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Abstract— This paper addresses the following question, which where each transmitter utilizes one of the sub-bands with
is of interest in the design and deployment of a multiuser the required SINR equal t"¥ — 1? Note that an equivalent
decentralized network. Given a total system bandwidth ofit” Hz formulation is to optimize the bandwidth-SINR operatingrio

and a fixed data rate constraint of R bps for each transmission, O o .
how many frequency slots N' of size W/N should the band such that the outage probability is minimized for some fixed

be partitioned into to maximize the number of simultaneous density of transmissions.

transmissions in the network? In an interference-limited al-hoc We consider a network with the following key characteris-
network, dividing the available spectrum results in two conpeting tjcs:

effects: on the positive side, it reduces the number of usersn

each band and therefore decreases the interference level igh « Transmitter node locations are a realization of a homo-
leads to an increased SINR, while on the negative side the geneous spatial Poisson process.

SINR requirement for each transmission is increased becaes « Each transmitter communicates with a single receiver that
the same information rate must be achieved over a smaller is a reference distanag meters away.

bandwidth. Exploring this tradeoff between bandwidth and SNR « All transmissions are constrained to have an absolute rate
and determining the optimum value of NV in terms of the system . .

parameters is the focus of the paper. Using stochastic geotng of R bits/sec regardless of the bandwidth.

we analytically derive the optimal SINR threshold (which directly « All multi-user interference is treated as noise.
corresponds to the optimal spectral efficiency) on this tradoff « The channel is frequency-flat, reflects path-loss and pos-
curve andFsh?]w that lthIS a 'funICtSI(I)ITJROf 9”')1. thi path |<r3]55 sibly fast and/or slow fading, and is constant for the
exponent. Furthermore, the optima point lies betweerthe : i

low-SINR (power-limited) and high-SINR (bandwidth-limit ed) duration of a transmission.

regimes. In order to operate at this optimal point, the numbe of « Transmitters do not have channel state information and no
frequency bands (i.e., the reuse factor) should be increageuntil transmission scheduling is performed, i.e., transmission
the threshold SINR, which is an increasing function of the reise are independent and random, conceptually like an Aloha
factor, is equal to the optimal value. system.

|. INTRODUCTION The last assumption should make it clear that we are con-

sidering only anoff-line optimization of the frequency band

_t\éVe con_su?er a jphatlally tdlstﬂbutedl_netwo:jk, re(']?resem'gructure, and that no on-line (e.g., channel- and quesee)a
el tedr a W|retess ad noc tr;e work or ljjn icense \/(\72 unc;)or hnsmission or sub-band decisions are considered.

n%e 1hSp(t=.‘C (;umﬁusat%\(la y lt;nané/ né)thes (gng.I,NRI \R/ an kctonThese assumptions are chosen primarily for tractability an
sider the tradeofl between bandwioth an - Ve as n1eeir validity will not be assured in all implementationsitb
following question: given a fixed total system bandwidth and e

) : . o generalizations are left to future work.

fixed rate requirement for each single-hop transmitteeives

link in the network, at what point along the bandwidtha Related Work

SINR tradeoff-curve should the system operate at in order

L . . L . The transmission capacity framework introduced in [1] is

to maximize the spatial density of transmissions subject to . ;
: -~ used to quantify the throughput of such a network, since
an outage constraint? Note that the outage probability |S : ) . .
; . tAis metric captures notions of spatial density, data rate,
computed with respect to random user locations as well as o : X
fading and outage probability, and is more amenable to analysis

For example, given a system-wide bandwidth of 1 Hz ar]t‘aan the more popular transport capacity [2]. Using tools

