well-known in the literature
(e.g., [51]).

Inspecting the identities in Lemma 3, we observe that only
i) provides a pure decomposition; the other identities are
a decomposition up to a factor. Thus, in these cases, the
algorithms derivation requires us to first apply Theorem 1 and
then Theorem 2.

Also, we observe that Lemma 3 provides decomposition of
all four typesof Chebyshev polynomials. Thus we can expect
Cooley-Tukey type algorithms for all 16 DTTs. Looking at
Lemma 3, Theorem 2, and its derivation in (21)–(24), we see
that the algebras in (22), will all have the form

C[x]/(Tn − cos rπ),

and thus the decomposition (23) will require skew DTTs,
which motivates their introduction in [2]. Of course, this poses
the question how to further decompose the skew DTTs for non-
trivial sizes. This question is answered by the second identity
in Lemma 3, i):Tn−a decomposes exactly asTn does, which
establishes a one-to-one correspondence between algorithms
for the DTTs in theT -group and their skew counterparts.

Fig. 2 gives an overview on the algorithms that we will
derive from Lemma 3. We first organize the algorithms into
the groups of DTTs (see also Table III) they apply to. In theT -
andU -group, we have two types of decomposition properties.
For algorithms based onTn = Tk(Tm), we have three further
degrees of freedom as will be explained later. In summary,
each leaf of the tree in Fig. 2 represents one class consisting of
four algorithms for each of the DTTs in the respective group.

None of these algorithms is orthogonal, i.e., they do not
decompose the DTTs into rotations (and butterflies). Orthog-
onal Cooley-Tukey type algorithms are the subject of a future
paper.

VII. T -GROUPDTT ALGORITHMS

In this section we derive the four classes of Cooley-Tukey
type algorithms for the four DTTs in theT -group shown in
Fig. 2. We focus mainly on those algorithms based onTn =
Tk(Tm).

First, we simultaneously derive the algorithms for all four
DTTs to emphasize their common structure and their differ-
ences. The exact form of the algorithms, i.e., all occurring
matrices, will be derived afterwards, including a discussion
and cost analysis in each case.

A. Simultaneous Derivation

We start with a fixed DTT in theT -group with associated
algebraC[x]/Tn and C-basis b = (C0, . . . , Cn−1), where
C ∈ {T, U, V,W} depends on the chosen DTT. We assume
n = km, and use the decompositionTn = Tk(Tm). The
decomposition steps (21)–(24) leading to Theorem 2 take the
form

C[x]/Tn → C[x]/Tk(Tm) (39)

→
⊕

0≤i<k

C[x]/(Tm − cos i+1/2
k π) (40)

→
⊕

0≤i<k

⊕

0≤j<m

C[x]/(x− cos ri,jπ) (41)

→
⊕

0≤i<n

C[x]/(x− cos i+1/2
n π), (42)

where theri,j are determined by Lemma 1.
In the first step (39), we change bases inC[x]/Tn =

C[x]/Tk(Tm), from the givenC-basisb to the basisb′ given in
(25). The question arises, which basis to choose in the coarse
algebraC[x]/Tk, and which common basis to choose in the
“skew” algebrasC[x]/(Tm − cos(i + 1/2)π/k). In the latter
ones, we always choose the sameC-basis as in the original
algebra. For the coarse algebra, it turns out that we have two
reasonable choices: aT -basis or aU -basis. We consider both
cases, starting with theU -basis.
U -basis. We choose, independently ofC, a U -basis in

C[x]/Tk. Note, that the corresponding DTT is aDST-3m
(Table III). The basisb′ in (25) is then given by

b′ = (C0U0(Tm), . . . , Cm−1U0(Tm),
. . .
C0Uk−1(Tm), . . . , Cm−1Uk−1(Tm))

= (CjUi(Tm) | 0 ≤ i < m, 0 ≤ j < k).

(43)

We order double indices always lexicographically(i, j) =
(0, 0), (0, 1), . . . .

We denote the corresponding base change matrixb → b′

in (39) with B
(∗)
n,k. Here, and in the following, the “∗” in the

superscript means that the matrix depends on the DTT. It will
later be replaced by∗ ∈ {C3, S3, C4, S4} when the precise
definitions are derived.

After the base change, the decomposition is straightforward
following steps (40)–(42) and Theorem 2. The coarse decom-
position in step (40) is obtained with the matrixDST-3k⊗Im,
since Theorem 2 requires us to choose a polynomial transform
for the coarse decomposition. For step (41), we need a direct
sum of skew DTTs:

⊕
0≤i<k DTTm((i+1/2)/k). These are

of the same type as the DTT we started with, since they have
the sameC-basis as the DTT to be decomposed.

Finally, we order the one-dimensional summands in
step (42) using a permutation. This permutation does not
depend on the basis, but only on the zeros ofTk and Tm.
Thus it is the same in all four cases of DTTs in theT -group,
and, using Lemma 1, takes the form

Kn
m = (Ik ⊕ Jk ⊕ Ik ⊕ Jk ⊕ . . . ) Ln

m .
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Cooley-Tukey type DTT algorithms (by decomposition)
✭✭✭✭✭✭✭✭✭✭✭✭✭✭✭✭✭✭

✟
✟

✟
✟

✟
✟

❍
❍
❍
❍
❍
❍

❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤• • • •
T -group U -group V -group

VmV(k−1)/2(T2m+1)

W -group

WmW(k−1)/2(T2m+1)
✑

✑
✑

◗
◗
◗• •

Tk(Tm) Tm/2Vk(Tm)

✑
✑

✑

◗
◗
◗• •

Um−1Uk−1(Tm) Um/2−1Wk(Tm)
✑

✑
✑

◗
◗
◗• •

U -basis T -basis
✑

✑
✑

◗
◗
◗• •

as is inverse-transpose

T -group: DCT-3,DST-3,DCT-4,DST-4
U -group: DCT-1,DST-1,DCT-2,DST-2
V -group: DCT-7,DST-7,DCT-8,DST-8
W -group: DCT-5,DST-5,DCT-6,DST-6

Fig. 2. Overview of Cooley-Tukey type algorithms due to decomposition properties of the Chebyshev polynomials.

This permutation is the equivalent of the stride permutation
Ln
m, occurring in the Cooley-Tukey FFT, for the DTTs in the

T -group.
In summary, we obtain

DTTn =

Kn
m

( ⊕

0≤i<k

DTTm( i+1/2
k )

)
(DST-3k ⊗ Im)B

(∗)
n,k. (44)

The question that remains is how to decompose the smaller
transforms: the skewDTTm’s and the polynomialDST-3k.
However, this poses no problem. Since for anya ∈ C,
Tn − a decomposes exactly asTn, we derive in a completely
analogous way the “skew version” of (44) as

DTTn(r) =

Kn
m

( ⊕

0≤i<k

DTTm(ri)
)
(DST-3k(r) ⊗ Im)B

(∗)
n,k, (45)

which is a generalization of (44), which arises forr = 1/2.
The numbersri are computed fromr using Lemma (1). The
matrix Kn

m neither depends on the type of DTT, nor onr; the

matrix B
(∗)
n,k does depend on the type of DTT, but not onr,

since the basesb andb′ are independent ofr.
For k = n, (45) translates a DTT in theT -group into a

DST-3, which is a special case of the translation by base
change in Appendix III.

Further, since DTTs and skew DTTs have the same scaling
function (Tables III and V), we obtain corresponding algo-
rithms for the polynomial version of the transforms by just
replacing each DTT by its polynomial counterpart:

DTTn =

Kn
m

( ⊕

0≤i<k

DTTm( i+1/2
k )

)
(DST-3k ⊗ Im)B

(∗)
n,k,

and

DTTn(r) =

Kn
m

( ⊕

0≤i<k

DTTm(ri)
)
(DST-3k(r) ⊗ Im)B

(∗)
n,k.

The remaining task is to compute the exact form ofB
(∗)
n,k

in the four cases. We will do this in Section VII-B and only
mention at this point that in each case,Bn,k has a very sparse
and regular structure.

Next, we derive the analogue of the above algorithms, if a
T -basis, instead of aU -basis is chosen in the coarse module
C[x]/Tk.
T -basis. In distinction with the above, we choose this

time, independently ofC, a T -basis inC[x]/Tk. Thus, the
corresponding DTT is aDCT-3m. The basisb′ in (25) is now
given by

b′ = (C0T0(Tm), . . . , Cm−1T0(Tm),
. . .
C0Tk−1(Tm), . . . , Cm−1Tk−1(Tm))

= (Cim−j/2 + Cim+j/2 | 0 ≤ i < m, 0 ≤ j < k),
(46)

using (104) in Appendix II. We denote the base change matrix
for b → b′ by B

(∗)
n,k.

The coarse decomposition in step (40) is now performed by
the matrixDCT-3k ⊗ Im (note thatDCT-3 is a polynomial
transform). The remaining steps (41) and (42) are equal to
what we had before.

As a result, we obtain

DTTn =

Kn
m

( ⊕

0≤i<k

DTTm( i+1/2
k )

)
(DCT-3k ⊗ Im)B

(∗)
n,k, (47)

and its generalization to the skew DTTs

DTTn(r) =

Kn
m

( ⊕

0≤i<k

DTTm(ri)
)
(DCT-3k(r) ⊗ Im)B

(∗)
n,k. (48)

Again,B(∗)
n,k only depends on the type of DTT, and not onr.