. . .. Tfom stochastic geometry [3], the distribution of intediace
a desired rate of 1 bit/sec, should (a) each transmittereitil 9 y [3] . -
. . from other concurrent transmissions at a reference rewgivi
the entire spectrum (e.g., transmit one symbol per secamdl) a

thus require an SINR of 1 (utilizing = W log(1+SINR) if hodd is characterized as a function of the spatial density of

interference is treated as noise), (b) the band be splittimbo transmitters, the path-loss exponent, and possibly thindad

orthogonal 0.5 Hz sub-bands where each transmitter Lﬁi”Z%IStrlbutlon. The distribution of SINR at the receiving reochn

one of the SUb'ban_d_s with the required SINR equal to 3, Ofitpe randomness in interference is only due to the randontigusiof the
(c) the band be split intav > 2 orthogonalﬁ Hz sub-bands interfering nodes and fading.
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then be computed, and an outage occurs whenever the Sitd®sen such that the required threshold SINR lies between th
falls below some thresholfl. The outage probability is clearly low-SNR (power-limited) and high-SNR (bandwidth-limijed

an increasing function of the density of transmissions, thed regimes, for example in the range of 0 - 5 dB for reasonable
transmission capacity is defined to be the maximum densjigth loss exponents. This approximately corresponds to the
of successful transmissions such that the outage protyaisili region where the functiotog(1 + SINR) transitions from

no larger than some prescribed constant linear to logarithmic in SINR.

The problem studied in this work is essentially the opti- The intuition behind this result is actually quite simple:
mization of frequency reuse in uncoordinated spatial (a) hdf N is such that the threshold SINR is in the wideband
networks, which is a well studied problem in the context akgime (roughly speaking, below 0 dB), then doubling
cellular networks (see for example [4] and references there leads to an approximate doubling of the threshold SINR, or
In both settings the tradeoff is between the bandwidthzetili equivalently a 3 dB increase. Whenever the path-loss exgone
per cell/transmission, which is inversely proportionalth® is strictly greater than 2, doubling the threshold SINR ettu
frequency reuse factor, and the achieved SINR per transntlse allowable intensity of transmissions on each band by
sion. A key difference is that in cellular networks, regulaa factor strictly smaller than two. On the other hand, the
frequency reuse patterns can be planned and implementdalibling of N increases the total intensity by exactly a factor
whereas in an ad hoc network this is impossible and so thEtwo because the number sub-bands is increased by the a
best that can be hoped for is uncoordinat@udomfrequency factor of two; the combination of these effects is a net iasee
reuse. Another crucial difference is in terms of analyticah the allowable intensity of transmissions. Thereforeisit
tractability. Although there has been a tremendous amolntleneficial to continue to increasé until the point at which
work on optimization of frequency reuse for cellular netiwgr the required SINR threshold begins to increagponentially
these efforts do not, to the best of our knowledge, lerrdther tharlinearly with N.
themselves to clean analytical results. On the contrarthis
work we are able to derive very simple analytical resultdm t
random network setting that very cleanly show the deperglerft: System Model
of the optimal reuse factor on system parameters such as patii/e consider a set of transmitting nodes at an arbitrary
loss exponent and rate. shapshot in time with locations specified by a homogeneous

Perhaps the most closely related work is [5][6], in which Roisson process of intensityon the infinite two-dimensional
one-dimensional (i.e., linear), evenly spaced, multi-ope- plane. We consider a reference receiver that is locatetpwit
less network is studied. In finding the optimal (in terms dbss of generality, at the origin, and |&%; denote the distance
total energy minimization) number of intermediate relag@® of the i-th transmitting node to the reference receiver. The
in an interference-free network (i.e., each hop is assignezference transmitter is placed a fixed distadcaway. Re-

a distinct frequency or time slot), their analysis (rather r ceived power is modelled by path loss with exponent 2
markably) coincides almost exactly with our analysis of aand a distance-independent fading coefficignffrom thei-th
interference-limited, two-dimensional, random netwoftke transmitter to the reference receiver). Therefore, theRSH
issue of frequency reuse in interference-limited 1-D nekso the reference receiver is:

is also explicitly considered in [5], and some of the general SINR pd=|hol

insights are similar to those derived in this work. 0 n+ ZieH()\) pX°|hi]’

Il. KEY INSIGHTS whereII()\) indicates the point process describing the (ran-
The bandwidth-SINR tradeoff reveals itself if the systerdom) interferer locations, anglis the noise power. If Gaussian
bandwidth is split intoN non-overlapping bands and eactsignalling is used by all nodes, the mutual information dend
transmitter transmits on a randomly chosen band with sortiened on the transmitter locations and the fading reatinat
fixed power (independent df). This splitting of the spectrum is:
results in two competing effects. First, the density of $ran
mitters on each band is a factor &f smaller than the overall
density of transmitters, which reduces interference amg trwhereh = (ho, h1,...). Notice that we assume that all nodes
increases SINR. Second, the threshold SINR must be inateasienultaneously transmit with the same poweri.e., power
in order to maintain a fixed rate while transmitting 0\.§§Fth control is not used. Moreover, nodes decide to transmit-inde
of the bandwidth. This requires a reduced network density rendently and irrespective of their channel conditionsictvh
order to meet the prescribed outage constraint. corresponds roughly to slotted ALOHA (i.e., no scheduliag i
Although intuition from point-to-point AWGN channels —performed).
for which capacity is a strictly increasing function of band A few comments in justification of the above model are in
width if transmission power is fixed — might cause one torder. Although the model contains many simplifications to
think that the optimum solution is trivially to not split theallow for tractability, it contains many of the critical elents
band (V = 1), this is generally quite far from the optimumof a real ad hoc network. First, the spatial Poisson distiobu
in ad hoc networks. Our analysis shows thétshould be means that nodes are randomly and independently locaied; th

Ill. PRELIMINARIES

I(XQ, Y0|H(A), h) = 10g2(1 + SINR()),



is reasonable particularly in a network with substantiabiio determine the optimum number of sub-baddito which the

ity or indiscriminate node placement (for example a verysgensystem bandwidth oft” Hz should be divided while meeting
sensor network). The fixed transmission distancé isfclearly these criteria. By optimum, we mean the choicefthat

not a reasonable assumption; however our prior work [1], [fjaximizes the intensity of allowable transmissiokg, V).

has shown rigorously that variable transmit distances do s we will see, due to our constraint that the data rate on each
result in fundamentally different capacity results, so adix link is the same regardless afand N, this also corresponds
distance is chosen because it is much simpler analytically ato maximizing transmission capacity.

allows for crisper insights. A similar justification can bwen .

for ignoring power control, although power control is ofted™ Definitions and Setup

not used in actual ad hoc networks either. Finally, schaduli In performing this analysis, we assume that there exist
procedures (e.g., using carrier sensing to intelligerglgct a coding schemes that operate at any point along the AWGN
sub-band) may significantly affect the results and is defipit capacity cqrvE.To facilitate exposition, we define tlepectral

of interest, but this opens many more questions and so is lefilization R to be the ratio of the required rate relative to the
to future work. total system bandwidth:

B. Transmission Capacity Model R2 % bps/Hz/user

In the outage-based transmission capacity framework, an
outage occurs whenever the SINR falls below a prescribdidte that we intentionally refer ta?, which is externally
thresholdg, or equivalently whenever the instantaneous mulefined, as the spectral utilization; thpectral efficiencyon
tual information falls belovlog, (1+ 7). Therefore, the system- the other hand, is a system design parameter determined by

wide outage probability is: the choice ofN.
Cu If the system bandwidth is not split\{ = 1), each
pd”|hol <B]. node utilizes the entire bandwidth & Hz. Therefore, the
n+ ZieH(A) pX; “lhil ~ required SINRg is determined by inverting the standard rate

This quantity is computed over the distribution of transenit €XPression:

positions as well as the iid fading coefficients, a_md thus R =Wlog,(1+ ),

corresponds to fading that occurs on a slower time-scale 3

than packet transmission. The outage probability is ofeanl which givesg = 2 — 1 = 2% — 1. The maximum intensity

increasing function of the intensity. of transmissions can be determined by plugging in this value
If A(¢) is the maximum intensity adttemptedransmissions of 5 into (1), along with the other relevant constants.