The polynomial version is again given by simply replacing
all DTTs by their polynomial counterparts:

DTTn(r) =

Kn
m

( ⊕

0≤i<k

DTTm(ri)
)
(DCT-3k(r) ⊗ Im)B

(∗)
n,k. (49)
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We mentioned above that choosing aU -basis in the coarse
moduleC[x]/Tk leads to base change matricesBn,k that are
sparse (which will be shown in detail below). For theT -basis,
this is somewhat different. In fact, inspecting (46) shows that
the inverse base changeb′ → b, i.e., B−1

n,k is sparse (with at
most two entries in each column). For this reason, we will
also consider the inverse of (47) and (48).
T -basis inverted. To express the inverse, we need the

inverse skew DTTs (Appendix III). The inverse of (48) will
take, after minor simplifications, in each case the general form

iDTTn(r) = (C
(∗)
n,k)

−1(iDCT-3k(r) ⊗ Im)
( ⊕

0≤i<k

iDTTm(ri)
)
Mn

k , (50)

where

Mn
k = (Kn

m)−1 = Ln
k (Ik ⊕ Jk ⊕ Ik ⊕ Jk ⊕ . . . ),

andC(∗)
n,k is closely related toB(∗)

n,k. (50) provides algorithms
for the DTTs of type 2 and 4 (the inverses of the DTTs in the
T -group).

Variants. The algorithms derived above can be further
manipulated to obtain variants. We saw already an example:
the inversion of (48) to obtain (50). One obvious manipulation
is transposition, which turns eachT -group DTT algorithm into
an algorithm for a DCT or DST of type 2 or 4 (the transposes
of the T -group DTTs).

More interestingly, each of the above algorithms has a cor-
responding “twiddle version,” which is obtained by translating
skew DTTs into their non-skew counterparts using (108)–(111)
in Appendix III. For example, the twiddle version of (47) is
given by

DTTn =

Kn
m

(
Ik ⊗DTTm

)
Dk,m(DCT-3k ⊗ Im)Bn,k, (51)

where
Dk,m =

⊕

0≤i<k

X(∗)
n ( i+1/2

k )

is a direct sum of the x-shaped matrices in (108)-(111)
(Appendix III).

The twiddle version seems more appealing; however, we
will later see that at least in the 2-power casen = 2k they
incur a higher arithmetic cost. The reason is that skew and
non-skew DTTs can be computed with the same cost in this
case. For other sizes, the twiddle version may not incur any
penalty. Most state of the art software implementations [52],
[36] fuse the twiddle factors with the subsequent loop incurred
by the tensor product anyway to achieve better locality.

Base cases.We provide the base cases for the above
algorithms for sizen = 2 in Table VII and for sizen = 3 in
Table VIII. The size 2 cases follow from the definition; most of
the size 3 cases were derived in Section V-A. An exception is
DCT-4, for which the algorithm was generated by AREP [42],
[39], and which is a “Rader-type” algorithm (see [10]; also a
future paper will discuss the algebraic origin of the Rader
algorithm in detail). TheDST-43 algorithm follows then by
duality (105) (in Appendix III).

TABLE VII

BASE CASES FOR NORMAL AND SKEWT -GROUPDTTS OF SIZE2.

DCT-32 = F2 ·diag(1, 1/
√
2)

DST-32 = F2 ·diag(1,
√
2)

DCT-42 = F2 ·
h

1 −1

0
√

2

i

DST-42 = F2 ·
h

1 1
0
√

2

i

DCT-32 = DCT-32
DST-32 = F2 ·diag(1/

√
2, 1)

DCT-42 = diag(cos π
8
, sin π

8
) · F2 ·

h

1 −1

0
√

2

i

DST-42 = diag(sin π
8
, cos π

8
) · F2 ·

h

1 1
0
√

2

i

DCT-32(r) = F2 · diag(1, cos r
2
π)

DST-32(r) = F2 ·diag(1, 2 cos rπ
2
)

DCT-42(r) = F2 ·
h

1 −1

0 2 cos
rπ
2

i

DST-42(r) = F2 ·
h

1 1
0 2 cos

rπ
2

i

DCT-32(r) = DCT-32(r)
DST-32(r) = F2 ·diag(sin rπ

2
, sin rπ)

DCT-42(r) = diag(cos rπ
4
, sin rπ

4
) · F2 ·

h

1 −1

0 2 cos
rπ
2

i

DST-42(r) = diag(sin rπ
4
, cos rπ

4
) · F2 ·

h

1 1
0 2 cos

rπ
2

i

iDCT-32(r) = diag(1, 1
2 cos r

2
π)

· F2,

iDST-32(r) = diag( 1
2 sin rπ

2

, 1
sin rπ

) · F2

iDCT-42(r) =

»

1 1

0
1

2 cos
rπ
2

–

· F2 ·diag( 1

2 cos
rπ
4

, 1

2 sin
rπ
4

)

iDCT-42(r) =

» 1 −1

0
1

2 cos
rπ
2

–

· F2 ·diag( 1

2 sin
rπ
4

, 1

2 cos
rπ
4

)

TABLE VIII

BASE CASES FOR NORMAL AND SKEWT -GROUPDTTS OF SIZE3.

DCT-33 =
h

1 0 1
0 1 0
1 0 −1

i

»

1 0 1/2
1 0 −1

0
√

3/2 0

–

DST-33 =
h

0 1 1
1 0 0
0 1 −1

i

»

1 0 −1
1 0 2
0
√

3 0

–

DCT-43 =

»

0 1
√

3−1
1 0 0
0 1 −

√
3−1

– »

1 −1 −1
1 0 1
0 1 −1

–

DST-43 =

»

0 1
√

3+1
1 0 0
0 1 −

√
3+1

–

h

1 1 −1
1 0 1
0 1 1

i

DCT-33 = DCT-33

DST-33 =
h

1 0 1
0 1 0
1 0 −1

i

»

1/2 0 1
1 0 −1

0
√
3/2 0

–

DCT-43 =
h

1 −1 0
0 0 1
1 1 0

i

»

1 0 0
0 1 −1
0 −2 −1

–

diag(
q

3
2
,
q

1
8
,
q

1
2
)

h

1 0 1
−1 0 1
0 1 0

i

DST-43 =
h

1 −1 0
0 0 1
1 1 0

i h

1 0 0
0 1 −1
0 2 1

i

diag(
q

3
2
,
q

1
8
,
q

1
2
)

h

1 0 1
1 0 −1
0 1 0

i

DCT-33(r) =

»

1 1 1
1 −1 0
1 0 −1

–

“

I1 ⊕
»

cos( 1+r
3

π) cos( 1−2r
3

π)

cos( 1−r
3

π) cos( 1+2r
3

π)

–

”

DST-33(r) =

»

1 1 1
1 −1 0
1 0 −1

–

“

I1 ⊕ 2

»

cos( 1+r
3

π) cos( 1−2r
3

π)

cos( 1−r
3

π) cos( 1+2r
3

π)

–

” h

1 0 1
0 1 0
0 0 1

i

DCT-43(r) = by definition
DST-43(r) = by definition

DCT-33(r) = DCT-33(r)
DST-33(r) = diag(sin r

3
π, sin 2−r

3
π, sin 2+r

3
π)DST-33(r)

DCT-43(r) = by definition
DST-43(r) = by definition
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The remaining task is to derive the exact form of the
base change matrices, which are the only parts of the above
algorithms that depend on the DTT. We will do this in the
remainder of this section including a cost analysis for the most
important cases and sizes.

B. Details:T -Group andU -Basis

In this section, we compute the exact form ofB
(∗)
k,m for

∗ ∈ {C3, S3, C4, S4}. We deriveB
(C3)

k,m as an example in
detail. The others are derived analogously and only the result
will be presented.

Derivation of base change matrices.We considerDCT-3.
The matrixB

(∗)
k,m = B

(C3)

k,m in (44) performs a base change in
C[x]/Tn from a T -basis to the basisb′ in (43) with C = T .

To computeB
(C3)

k,m we have to express every elementTi in b
as a linear combination inb′. To do this, we first writeb as

b = (Tim+j | 0 ≤ i < m, 0 ≤ j < k).

We did not changeb, but only decomposed the index into
a radix-m representation. The double indices are ordered as
usual lexicographically:(i, j) = (0, 0), (0, 1) . . . . Similarly,
we write b′ as a special case of (43)

b′ = (TjUi(Tm) | 0 ≤ i < m, 0 ≤ j < k).

First, we consider the casej = 0. From Table XXIV, we know
that Ti = (Ui − Ui−2)/2 and thus

Tim = Ti(Tm) = 1
2Ui(Tm)− 1

2Ui−2(Tm) (52)

is the desired representation inb′.
Now, let j 6= 0, i.e., 1 ≤ j < m. We claim that

Tim+j = TjUi(Tm)− Tm−jUi−1(Tm). (53)

To prove it, we define the recursion

p0 = Tm−j = T−m+j,

p1 = Tj,

pi+1 = 2TmTi − Ti−1.

First, because of (104) (Appendix III), we see that

pi+1 = Tim+j ,

which is the left hand side of (53). On the other hand, using
(103) (Appendix II) withTm as variable,pi+1 is precisely the
right hand side of (53), as desired.

The equations (52) and (53) define the columns of the base
change matrix, which is thus given by

B
(C3)
k,m =

2
66666666666664

1 −
1
2

Im−1 − Jm−1

. . .

1
2

. . . −
1
2

. . . − Jm−1
1
2

Im−1 − Jm−1
1
2

Im−1

3
77777777777775

(54)

For example, all rows with an index that is a multiple ofm
are determined by (52) and thus contain the numbers1/2.

Using

Cim+j = CjUi(Tm)− Cj−mUi−1(Tm),

which generalizes (53), yields the base change matrices in the
other three cases:

B
(S3)

k,m =




Im Zm

Im Zm

. . .
. . .
Im Zm

Im




B
(C4)

k,m =




Im − Jm
Im − Jm

. . .
. . .
Im − Jm

Im




B
(S4)

k,m =




Im Jm
Im Jm

. . .
. . .
Im Jm

Im



.

Exact forms of algorithms. Table IX summarizes the exact
form of all algorithms based on (45). Each algorithm has a
polynomial counterpart obtained by replacing theDTTs by
DTTs.