such that the outage probability (for a fixed) is no larger ~ More generally, if the system bandwidth is split infé

than ¢, then the transmission capacity is then defined asthogonal sub-bands each of width, and each transmitter-

c(e) = Xe)(1 — €)b, which is the maximum density of receiver pair uses only one of these sub-bands at random,

successfulransmissions times the spectral efficienayf each the required SINRG(XV) is determined by inverting the rate

transmission. In other words, transmission capacity & déikea expression:

spectral efficiency subject to an outage constraint. Usiogst 1%

from stochastic geometry, in [1] it is shown that the maximum ko= = logy(1+ B(N)),

tial intensity\(e) f Il val k is: ; ;
spatial intensity\(e) for small values of is which yields:

2
)\(e):# (%—pd"_a) e+ 0(e?), 1) B(N) = 2% —1=9oNF_ 1.
wherec is a constant that depends only on the distributidﬂ?%t'ce that the spectral efficiency (on each sub-band)s
of the fading coefficients [7]. In the proceeding analysig t w/x PPS/Hz, which isV times the spectral utilizatiorR.
key is the manner in which the transmission capacity varid§€ maximum intensity of transmissionger sub-bandfor
with the SINR constrain®3; for small noise values, which @ Particular value ofV is determined by pluggings(N)
is the case in the interference-limited scenarios we aret m§¥0 (@) with noise power; = 1No. Since theN sub-
interested in, intensity is proportional f = . Because fading Pands are statistically identical, the maximum total istgn
has only a multiplicative effect on transmission capadity, ©f transmissions, denoted by(¢, V), is the per sub-band
does not effect the SINR-bandwidth tradeoff and thus is ntensity multiplied by a factor ofV. Dropping the second
considered in the remainder of the paper. order term in[(1L), we have:

IV. OPTIMIZING FREQUENCY USAGE e, N) NN(L) ( 1 1 )a @
In this section we consider a network with a fixed total band- md?/ \B(N) N-SNR
width of W Hz, and where each link has a rate requirement of, _ _ _ , _
bits/sec and an outage constraintAssuming the network In Sectlon[ﬂ we _relax this assumption by allowing for‘ opfiena at a
R Dbi ) g h _g \ constant coding gap (i.e., power offset) from AWGN capadiyd see that
operates as described in the previous section, the goal ishi® has no effect on our analysis.




where the constanf§ NR £ %10_*‘; is the signal-to-noise ratio a5

in the absence of interference when the entire band is used.

B. Optimization

Optimum Spectral Efficiency_ -~

Optimizing the number of sub-band$ therefore reduces (opsiHz) _~
to the following one-dimensional maximization: 2 //
15} pd ]
N*:argm]\aztx)\(e,N), 3 ' p RN

1k - L=

Density:Constant

which yields a solution that depends only on the path-loss
exponenty, the spectral utilizatior?, and the constar§ N R.

In general, the interference-freé&V R can be ignored be- 0 ‘ ‘ ‘ ‘
cause the systems of interest are interference- rather than 2T heseponen o ®
noise-limited. Assuming' N R is infinite we have:

Fig. 1. Optimal Spectral Efficiency vs. Path-Loss Exponent

€ 2
MeN) ~ (=) N-BN) 8 (4)
€ A2 B
= (ﬁ) NV —1)"a. (5)  Recalling thath = NR is the spectral efficiency on each

sub-band, the quantity*, which is a function of only the path-

The leading factor ofV represents the fact that total transyoss exponent, is theoptimum spectral efficienfTherefore,
mission intensity isV times the per-band intensity, while thehe optimal value ofN' (ignoring the integer constraint) is

@NF—1)"= term, which is a decreasing function o6f, is  getermined by simply dividing the optimal spectrum efficign
the amount by which intensity must be decreased in ordergo by the spectral utilizatior::

maintain an outage probability no larger thaim light of the

monotonically increasing (iV) SINR threshold3(N). N* — b; (8)
SinceR is a constant, we can make the substitutieca N R R
and equivalently maximize the functidri2’ — 1)~%. Taking To take care of the integer constraint @, the nature of
the derivative with respect th we get: the derivative ofy(2° — 1)~ = makes it sufficient to consider
) , ) only the integer floor and ceiling oa¥* in (8). Note that the
% [b(2 — 1)*5} = optimal number of sub-bands depends only on the spectral
) 9 utilization R (inversely) and onb*, which is a function of
(26 —1)"% [1 — Eb(l —275 7 og,_ 2] . the path-loss exponent; there is no dependence on either the