C. Details:T -Group andT -Basis

In this section, we derive the exact base change matrices
for the algorithms in (47), (48), and (50).

Derivation of base change matrices.Again, we use the
DCT-3n as detailed example. The matrixB(∗)

k,m = B
(C3)
k,m in

(47) performs a base change inC[x]/Tn from aT -basis to the
basis

b′ = (Tim−j/2 + Tim+j/2 | 0 ≤ i < m, 0 ≤ j < k), (59)

a special case of (46). It is not straightforward to determine
B

(C3)
k,m . However, theinversebase change is easy to compute

due to the form ofb′: (59) already expresses the elements
of b′ as a linear combination of the elements ofb. Further
simplification in (59) is obtained for the special casesi = 0
(which determines the first block of lengthm), namely

Tim−j/2 + Tim+j/2 = T−j/2 + Tj/2 = Tj,

and for the special casej = 0 (which determines everymth
column), namely

Tim−j/2 + Tim+j/2 = Tim.

Hence we get

(
B

(C3)
k,m

)−1
=

1

2
·




2 · Im Zm

I′m Zm

. . .
. . .
I′m Zm

I′m




(60)
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TABLE IX

COOLEY-TUKEY TYPE ALGORITHMS FORDTTS IN THET -GROUP, BASED ON THE DECOMPOSITIONTkm = Tk(Tm) AND A U -BASIS CHOSEN IN THE

COARSE SIGNAL MODEL. THE POLYNOMIAL VERSIONS ARE OBTAINED BY REPLACING ALL TRANSFORMS BY THEIR POLYNOMIAL COUNTERPART.

TRANSPOSITION YIELDS ALGORITHMS FORDCT AND DST TYPE 2 AND 4.

DCT-3n = DCT-3n(1/2), DCT-3km(r) = Kn
m

`

M

0≤i<k

DCT-3m(ri)
´

DST-3k(r)⊗ Im)B
(C3)
k,m (55)

DST-3n = DST-3n(1/2), DST-3km(r) = Kn
m

`

M

0≤i<k

DST-3m(ri)
´

(DST-3k(r)⊗ Im)B
(S3)
k,m (56)

DCT-4n = DCT-4n(1/2), DCT-4km(r) = Kn
m

`

M

0≤i<k

DCT-4m(ri)
´

DST-3k(r)⊗ Im)B
(C4)
k,m (57)

DST-4n = DST-4n(1/2), DST-4km(r) = Kn
m

`

M

0≤i<k

DST-4m(ri)
´

(DST-3k(r)⊗ Im)B
(S4)
k,m (58)

with

Zm =




0
0 1

. . . . . .

0 1


 , I′m = 2⊕ Im−1 .

All the multiplications in (60) can be pulled out to the right
and we get

(
B

(C3)
k,m

)−1
=

(
C

(C3)
k,m

)−1(
D

(C3)
k,m

)−1

with

(
C

(C3)
k,m

)−1
=




Im Zm

Im Zm

. . .
. . .
Im Zm

Im




(61)

and the diagonal matrix
(
D

(C3)
k,m

)−1
= Im ⊕(Ik−1 ⊗ diag(1, 1/2, . . . , 1/2)).

To determineB(C3)
n,k , we first analyze the block structure.

Investigation shows that (61) consists ofk blocks of size 1
at positionsjm, 0 ≤ j < k, and m − 1 blocks of sizek
corresponding to the index sets

{0m+ i, 2m± i, 4m± i, . . . (k − 1)m± i} (k odd),
{0m+ i, 2m± i, 4m± i, . . . km− i} (k even),

for 0 < i < m. These index sets (and thus the corresponding
blocks) are obtained by starting at entry(i, i), 0 < i < m, of
(61) and collecting non-zero entries in a zigzag pattern going
alternately to the right and down. Each of thesem− 1 blocks
has the form

Sk =




1 1
0 1 1

· ·
1 1

1



. (62)

Using the block structure, we can now writeC−1
n,k as

(
C

(C3)
k,m

)−1
= (Ik ⊕Sk ⊕ . . .⊕ Sk)

Qn,k ,

= (Ik ⊕(Im−1 ⊗Sk))
Qn,k ,

with a suitable permutationQn,k (the precise form is not of
importance here). Inversion yields

C
(C3)
n,k = (Ik ⊕(Im−1⊗S−1

k ))Qn,k . (63)

Multiplication with the inverse ofSk, i.e., (y0, . . . , yn−1)
T =

S−1
k (x0, . . . , xn−1)

T can be done with thek − 1 recursive
subtractions

yn−1 = xn−1, yn−2 = xn−2 − yn−1, . . . , y0 = x0 − y1,

i.e., the critical path ofS−1
k , and thus the one ofC(C3)

n,k has
lengthk − 1. Hence,k should be small to yield an efficient
algorithm. For example, fork = 2,

B
(C3)
2,m = (Im ⊕ diag(1, 1/2, . . . , 1/2))−1

[
Im Zm

Im

]−1

= (Im ⊕ diag(1, 2, . . . , 2))

[
Im −Zm

Im

]
. (64)

On the other hand,C−1
n,k in (61) has a very short critical

path of length 1. This explains the motivation to invert (47)
in Section VII-A to obtain (50). Doing so for theDCT-3
considered here, it turns out that all scaling factors cancel out,
and we obtain the beautifully simple form

iDCT-3n(r) = (C
(C3)
n,k )−1(iDCT-3k(r) ⊗ Im)

( ⊕

0≤i<k

iDCT-3m(ri)
)
Mn

k , (65)

where

Mn
k = (Kn

m)−1 = Ln
k (Ik ⊕ Jk ⊕ Ik ⊕ Jk ⊕ . . . ).

Equation (65) gives a class of algorithms forDCT-2n =
iDCT-3n(1/2), and, by transposition, we obtain again an
algorithm forDCT-3n.

The base change matrices for the other threeT -group DTTs
are obtained analogously. We only give the result.
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`
C

(S3)
k,m

´−1
=

2
66666666666664

Im−1 − Jm−1
1
2

−
1
2

Im−1 − Jm−1

. . .

1
2

. . . −
1
2

. . . − Jm−1
1
2

Im−1

1

3
77777777777775

`
C

(C4)
k,m

´−1
=B

(S4)
k,m`

C
(S4)
k,m

´−1
=B

(C4)
k,m

(66)

and

B
(S3)
2,m =

[
Im Zm

2 Im

]

B
(C4)
2,m =

[
Im − Jm

2 Im

]

B
(S4)
2,m =

[
Im Jm

2 Im

]
(67)

Exact forms of algorithms. Tables X and XI show the
final algorithms, which are special cases of (48) and (50),
respectively.

Replacing all transforms by their polynomial counterparts
gives the corresponding algorithms for the polynomial DTTs.
Further, each algorithm in Tables X and XI has a correspond-
ing twiddle version as shown in (51).

Special cases.We briefly discuss the special case (68) for
k = 2. (64) incurs multiplications by 2, which can be fused
with the multiplications incurred by the adjacentDCT-32(r).
Namely, usingDCT-32(r) = F2 · diag(1, cos r

2π) (Table VII),
we can manipulate (68) to take the form

DCT-3n(r) = Kn
m(DCT-3m( r2 )⊕DCT-3m(2−r

2 ))

(F2 ⊗ Im)E2,m, (76)

where

E2,m =

[
Im −Zm

cos r
2π(I1 ⊕2 Im−1).

]

We also briefly consider the casek = 3 in (68). In this case,

B
(C3)
3,m = (Im ⊕(I2 ⊗ diag(1, 2, . . . , 2)))



Im −Zm I′m

Im −Zm

Im


 ,

where I′m = diag(0, 1, . . . , 1). Note that this matrix, as
mentioned before, requires only2(m − 1) additions, since
m− 1 additions are duplicated (row 1, columns 2/3, and row
2, columns 2/3). However, the critical path ofB

(C3)
3,m has then

length 2. Again, the multiplications can be fused with the
adjacentDCT-33(r). We omit the details.

Similarly, the multiplications by 2 in (67) can be fused in
(69)–(71).

D. Alternative Decomposition

In this section, we discuss briefly algorithms based on the
decomposition

Tkm+m/2 = Tm/2 · Vk(Tm).

The algorithms are for DTTs in theT -group and it turns
out that theU -basis is the best choice for the coarse module
C[x]/Vk(x). Thus, a simultaneous derivation yields, forn =
km+m/2,

DTTn = Q
(∗)
k,m(DTTm/2 ⊕

(⊕
DTTm(r)

)

(DST-7k ⊗ Im))B
(∗)
k,m. (77)

Note thatDST-7 is the polynomial transform forC[x]/Vk(x)
with U -basis (Table III).

Next, we determine the best choice of sizen. Inspecting (77)
shows that, ideally,m = 2s is a 2-power andk = (3t−1)/2 is
the natural size for theDST-7 (explained later in Section IX).
Thus n = 3t2s−1, which is a size that is well handled by
the algorithms in Section VII. For this reason, we omit the
exact forms of the algorithms and only note that the base
change matricesB(∗)

k,m have structure similar to the structures
in Sections IX and X.

DCT, type 3 and 2, size 5.Above we established that
ideally k = (3t − 1)/2, the ideal size for aDST-7. However,
if k is small enough, namelyk = 2, the algorithm (77) is
still useful. In particular, ifm = 2, then it yields algorithms
for sizesn = 5. We useDCT-3 as an example. It turns out
(by trial and error) that in this case aV -basis is slightly
superior in C[x]/V2, and, after a minor manipulation, we
get the algorithm in Table XII. The cost can be read off as
(12, 6, 1). Transposition yields an algorithm forDCT-23 with
identical cost, which is only slightly worse than the(13, 5, 0)
algorithm in [53].

E. Analysis

In this section we analyze the algorithms in Tables IX, X,
and XI with respect to arithmetic cost and other characteristics.
We also review special cases that have been known in the
literature.

Cost analysis.Each of the algorithms in Tables IX, X, and
XI provides reasonable algorithms with regular structure.The
cost difference between any two of theT -group algorithms is
O(n) wheren is the transform size. We determine the cost in
greater detail for the most relevant cases only.

For a 2-powern, the costs in each case are independent of
the chosen recursive split strategy. The best achieved costs are
recorded in Table XIII. Note that the best costs for the skew
(and inverse skew) and non-skew versions are equal since they
have the same recursionsand the base cases have equal cost
(Table VII). This is different for other sizes; in general the
skew DTTs are more expensive (see also Appendix III). Also
note that the polynomial DTTs save multiplications (except
for theDCT-3 = DCT-3).

For a 3-powern, the skew DTTs are more expensive. Also,
the stated costs in Table XIII in this case are not the best
possible with the algorithms in this paper. For example, we
can slightly improve aDCT-3 of 3-power sizen using the
transpose of Table VI(b) to get a cost of

(83n log3(n)− 2n+ 2, 43n log3(n)− 7
4n+ 1

2 log3(n) +
7
4 ,

1
4n+ 1

2 log3(n)− 1
4 ) = 4n log3(n)− 7

2n+ log3(n) +
7
2
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TABLE X

COOLEY-TUKEY TYPE ALGORITHMS FORDTTS IN THET -GROUP, BASED ON THE DECOMPOSITIONTkm = Tk(Tm) AND A T -BASIS CHOSEN IN THE

COARSE SIGNAL MODEL. THE POLYNOMIAL VERSIONS ARE OBTAINED BY REPLACING ALL TRANSFORMS BY THEIR POLYNOMIAL COUNTERPART.

TRANSPOSITION YIELDS ALGORITHMS FORDCT AND DST TYPE 2 AND 4.

DCT-3n = DCT-3n(1/2), DCT-3km(r) = Kn
m

`

M

0≤i<k

DCT-3m(ri)
´

DCT-3k(r) ⊗ Im)B
(C3)
k,m (68)

DST-3n = DST-3n(1/2), DST-3km(r) = Kn
m

`

M

0≤i<k

DST-3m(ri)
´

(DCT3k(r) ⊗ Im)B
(S3)
k,m (69)

DCT-4n = DCT-4n(1/2), DCT-4km(r) = Kn
m

`

M

0≤i<k

DCT-4m(ri)
´

DCT3k(r) ⊗ Im)B
(C4)
k,m (70)

DST-4n = DST-4n(1/2), DST-4km(r) = Kn
m

`

M

0≤i<k

DST-4m(ri)
´

(DCT3k(r) ⊗ Im)B
(S4)
k,m (71)

TABLE XI

MANIPULATED INVERSE OFTABLE X: COOLEY-TUKEY TYPE ALGORITHMS FOR THE TRANSPOSES OF THEDTTS IN THET -GROUP, BASED ON THE

DECOMPOSITIONTkm = Tk(Tm) AND A T -BASIS CHOSEN IN THE COARSE SIGNAL MODEL. TRANSPOSITION YIELDS ALGORITHMS FOR THEDTTS IN

THE T -GROUP.

DCT-2n = iDCT-3n(1/2), iDCT-3km(r) = (C
(C3)
k,m )−1(iDCT-3k(r) ⊗ Im)

“

M

0≤i<k

iDCT-3m(ri)
”

Mn
k (72)

DST-2n = iDST-3n(1/2), iDST-3km(r) = (C
(S3)
k,m )−1(iDST-3k(r)⊗ Im)

“

M

0≤i<k

iDCT-3m(ri)
”

Mn
k (73)

DCT-4n = iDCT-4n(1/2), iDCT-4km(r) = (C
(C4)
k,m )−1(iDCT-4k(r) ⊗ Im)

“

M

0≤i<k

iDCT-3m(ri)
”

Mn
k (74)

DST-4n = iDST-4n(1/2), iDST-4km(r) = (C
(S4)
k,m )−1(iDST-4k(r)⊗ Im)

“

M

0≤i<k

iDCT-3m(ri)
”

Mn
k (75)

TABLE XII

ALGORITHM FORDCT-35 WITH COST (12, 6, 1). TRANSPOSITION YIELDS ADCT-25 ALGORITHM OF EQUAL COST.

2

6

6

6

4

0 1 0 0 0
0 0 0 1 0
1 0 0 0 0
0 0 0 0 1
0 0 1 0 0

3

7

7

7

5

„

I1 ⊕
`

F2 diag(1, cos
π
5
)⊕ F2 diag(1, cos

3π
5
)
´

»

I2 diag(cos π
5
, 2 cos π

5
)

I2 diag(cos 3π
5
, 2 cos 3π

5
)

–«

2

6

6

6

4

1 0 −1 0 1
1 0 1/2 0 0
0 1 0 0 0
0 0 1 0 1
0 0 0 1 0

3

7

7

7

5

while sacrificing some regularity in structure. For example,
for n = 9, Table XIII yields (32, 12, 4) = 48 and the
above(32, 11, 3) = 46. The same costs apply to aDCT-2
by transposing the algorithms. Reference [53] provides an
(34, 8, 2) = 44 algorithm (proven optimal w.r.t. non-rational
multiplications), with no obvious structure. Using (106),(105),
(106), and (107), this also yields better algorithms for skew
and non-skewDCT-4 andDST-4.

For an arbitraryp-powern, we can computeT -group DTTs
using the twiddle versions of theT -group algorithms (e.g.,
(51)). For example, aDCT-2pt computed with (72) requires,
independently of the split strategynp logp(n) DCT-2p’s, and

2(1− 1

p
)n logp(n)− 2n+ 2

additions and multiplications, respectively. For a given
DCT-2p kernel (e.g., the transpose of Table XII or [53] for
p = 5, 7), it is now easy to compute a cost. The otherT -group
DTTs are analogous.

Note that for a 2-power sizen, the algorithms (56), (69)
and transposed (73), forDST-3 have anO(n) higher cost

than a translation by duality (105) (Appendix III). For 3-power
sizesn, all algorithms, except those forDCT-3n in Tables IX,
X, and XI incur an 1

3n log3(n) higher cost compared to
translating these DTTs into aDCT-3 usingO(n) operations
(see Appendix III).

Further comments.

• The algorithms in Table X have the appealing feature that
all multiplications occur in parallel with additions on the
same operands. Further, they are a good choice if the
output is to be pruned, i.e., only, say, the first half of
the output matters. This was used in [54] forDCT-2.
However, for largek, the critical path is potentially
prohibitive.

• The cost of theT -group algorithms is independent of the
chosen split.

• The algorithms in Table XI involve constants that are
inverse cosines (from the base cases of theiDTTs in
Table VII). This may cause numerical instability.

• Transposition yields algorithms for the transposed DTTs
with equal cost. The reason is that all occurring matrices
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have this property.
• If a non-skew DTT is decomposed using any of theT -

group algorithms, then (the middle) one of the occurring
skew DTTs in the direct sum hasr = 1/2, i.e., is non-
skew.

• Any odd-size DCT of type 2 or 3 can be translated into
an RDFT without incurring operations [53].

• Again we note that the algorithms in this section are
not all available ones. In particular, there are orthogonal
algorithms, which are due to other algebraic principles
[42].

• All the algorithms have, for a 2-power sizen, a total cost
of 2n log2(n) +O(n). This can be improved by roughly
5% with the recent paper [55] to179 n log2(n) +O(n), at
the expense of some regularity.

Literature. Algorithm (68) for 2-power size andk = 2
was derived in [56] and in [33]; the latter also considered
3-powers andk = 3. For arbitraryp-powers (p prime) and
k = p, the derivation is in [34]. The above references also used
Chebyshev polynomials in their derivation, but they do not use
the algebraic framework, and they present the algorithms in
an iterative form only, which avoids the definition of skew
DTTs. For software implementations, it is crucial to have a
recursive form as presented here. Further, the derivation for
p > 2 produced suboptimal cost compared to Table XIII.

Special cases of (68) with the reverse split, i.e.,n = pt,
k = pt−1, are not practical because of the long critical
path for computingCn,k. Their discovery, however, is more
straightforward, since they do not require large skew DCTs,
which are unexpected without knowing the underlying algebra.
The casep = 2 was reported in [57],p = 3, 6 in [58], the case
of a generalp in [59] with examplesp = 3, 5, 7, 9.

Algorithms (69), its transpose, and the transpose of (71)
were found, also for 2-powers andk = 2 in [60]. The only
special case of (70) we found in the literature was derived
implicitly in [56], where theDCT-4 is called “odd DCT”
and decomposed as part of a fastDCT-2 algorithm that first
recurses using Table VI(a).

Architecture regular versions (i.e., the equivalent to the
Pease FFT [61]) of the algorithms in Table X, again fork = 2,
can be found in [62], [63].

The only case of (72) we found in the literature isn = 2t,
m = 2, in which case the skew DCTs become trivial [64].

All other algorithms for theT -group DTTs are to our best
knowledge novel.

VIII. U -GROUPDTT ALGORITHMS

We now derive Cooley-Tukey type algorithms for all four
DTTs in theU -group, based on the decomposition property
(Lemma 3, ii)):

Ukm−1 = Uk−1(Tm)Um−1. (78)

SinceU does not decompose directly, the derivation involves
a first additional step to factorUkm−1 into Uk−1(Tm) and
Um−1 using Theorem 1. In the special case ofk = 2,
the decomposition in (78) becomes trivial and (78) becomes
Lemma 2, ii). Thus, the algorithms in Table VI(a) become a
special case of the algorithms derived below.