outage constraint or on the transmission rangke
Since the first term is strictly positive for > 0, we set  If the spectral utilization is larger than the optimum spaict
the second term to zero to get a fixed point equation for tlefficiency, i.e.,R > b*, then choosingV = 1 is optimal. On

optimal spectral efficiency*: the other hand, if? < %b*, then the optimalV is st~rictly larger
a than 1. In the intermediate regime Wheéré* < R < b*, the
* —b* . . .
b* = (logy 6)5(1 —e ), (6) optimal N is either one or two.
] ) In Fig.[d the optimal spectral efficiendy is plotted (in
which has solution units of bps/Hz) as a function of the path-loss exponent
. [l Qo along with the quantityb*(2°" — 1)~=, which is referred
b7 =logye [2 W ( 2° ’ )} ’ (7) to as the density constant because the optimal density)
wherelV (z) is the principle branch of the Lambdit function IS this quantity multiplied by(—é;gp)' The optimal spectral
and thus solves$V (z)e" () = 2§ efficiency is very small fora close to 2 but then increases

Becausel — 25(1 —27")"'log, 2 is strictly decreasing and N€arly linearly with o; for example, the optimal spectral
(2® — 1)~2 is strictly positive, the first derivative is strictly €fficiency fora = 3 is 1.26 bps/Hz (corresponding 16 =
positive for0 < b < b* and is strictly negative fob > b*. 1.45 dB).

Therefore, theb* in () is indeed the unique maximizer.
Furthermore, it is easily shown that the optimizitigis an
increasing function ofy, is upper bounded by log, e, and To gain an intuitive understanding of the optimal solution,
thatb* /(5 log, e) converges td asa grows large. first consider the behavior of(e, N') when the quantityV R

is small, i.e. NR < 1. In this regime, the SINR threshold

C. Interpretation

3Equation [[Y) is nearly identical, save for a factor of 2, te #xpression
for the optimal number of hops in an interference-free lineatwork given 4An optimal spectral efficiency is derived for interfererfoee, regularly
in equation (18) of [5]. This similarity is due to the fact thihe objective spaced, 1-D networks in [6]; however, these results diffeapproximately a
function in equation (17) of [5] coincides almost exactiyttw(g). factor of 2 from our results due to the difference in the nekndimensionality.
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B(N) grows approximately linearly withiv:
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B(N):2NR_1 — eNRlogCQ_l
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= (7Td2 ) R 1Oge 2 N( “ ) : 0 0 2 4 6 8 10 12 14 16 18 20
. . . number of sub-bands (N)
For any path-loss exponent> 2, the maximum intensity of
transmissions monotonically increases with the numbeulof s Fig. 2. Optimal Spectral Efficiency vs. Path-Loss Exponent

2

bandsN as N(l‘a), i.e., using more sub-bands with higher
spectral efficiency leads to an increased transmission ciapa
as long as the linear approximation f§N) remains valid.
The key reason for this behavior is the fact that transmissi
capacity scales with the SINR threshold gs«, which
translates taV—4 in the low spectral efficiency regime.

As NR increases, the linear approximation f§N) be-
comes increasingly inaccurate becau§&/) begins to grow
exponentiallyrather than linearly withV. In this regime, the A. Direct Sequence Spread-Spectrum

SINR cost of increasing spectral efficiency is extremelgédar Another method of utilizing the bandwidth is to use direct-