The DTTs in the U -group have associated modules
C[x]/p(x) with mutually distinct polynomialsp, namely for
DCT-1,DST-1,DCT-2,DST-2, respectively (see Table III)

p(x) = (x2−1)Un−2, Un, (x−1)Un−1, (x+1)Un−1. (79)

Thus, the decompositions are slightly different and cannotbe
stated in a precise unified way as for theT -group in (VII).
From (79), it is clear that in order to apply (78) forn = km,
we have to considerDCT-2 andDST-2 of sizen, butDCT-1
of size n + 1 andDST-1 of sizen − 1. This motivates the
following definition, which we will use in the derivation.

n′ =





n+ 1, for DCT-1n′ ;

n− 1, for DST-1n′ ;

n, for DCT-2n′ ,DST-2n′ .

A. Simultaneous Derivation

Let DTTn′ be one of the DTTs in theU -group with module
M = C[x]/pn′ andC-basis, whereC is one ofT, U, V,W .
We assumen = km. In the first step, we decomposeM using
the factorization (78) and Theorem 1 as

C[x]/pn′ → C[x]/pm′ ⊕ C[x]/Uk−1(Tm). (80)

In the first summand, we choose aC-basis (i.e., equal to the
one inM); in the second summand, we choose the basisb′

(see (25)) given by

b′ = (C0U0(Tm), . . . , Cm−1U0(Tm)

. . .

C0Uk−2(Tm), . . . , Cm−1Uk−2(Tm)),

which is required for the further decomposition of
C[x]/Uk−1(Tm) using Theorem 2. This implies the choice
of a U -basis in the coarse moduleC[x]/Uk−1 in all four
cases. Any other choice of basis would lead to a transform
that is not a DTT (see Table III: only one DTT hasp =
U , namelyDST-1). Also, it turns out that the base change
matrices become more complicated for any other choice, and,
in contrast to Section VII, the inversion of algorithms to
improve their structure does not work this time.

Based on (80), we get the decomposition

DTTn′ = P
(∗)
k,m(A(k−1)m ⊕DTTm′)B

(∗)
k,m, (81)

whereA(k−1)m is a Fourier transform forC[x]/Uk−1(Tm)
with basisb′, and(·)(∗) signifies dependency on the DTT; the
exact form of these matrices will be provided below. Note
that we can exchange the order of the summands in (81), if
we properly permute the columns and rows, respectively, of
Pk,m andBk,m. In two of the four cases, we will do this to
obtain permutationsP (∗)

k,m of a simpler structure.
To apply Theorem 2 for further decomposition ofA(k−1)m,

we need the zeros ofUk−1, which are given bycos iπ
k , 0 <

i < k (TableXXIII in Appendix II), and thus

C[x]/Uk−1(Tm) →
⊕

0<i<k

C[x]/(Tm − cos iπ
k ) (82)
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TABLE XIII

ARITHMETIC COSTS ACHIEVABLE FOR THEDTTS IN THET -GROUP WITH THE ALGORITHMS IN THIS PAPER FOR2-POWER AND3-POWER SIZEn. ALL

THE 3-POWER SIZE COSTS CAN BE SLIGHTLY IMPROVED UPON(SEESECTION VII-E).

2-
po

w
er

n
3-

po
w

er
n

Transform Cost (adds, mults, 2-power mults) and total Achieved by

DCT-3n ( 3
2
n log2(n)− n+ 1, 1

2
n log2(n), 0) (68) (see also (76)), (72)T ,Table VI(a)T

total: 2n log2(n)− n+ 1

DST-3n same asDCT-3 duality (105),Table VI(a)T

DCT-4n ( 3
2
n log2(n),

1
2
n log2(n) + n, 0) (57), (70), (74), (106), and their transposes

total: 2n log2(n) + n poly: −n

DST-4n same asDCT-4 (58), (71), (75), duality (105)

DCT-3n(r) same asDCT-3 (68)
DST-3n(r) ( 3

2
n log2(n)− n+ 1, 1

2
n log2(n) +

1
2
n, 0) (56)

total: 2n log2(n)− 1
2
n+ 1 poly: − 1

2
n

DCT-4n(r) same asDCT-4 (57), (70)
DST-4n(r) same asDCT-4 (58), (71)

DCT-3n ( 8
3
n log3(n)− 2n+ 2, 4

3
n log3(n)− 3

2
n, 1

2
n− 1

2
) (68), (72)T , see also cheaper version

total: 4n log3(n)− 3n+ 3 in Section VII-E
DST-3n same asDCT-3 duality (105)
DCT-4n ( 8

3
n log3(n)− n+ 1, 4

3
n log3(n)− 1

2
n, 1

2
n− 1

2
) (106)

total: 4n log3(n)− n+ 2

DST-4n same asDCT-4 duality (105)

DCT-3n(r) ( 8
3
n log3(n)− n+ 1, 4

3
n log3(n), 0) (68)

total: 4n log3(n)− n+ 1

DST-3n(r) ( 8
3
n log3(n)− n+ 1, 4

3
n log3(n) +

1
2
n+ 1

2
, 1

2
n− 1

2
) (107)

total: 4n log3(n) + 1

DCT-4n(r) ( 8
3
n log3(n),

4
3
n log3(n) +

1
2
n− 1

2
, 1

2
n− 1

2
) (112)

total: 4n log3(n) + n

DST-4n(r) same asDCT-4 equivalent to (112)

is decomposed byDST-1k−1 (note that Theorem 2 requires
us to choose a polynomial transform). The smaller modules in
(82) are decomposed, respectively, by skew DTTs as

C[x]/(Tm − cos iπ
k ) → ⊕

0≤j<m(x− cos ri,jπ), (83)

where theri,j and their order are computed by Lemma 1.
The type of the skew DTT is determined by theC-basis. For
example, forDTT = DCT-1, C = T and thus (83) is de-
composed by aDCT-3 (see Table III). The final factorization
of A(k−1)m is given by

A(k−1)m = Q
(∗)
k,m

( ⊕

0<i<k

DTT′
m( i

k )
)
(DST-1k−1 ⊗ Im).

(84)
In summary, we obtain the following algorithm for aDTT′

n

in theU -group:

DTTn′ = P
(∗)
k,m(DTTm′ ⊕A(k−1)m)B

(∗)
k,m, (85)

A(k−1)m =
( ⊕

0<i<k

DTT′
m( i

k )
)
(DST-1k−1 ⊗ Im),

where we fused the permutationsP (∗)
k,m in (81) andQ(∗)

k,m in

(84) to a permutationP (∗)
k,m. Equation 85 remains valid when

the occurring DTTs are replaced by their polynomial versions
to yield

DTTn′ = P
(∗)
k,m(DTTm′ ⊕A(k−1)m)B

(∗)
k,m, (86)

A(k−1)m =
( ⊕

0<i<k

DTT
′
m( i

k )
)
(DST-1k−1 ⊗ Im),

In the following four sections, we will give the special
structure of the matricesP (∗)

k,m and B
(∗)
k,m in all four cases.

They are shown in Table XIV. We will analyze the arithmetic
cost for 2-power sizesn = 2t. In all cases it turns out that,
in contrast to theT -group algorithms derived above, the cost
does depend on the chosen split, with the minimum obtained
for the casek = 2, which is equivalent to Table VI(a).
Further, the structure of the algorithm (86) shows that the
polynomial version of the DTT requires a smaller number of
multiplications than the DTT if this holds for the base case
n = 2, which is easy to check. The result is that only DCT and
DST of type 2 yield savings. For the occurring skew DTTs,
we use the algorithms and the arithmetic cost provided in the
previous sections.

B. Details

We provide the exact form of the base change matrices
B

(∗)
k,m and permutationsP (∗)

k,m using the mnemonic names
∗ ∈ {C1, S1, C2, S2} to denote the 4 DTTs in theU -group.

B
(C1)
k,m = C

(C1)
k,m ·D(C1)

k,m ,
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TABLE XIV

COOLEY-TUKEY TYPE ALGORITHMS FORDTTS IN THEU -GROUP, BASED ON THE DECOMPOSITIONUkm−1 = Um−1 · Uk−1(Tm). THE POLYNOMIAL

VERSIONS ARE OBTAINED BY REPLACING ALL TRANSFORMS BY THEIR POLYNOMIAL COUNTERPART.

DCT-1km+1 = P
(C1)
k,m

„

DCT-1m+1 ⊕
`

M

0<i<k

DCT-3m( i
k
)
´

(DST-1k−1 ⊗ Im)

«

B
(C1)
k,m (87)

DST-1km−1 = P
(S1)
k,m

„

`

M

0<i<k

DST-3m( i
k
)
´

(DST-1k−1 ⊗ Im)⊕DST-1m−1

«

B
(S1)
k,m (88)

DCT-2km = P
(C2)
k,m

„

DCT-2m ⊕
`

M

0<i<k

DCT-4m( i
k
)
´

(DST-1k−1 ⊗ Im)

«

B
(C2)
k,m (89)

DST-2km = P
(S2)
k,m

„

`

M

0<i<k

DST-4m( i
k
)
´

(DST-1k−1 ⊗ Im)⊕DST-2m

«

B
(S2)
k,m (90)

whereC(C1)
k,m is given by

2
6666666666666666664

1 1
Im−1 Jm−1 Im−1 . .

. .. .
1 1

1 −1
Im−1 − Jm−1

1 −1

Im−1 − Jm−1

. . .

1
. . . −1

. . . − Jm−1

1 −2
Im−1 − Jm−1

3
7777777777777777775

,

andD(C1)
k,m = Im+1⊕(Ik−1 ⊗(1/2⊕ Im−1)).

Note that the first block row ofB(C1)
k,m represents the

signal extension of the signal model forDCT-1m+1 (namely
Tk mod Tm+1, k > m+1, see [2]) . Similar statements hold
for the matrices below.

B
(S1)
k,m =

2
6666666666664

Im−1 Jm−1

1
Im−1 Jm−1

1
. . .

. . .
Im−1 Jm−1

1

Im−1
0
···
0

− Jm−1
0
···
0

Im−1 · · ·

3
7777777777775

B
(C2)
k,m =

2
66664

Im Jm Im Jm · · ·

Im− Jm
Im− Jm

. . .
. . .
Im− Jm

3
77775

B
(S2)
k,m =

2
66664

Im Jm
Im Jm

. . .
. . .
Im Jm

Im− Jm Im− Jm · · ·

3
77775

P
(C1)
k,m =I1 ⊕((Jk−1 ⊕ I1)⊕ Ik ⊕(Jk−1 ⊕ I1)⊕ Ik . . . )bLn

k−1

P
(S1)
k,m =(Ik−1 ⊕(I1 ⊕ Jk−1)⊕ Ik ⊕(I1 ⊕ Jk−1)⊕ . . . )bLn−1

m

P
(C2)
k,m =(Ik ⊕(I1 ⊕ Jk−1)⊕ Ik ⊕(I1 ⊕ Jk−1)⊕ . . . ) Ln

m

TABLE XV

BASE CASES FORU -GROUPDTTS.

DCT-12 = F2 DCT-12 = DCT-12
DST-11 = I1 DST-11 = I1
DCT-22 = diag(1, 1√

2
) · F2 DCT-22 = F2

DST-22 = diag( 1√
2
, 1) · F2 DST-22 = F2

P
(S2)
k,m =(Ik ⊕(Jk−1 ⊕ I1)⊕ Ik ⊕(Jk−1 ⊕ I1)⊕ . . . ) Ln

m .

Base cases.For 2-power size, the recursions in Table XIV
need as base cases Table XV and the skew DTTs in Table VII.

Special cases.The recursions in Table XIV take the simplest
form for k = 2, in which case they coincide with Table VI(a).

C. Alternative decomposition

We do not discuss algorithms based on Lemma 3, vi).
Similar statements as in Section VII-D hold.

D. Analysis

We analyze the algorithms in Table XIV.
Arithmetic cost. We only consider a 2-power sizen. In

contrast to theT -group algorithms in Section VII, the cost
of the algorithms does depend on the split. The minimum is
obtained fork = 2, in which case the algorithms coincide with
Table VI(a). The cost in these cases is shown in Table XVI.

Literature. Except for the casek = 2 (see Section V-B),
we did not find any of these algorithms in the literature.

IX. V -GROUPDTT ALGORITHMS

In this section, we present algorithms for all DTTs in the
V -group, i.e., the DCT and DST of type 7 and 8, based on
Lemma 3, iii):

V(k−1)/2+km = Vm · V(k−1)/2(T2m+1).

Since the derivation is analogous to the previous sections,we
will only state the results without a detailed derivation.
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TABLE XVI

ARITHMETIC COSTS FORDTTS IN THEU -GROUP ACHIEVABLE WITH THE RECURSIONS INTABLE XIV. T HE SIZE OFDCT-1 IS n = 2k + 1, THE SIZE OF

DST-1 IS n = 2k − 1, AND THE SIZES OFDCT-2 AND DST-2 IS n = 2k

Transform Cost (adds, mults, 2-power mults) and total Achieved by

DCT-1n ( 3
2
n log2(n− 1)− 2n− 1

2
log2(n− 1) + 6, Table VI(a) = (87) for k = 2

1
2
n log2(n− 1) − n− 1

2
log2(n− 1) + 2, 0)

total: 2n log2(n− 1)− 3n− log2(n− 1) + 8

DST-1n ( 3
2
n log2(n+ 1)− 2n+ 5

2
log2(n+ 1) + 2, Table VI(a) = (88) for k = 2

1
2
n log2(n+ 1) − n+ 1

2
log2(n+ 1), 0)

total: 2n log2(n+ 1)− 3n+ 3 log2(n+ 1) + 2

DCT-2n ( 3
2
n log2(n)− n+ 1, 1

2
n log2(n), 0) Table VI(a) = (89) for k = 2,

total: 2n log2(n) − n+ 1, 0) poly: −(n− 1) (68)T (see also (76)T ), (72)
DST-2n same asDCT-2 Table VI(a) = (90) for k = 2, duality (105)T

A. Simultaneous Derivation

For the DTTs in theV -group (see Table III) with associated
modulesC[x]/p, the polynomialp takes (up to a constant) two
different forms:(x+1)Vn−1 for DCT-7n andDST-8n andVn

for DST-7n andDCT-8n. To derive all four decompositions
simultaneously, we thus define

n′ =

{
n+ 1, for DCT-7n′ ,DST-8n′ ;

n, for DST-7n′ ,DCT-8n′ .

Now we considerDTTn′ in theV -group with aC-basis,C ∈
{T, U, V,W} and assume thatn = km+ (k− 1)/2 = (2m+
1)(k− 1)/2+m. Necessarily,k is odd. Using Theorem 1, we
first decompose

C[x]/pn′ = C[x]/V k−1

2

(T2m+1)⊕ C[x]/pm′ . (91)

In the second summand, we choose aC-basis. In the first
summand, we choose

b′ = (C0V0(Tm), . . . , Cm−1V0(Tm)

. . .

C0V(k−1)/2−1(Tm), . . . , Cm−1V(k−1)/2−1(Tm)),

as required by Theorem 2. This implies aV -basis in the coarse
moduleC[x]/V(k−1)/2 and aC-basis in the skew modules.

We denote the base change matrix for (91) withB
(∗)
k,m, where

∗ ∈ {C7, S7, C8, S8}. The exact form will be shown below.
Next we decompose the second summand in (91) by

DTTm′ , and the first summand using Theorem 2. The oc-
curring skew DTTs have the sameC-basis as the given
DTTn′ , for exampleDCT-7 has aT -basis and hence the
associated skew DTT isDCT-3. We denote that skew DTT
with DTT′. The subalgebraC[x]/V(k−1)/2 with V -basis is,
in all four cases, decomposed by the polynomial transform
DST-7(k−1)/2. The final result is the decomposition

DTTn′ = P
(∗)
k,m(A(2m+1)(k−1)/2 ⊕DTTm′)B

(∗)
k,m, (92)

with

A(2m+1)(k−1)/2 =( ⊕

0≤i<(k−1)/2

DTT′
2m+1(

2i+1
k )

)
(DST-7(k−1)/2 ⊗ I2m+1).

We obtain the corresponding algorithm for the polynomial
DTTn′ by replacing all DTTs by their polynomial counter-
parts. Transposition of (92) yields a different set of algorithms.

B. Details

In this section, we record the exact form of all four classes
of decompositions based on (92). We need the following base
change matrices.

ForDCT-7n andDST-8n we requiren = km+(k+1)/2.
Then,

B
(C7)
k,m = D

(C7)
k,m · C(C7)

k,m ,

with

C
(C7)
k,m =

2
666666666666666664

2 −1
I2m − J2m

1 −1
I2m − J2m

. . .
. . .

. . .
1 −1

I2m − J2m
1 1

I2m
Im

− Jm

1 −1 1

Im − Jm − Im Jm · · ·

3
777777777777777775

and the diagonal matrix

D
(C7)
k,m = (I(k−1)/2 ⊗(1/2⊕ I2m))⊕ Im+1,

B
(S8)
k,m =

2
6666666664

I2m+1 J2m+1

I2m+1 J2m+1

. . .
. . .

I2m+1 J2m+1

I2m+1
Im

2
Jm

Im Jm

1

− Im − Jm

−1

. . . . .
.

3
7777777775

.

ForDST-7 andDCT-8, we requiren = km+(k−1)/2. Then
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TABLE XVIII

BASE CASES FORV -GROUPDTTS.

DCT-72 =
h

1 1/2
1 −1

i

DCT-72 = DCT-72

DST-71 =
√

3
2

I1 DST-71 = I1

DCT-81 =
√

3
2

I1 DCT-81 = I2

DST-82 =
h

1/2 1
1 −1

i

DCT-82 =
ˆ

1 2
1 −1

˜

B
(S7)
k,m =

2
666666666666666664

I2m J2m
1 1

I2m J2m
. . .

. . .
1 1

I2m J2m
1

I2m
Im

Jm

1

Im Jm
0
···
0
− Im − Jm

0
···
0

Im Jm
0
···
0 . . . . .

.

3
777777777777777775

,

B
(C8)
k,m =

2
6666666664

I2m+1 − J2m+1

I2m+1 − J2m+1

. . .
. . .

I2m+1 − J2m+1

I2m+1
Im

0 ··· 0

− Jm

Im
0
···
0

−Jm − Im
0
···
0

Jm Im
0
···
0

−Jm

. . . . .
.

3
7777777775

.

Correspondingly, we need two closely related types of
permutations. Letk,m be fixed. For a giveni to be mapped,
we decomposei into the radix-k representationi = i1 + i2k,
with i1 = i mod k and i2 = i div k. ThenP (C7)

k,m = P
(S8)
k,m is

a permutation on the set{0, . . . , km+ (k− 1)/2} defined by

P
(C7)
k,m = P

(S8)
k,m = i1 + i2k 7→





i1(2m+ 1) + 2i2, for 0 ≤ i1 < k−1
2 ;

i1(2m+ 1) + i2, for i1 = k−1
2 ;

(k − 1− i1)(2m+ 1) + 2i2 + 1, for k−1
2 < i1 < k.

This permutation leaves the last point fixed. By omitting
this point, i.e., by restricting the permutation to the set
{0, . . . , km+(k−1)/2−1}, we get the permutationP (S7)

k,m =

P
(C8)
k,m .
Base cases.The base cases for the DCTs and DSTs of type

7 and 8 are shown in Table XVIII. The sizes are motivated
below in the cost analysis.

Special cases.The recursions in Table XVII take the
simplest form fork = 3 (note thatk has to be odd), in which
case they coincide with the algorithms in Table VI(c).

C. Analysis

To analyze the arithmetic cost of the algorithms in Ta-
ble XVII, the first question is which sizes are best decom-
posable or “natural” for these DTTs. For example, for all
DTTs of type 1–4 the best decomposable size is2t, with the
exception ofDCT-1, which has2t + 1, andDST-1, which
has2t − 1. These sizes allow a complete decomposition into
2× 2 transforms.

For m = 1, the decompositions in Table XVII are trivial,
thus we obtain upon decomposition skew DTTs of odd size
larger than 1. Hence, the best outcome is that2m + 1 is a
3-power, to allow at least a decomposition of the occurring
skew DTTs into 3 × 3 transforms using Table X or IX.
Further, we want to be able to further decompose the occurring
DST-7(k−1)/2, which requires that(k − 1)/2 has again the
form km + (k − 1)/2 (with a differentk). Inspection shows
that these conditions are satisfied forn = (3t−1)/2. Namely,
for 0 < s < t

(3t − 1)/2 = 3s(3t−s − 1)/2 + (3s − 1)/2,

which matchesn = (2m+1)(k−1)/2+m for m = (3s−1)/2
andk = 3t−s. In summary, the best decomposable sizes are
thusn′ = n + 1 = (3t + 1)/2 for DCT-7 andDST-8, and
n′ = n = (3t−1)/2 for DST-7 andDCT-8. This also implies
that the base sizes are 2 and 1, respectively.

Using the arithmetic cost of the skew DTTs of 3-power
size in Table XIII, we get Table XIX. Note that the costs
for DCT-8,DST-8 are not achieved using Table VI(c) but
only by duality (105). The reason is that Table VI(c) yields
for these DTTs the same recurrence as forDCT-7 and
DST-7, respectively, but with more expensive skew base cases
(Table VIII).

Literature. We did not find any of the algorithms in
Table XVII in the literature.

X. W -GROUPDTT ALGORITHMS

We present algorithms for the DTTs in theW -group based
on the decomposition in Lemma 3, iv):

W(k−1)/2+km = Wm ·W(k−1)/2(T2m+1).

The derivation and discussion is very similar to Section IX,
so we will be brief.

A. Simultaneous derivation

We define for the DTTs in theW -group

n′ =

{
n+ 1, for DCT-5n′ ,DCT-6n′ ;

n, for DST-5n′ ,DST-6n′ .

The definition is motivated by the associated polynomialp in
C[x]/p, namelyp(x) = (x− 1)Wn−1 for DCT-5 andDCT-6
andWn for DST-5 andDST-6.

Now let DTTn′ be in theW -group withC-basis. Then the
first decomposition step yields

C[x]/pn′ = C[x]/W k−1

2

(T2m+1)⊕ C[x]/pm′ . (97)

In the second summand we choose aC-basis. In the first
summand we choose

b′ = (C0W0(Tm), . . . , Cm−1W0(Tm)

. . .

C0W(k−1)/2−1(Tm), . . . , Cm−1W(k−1)/2−1(Tm)),

as required by Theorem 2. This implies aW -basis in the coarse
moduleC[x]/W(k−1)/2 and aC-basis in the skew modules.
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TABLE XVII

COOLEY-TUKEY TYPE ALGORITHMS FORDTTS IN THEV -GROUP, BASED ON THE DECOMPOSITIONV(k−1)/2+km = Vm · V(k−1)/2(T2m+1); k IS

ODD.THE POLYNOMIAL VERSIONS ARE OBTAINED BY REPLACING ALL TRANSFORMS BY THEIR POLYNOMIAL COUNTERPART.

DCT-7km+(k+1)/2 = P
(C7)
k,m

„

`

M

0≤i< k−1

2

DCT-32m+1(
2i+1
k

)
´

(DST-7k−1
2

⊗ I2m+1)⊕DCT-7m+1

«

B
(C7)
k,m (93)

DST-7km+(k−1)/2 = P
(S7)
k,m

„

`

M

0≤i< k−1
2

DST-32m+1(
2i+1
k

)
´

(DST-7k−1

2

⊗ I2m+1) ⊕DST-7m

«

B
(S7)
k,m (94)

DCT-8km+(k−1)/2 = P
(C8)
k,m

„

`

M

0≤i< k−1
2

DCT-42m+1(
2i+1
k

)
´

(DST-7k−1
2

⊗ I2m+1)⊕DCT-8m

«

B
(C8)
k,m (95)

DST-8km+(k+1)/2 = P
(S8)
k,m

„

`

M

0≤i< k−1

2

DST-42m+1(
2i+1
k

)
´

(DST-7k−1
2

⊗ I2m+1) ⊕DST-8m+1

«

B
(S8)
k,m (96)

TABLE XIX

ARITHMETIC COSTS FORDTTS IN THEV -GROUP ACHIEVABLE WITH THE RECURSIONS INTABLE XVII. T HE SIZE FORDCT-7 AND DST-8 IS

n = (3k + 1)/2, FORDST-7 AND DCT-8 IS n = (3k − 1)/2.

Transform Cost (adds, mults, 2-power mults) and total Achieved by

DCT-7n ( 8
3
n log3(2n − 1) − 3n− 1

3
log3(2n − 1) + 3, Table VI(c) = (93) for k = 3

4
3
n log3(2n− 1)− 2n− 2

3
log3(2n− 1) + 2, log3(2n− 1))

total: 4n log3(2n− 1)− 5n+ 5 poly: same
DST-7n ( 8

3
n log3(2n + 1) − 3n+ 1

3
log3(2n + 1), Table VI(c) = (94) for k = 3

4
3
n log3(2n+ 1)− 3

2
n+ 7

6
log3(2n+ 1), 1

2
n− 1

2
log3(2n + 1))

total: 4n log3(2n+ 1)− 4n+ log3(2n+ 1)

DCT-8n same asDST-7 duality (105)
DST-8n same asDCT-7 duality (105)

The corresponding base change matrix isB
(∗)
k,m, where∗ ∈

{C5, S5, C6, S6}. The exact form will be shown below.
The full decomposition becomes

DTTn′ = P
(∗)
k,m(A(2m+1)(k−1)/2 ⊕DTTm′)B

(∗)
k,m, (98)

with

A(2m+1)(k−1)/2 =( ⊕

0≤i<(k−1)/2

DTT′
2m+1(

2i+1
k )

)
(DST-5(k−1)/2 ⊗ I2m+1).

B. Details

The base change matrices and permutations in (98) are as
follows.

B
(C5)
k,m = C

(C5)
k,m ·D(C5)

k,m

C
(C5)
k,m =

2
666666666666666664

1 1 1
Im Jm Im Jm · · ·

2 −1
I2m − J2m

1 −1
I2m − J2m

. . .
. . .

. . .
1 −1

I2m − J2m
1 −1

I2m
− Im

− Jm

3
777777777777777775

and the diagonal matrix

D
(C5)
k,m = Im+1 ⊕(I(k−1)/2 ⊗(1/2⊕ I2m))

B
(S5)
k,m =

2
666666666666666664

Im − Jm
0
···
0

Im − Jm
0
···
0

Im − Jm
0
···
0 . . . . .

.

I2m J2m
1 1

I2m J2m
. . .

. . .
1 1

I2m J2m
1

I2m
− Im

Jm

1

3
777777777777777775

B
(C6)
k,m =

2
6666666664

Im Jm
1

Im Jm
1

. . . . .
.

I2m+1 − J2m+1

I2m+1 − J2m+1

. . .
. . .

I2m+1− J2m+1

I2m+1
− Im −2
− Jm

3
7777777775
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TABLE XXI

BASE CASES FORW -GROUPDTTS.

DCT-52 =
h

1 1
1 −1/2

i

DCT-52 = DCT-52

DST-51 =
√

3
2

I1 DST-51 = I1

DCT-62 =
h

1 1
1/2 −1

i

DCT-62 =
ˆ

1 1
1 −2

˜

DST-61 =
√

3
2

I1 DCT-61 = I1

B
(S6)
k,m =

2
6666666664

Im
0
···
0

−Jm Im
0
···
0

−Jm Im
0
···
0

−Jm

. . . . .
.

I2m+1 J2m+1

I2m+1 J2m+1

. . .
. . .

I2m+1 J2m+1

I2m+1
− Im
0 ··· 0

Jm

3
7777777775

.

To state the permutations, we decompose the indexi to be
mapped as before intoi = i1+ i2k. Then the permutations for
for DCT-5 andDCT-6 operate oni ∈ {0, . . . , km+(k−1)/2}
and are given by

P
(C5)
k,m = P

(C6)
k,m = i1 + i2k 7→





i2, for i1 = 0;

i1(2m+ 1) + 2i2 −m, for 0 < i1 ≤ k−1
2 ;

(k − i1)(2m+ 1) + 2i2 −m+ 1, for k−1
2 < i1 ≤ k − 1.

This permutation leaves the first point fixed. The correspond-
ing permutation for the DSTs type 5 and 6 operates on one
point less and arises fromP (C5)

k,m by omitting row 0 and
column 0. The definition is

P
(S5)
k,m = P

(S6)
k,m = i1 + i2k 7→





i1(2m+ 1) + 2i2 +m, for i1 < k−1
2 ;

(k − i1)(2m+ 1) + 2i2 − 3m− 1, for k−1
2 ≤ i1 < k − 1;

i2, for i1 = k − 1.

The final algorithms are shown in Table XX.
Base cases.The base cases are in Table XXI. The sizes are

motivated in the cost analysis below.
Special cases.The algorithms in Table XX have the sim-

plest form for k = 3 in which case they coincide with
Table VI(d).

C. Analysis

The natural sizes, i.e., those sizes that yield a decomposition
into the smallest DTTs aren = (3t + 1)/2 for DCT-5 and
DCT-6 andn = (3t− 1)/2 for DST-5 andDST-6. For these
sizes we can achieve the cost in Table XXII.

Literature. We did not find any of the algorithms in
Table XX in the literature.

XI. CONCLUSIONS

We presented an algebraic approach to deriving fast trans-
form algorithms; in particular, we identified the general prin-
ciple behind the Cooley-Tukey FFT. By applying the approach
to the 16 DTTs, we derived equivalent “Cooley-Tukey type”

algorithms of similar structure. Thus, we could explain many
existing algorithms, but discovered an even larger number of
new algorithms that could not be found with previous methods.

The principle behind Cooley-Tukey type algorithms is poly-
nomial decomposition for finite regular shift-invariant 1-D
signal models (or, equivalently, polynomial algebras), or, more
generally, induction as briefly discussed in Section IV-C.

We hope to have achieved several things with this paper.
The paper is a first step to obtaining a comprehensive theory

of fast transform algorithms: a theory that classifies algorithms,
provides insight to why they exist, illuminates their structure,
and enables their concise, systematic derivation.

Second, the theory of algorithms in this paper is a natural
application of the algebraic SP theory. In [1], [2] the concept of
signal model (as in Definition 1) was motivated as the natural
structure underlying SP. In this paper, it becomes the key
to derive, discover, and understand algorithms. The algebraic
approach ties together SP theory and transform algorithm
theory.

Third, the paper reinforces the case for representing algo-
rithms as structured matrices, an approach that was already
successfully employed for the DFT in [35], [32] and occa-
sionally in research papers (e.g., a early as [21] and more
systematically developed and exploited in [65]).

Fourth, by summarizing many existing and deriving many
new algorithms, this paper can be a reference paper on
algorithms that is useful for application developers that are
only interested in their application.

Future papers will derive and explain other algorithms
available for trigonometric transforms, including real DFTs,
orthogonal DTT algorithms, and generalized Rader type algo-
rithms.
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[4] M. Püschel and M. Rötteler, “The Discrete Triangle Transform,” in
Proc. ICASSP, 2004.
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[42] S. Egner and M. Püschel, “Automatic generation of fastdiscrete signal

transforms,”IEEE Trans. on Signal Processing, vol. 49, no. 9, pp. 1992–
2002, 2001.
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APPENDIX I
CHINESE REMAINDER THEOREM

Let C[x]/p(x) be a polynomial algebra (see Section II-A)
and assume thatp(x) = q(x)r(x) factors into two coprime
polynomials, i.e.,gcd(q, r) = 1. Then the Chinese remainder
theorem (for polynomials) states that

φ : C[x]/p(x) → C[x]/q(x)⊕ C[x]/r(x)

s(x) 7→ (s(x) mod q(x), s(x) mod r(x))

TABLE XXIII

FOUR SERIES OFCHEBYSHEV POLYNOMIALS. THE RANGE FOR THE

ZEROS IS0 ≤ k < n. IN THE TRIGONOMETRIC CLOSED FORMcos θ = x.

n = 0, 1 closed form symmetry zeros

Tn 1, x cos(nθ) T−n =Tn cos
(k+ 1

2
)π

n

Un 1, 2x
sin(n+1)θ

sin θ
U−n =−Un−2 cos

(k+1)π
n+1

Vn 1, 2x− 1
cos(n+ 1

2
)θ

cos 1
2
θ

V−n =Vn−1 cos
(k+ 1

2
)π

n+ 1
2

Wn 1, 2x+ 1
sin(n+ 1

2
)θ

sin 1
2
θ

W−n =−Wn−1 cos
(k+1)π

n+ 1
2

is an isomorphism of algebras. In words,C[x]/p(x) and
C[x]/q(x)⊕ C[x]/r(x) have the same structure. Formally,

φ(s+ s′) = φ(s) + φ(s′)

φ(s · s′) = φ(s) · φ(s′),

which means informally that computing inC[x]/p(x) and el-
ementwise computing inC[x]/q(x)⊕C[x]/r(x) is equivalent.

APPENDIX II
CHEBYSHEV POLYNOMIALS

Chebyshev polynomials are a special class of orthogonal
polynomials and play an important role in many mathematical
areas. Excellent books are [66], [51], [67]. We only introduce
the definitions and the properties of the polynomials we use
in this paper.

Let C0 = 1, C1(x) a polynomials of degree 1, and define
Cn, n > 1 by the recurrence

Cn(x) = 2xCn−1 − Cn−2(x).

Running this recurrence backwards yields polynomialsC−n,
n ≥ 0. Each sequence(Cn)n∈Z of polynomials defined this
way is called a sequence of Chebyshev polynomials. It is
uniquely determined by the choice ofC1. Four special cases
are of particular importance in signal processing [2], [3] and
in this paper. They are denoted byC ∈ {T, U, V,W} and are
called Chebyshev polynomials of the first, second, third, and
fourth kind. Table XXIII gives their initial conditions, their
closed form, their symmetry properties, and their zeros.

For example,Tn(x) = cos(nθ), where cos θ = x. The
closed form easily yields the zeros ofTn.

We will use the following properties of Chebyshev polyno-
mials:

1) For any sequence of Chebyshev polynomials with initial
conditionsC0, C1, we have

Cn = C1Un−1 − C0Un−2. (103)

2) For any sequence of Chebyshev polynomialsCn,

TkCn = (Cn−k + Cn+k)/2. (104)

3) The identities in Table XXIV hold. They are based on
trigonometric identities.
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Fig. 3. Number of additions and multiplications(adds,mults) required to translate DCTs of types 2–4 into each other for odd sizen.

TABLE XXIV

IDENTITIES AMONG THE FOUR SERIES OFCHEBYSHEV POLYNOMIALS;

Cn HAS TO BE REPLACED BYTn , Un , Vn , Wn TO OBTAIN ROWS1, 2, 3, 4,

RESPECTIVELY.

Cn Cn − Cn−2 Cn − Cn−1 Cn + Cn−1

Tn 2(x2 − 1)Un−2 (x− 1)Wn−1 (x+ 1)Vn−1

Un 2Tn Vn Wn

Vn 2(x− 1)Wn−1 2(x − 1)Un−1 2Tn

Wn 2(x+ 1)Vn−1 2Tn 2(x + 1)Un−1

APPENDIX III
RELATIONSHIPSBETWEEN DTTS

We use in this paper the following relationships between
DTTs. The explanation for their existence and proofs can be
found in [2].

Duality. Two DTTs DTTn,DTT′
n, which have flipped

boundary conditions are calleddual to each other. They are
necessarily in the same group. The duality property is not vis-
ible from Table III since we omitted the boundary conditions.
Thus we just state the pairs:DCT-3/DST-3, DCT-4/DST-4,
the DTTs in theU -group are all self-dual,DCT-7/DST-8,
DST-7/DCT-8, DCT-5/DCT-6, DST-5/DST-6.

The following relationship holds for dual DTTs:

diag0≤k<n((−1)k) ·DTTn · Jn = DTT′
n . (105)

As a consequence anyDTT algorithm can be converted into
a DTT′ algorithm without incurring additional operations.

Base change.Two DTTs (or skew DTTs) in the same group
(e.g., T -group) have (at least almost) the same associated
algebra. As a consequence they can be translated into each
other using a suitable base change and Table XXIV.

Examples include:

DCT-4n = Sn ·DCT-2n · 1
2Dn(1/2)

−1 (106)

iDCT-4n(r) = Sn · iDCT-3n(r) · 1
2Dn(r)

−1

where Sn is defined in (62) and Dn(r) =
diag0≤k<n(cos

rk
2 π). The rk are computed fromr using

Lemma 1.
Skew and non-skew DTTs.Every skewDTT(r) can be

translated into its non-skew counterpartDTT:

DTTn(r) = DTTn ·X(∗)
n (r), and

DTTn(r) = DTTn ·X(∗)
n (r).

(107)

Here,X(∗)
n (r) depends on the DTT and takes the following

forms, indicated by∗ ∈ {C3, S3, C4, S4}.

X(C3)
n (r) =




1 0 · · · · · · 0
0 c1 sn−1

...
. . . . .

.

... . . . .. .
0 s1 cn−1




(108)

X(S3)
n (r) =




c1 −sn−1 0
. . . . .

. ...

. . . .. .
...

−s1 cn−1 0
0 · · · · · · 0 cn




(109)

X(C4)
n (r) =




c′0 s′n−1

. . . . .
.

. . . .. .
s′0 c′n−1




(110)

X(S4)
n (r) =




c′0 −s′n−1

. . . . .
.

. .
. .. .

−s′0 c′n−1




(111)

In these equations,cℓ = cos(1/2 − r)ℓπ/n, sℓ = sin(1/2 −
r)ℓπ/n, c′ℓ = cos(1/2−r)(2ℓ+1)π/(2n), ands′ℓ = sin(1/2−
r)(2ℓ+ 1)π/(2n). Where the diagonals cross in (108)–(111),
the elements are added.

Combining (107) with (106) gives, for example

DCT-4n(r) = Sn ·DCT-2n · 12Dn(1/2)
−1 ·X(C4)

n (r). (112)

The diagonal matrix can be fused with the x-shaped matrix to
save multiplications.

Inversion of (107) gives the corresponding identities for the
iDTT(r)’s:

iDTTn(r) =
(
X(∗)

n (r)
)−1·DTTT

n . (113)

The matrices
(
X

(∗)
n (r)

)−1
have the same x-shaped structure

and the same arithmetic complexity asX(∗)
n (r) and can

be readily computed because of their block structure. For
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example:

(
X(C3)

n (r)
)−1

=

1

cos(1/2− r)π




cn 0 · · · · · · 0
0 cn−1 −sn−1

...
. . . . .

.

... . .
. .. .

0 −s1 c1



.

The above identities show that the complexity of the skew
DTTs differ from the complexity of the DTTs byO(n).

Figure 3 displays the cost, as a pair (additions, multiplica-
tions), of translating skew and non-skew DCTs of types 2–4
into each other for odd sizen.