For example, doubling spectral efficiency requires do@"nsequence spread spectrum with a spreading gaifV céind
the SINR in dB units rather than in linear units. Clearly,an information bandwidth of% (i.e., a symbol rate ofL)
the benefit of further increasing the number of sub-bands|is, . over the results of [1] shjgw t.hz;t direct-sequence %éﬂa
str_lczﬂgly ouhtwelghed byhthﬁ S”\AR cost. | effici - significantly) inferior to splitting the frequency band (WB\)

us, whenX is such that the spectral efficiencyfz is  ocq,se it is preferable to avoid interference (FDMA) rathe

relatively small (i.e., less than one)N should be increasedthan to suppress it (DS). More concretely, if DS-CDMA

because the benefit of reduced interference outweighs 8te 69 | <. with completely separate despreading (assuming a
of the increasing SINR threshold. However, /8% increases, spreading gain ofl) and decoding, the maximum density
the cost of the (exponentially) increasing the SINR thrésho N ’

eventually outweighs the benefit of reduced interferenireeS of transmissions is approximately equal to:

transmission capacity depends on the SINR threshold raised Me, NP9 =~ (%) N%ﬂ(]\])*% (9)

to the power—2, a larger path loss exponent corresponds to ) o md _

weaker dependence on the SINR threshold and thus a lar§@fmparing this with the analogous expression [ih (5), we

this corresponds tdv* = 22 = 9.2 and N = 9 is seen to
ge the maximizing integer value. WheR = 0.5, we have
N* =4.6 and N = 5 is the optimal integer choice. Note that
there is a significant penalty to naively choosiNg= 1: for
R = 0.25 this leads to a factor df decrease in density, while

for R = 0.5 this leads to loss of a factor df5.

optimum spectral efficiency*. see that the key difference is that DS results in a leading
term of N& rather thanN. As a result, the density remains
V. NUMERICAL RESULTS AND DISCUSSION constant asN is increased in the regime wherg(N) is

In Figure2, the maximum density of transmissions is plotteapproximately linear, and decreases wifronce3(N) begins
as a function of N for two different spectrum utilizations to behave exponentially. As a result, using DS can lead to
R for a network witha = 4, d = 10 m, and an outage a considerable performance loss relative to spreading via
constraint ofe = 0.1. The bottom set of curves correspondrequency orthogonalization.
to a relatively high utilization ofR = 0.5 bps/Hz, while  Another way to understand the inferiority of direct-sequeen
the top set corresponds t& = 0.25 bps/Hz. Each set is the following: using direct-sequence with a spreadinm ga
of three curves correspond to the approximation fréin (20f % reduces interference power by a factor df and
Ae, N) ~ N(#)ﬂ(]\f)*ﬁ, numerically computed valuesthereby increases the SINR roughly by a factor /éf In
of A(e, N) for SNR = oo, and numerically computed valuesthe wideband regime, the SINR thresholdN) increases
for SNR = 20 dB. For both sets of curves, notice thaapproximately linearly withV and thus completely offsets the
the approximation, based on which the optimal valueNof value of spreading; as a result the maximum density does not
was derived, matches almost exactly with the numericaltiepend onV in this regime. Beyond the wideband regime, the
computed values. Furthermore, introducing noise into tf8®NR threshold3(V) increases exponentially withy/, which
network has a minimal effect on the density of transmissiondearly outweighs the linearly increasing SINR provided by
For a path loss exponent df evaluation of [(7) yields an the spreading gain; the maximum density decreases Mith
optimal spectral efficiency o2.3 bps/Hz. WhenR = 0.25, this regime.



B. Below-Capacity Transmission with random placement of nodes. This indicates that there

In practical systems, it is not generally possible to signBPtentially is a very significant benefit to performing lazed
precisely at capacity. One very useful approximation is tHgansSmission scheduling in random networks, assuming that
capacity gap metric, wher® = log,(1 + I' - SINR) and the associated overhead is not too costly.

I' < 1 is the (power) gap between the signaling rate and VI
Shannon capacity. It is straightforward to see that the gap

only increases the SINR threshold by a multiplicative canst A" interestinginformation densityinterpretation can be
BN) = 1 (2NR 1) As a result the earlier analysisamVEd at by plugging in the appropriate expressions fer th
= 2 ) ,

. . . maximum density of transmissions when the number of sub-
remains unchanged and the optimum spectral efficiency ds wfg

ds is optimized. By plugging in th timal value /&f
as the optimum number of sub-bands are independent ofE S 1S OpHmiZe y plugging In "1e opima vaue

X o fd ignoring the integer constraint &, which is reasonable
gapI'. Indeed, the effect of the coding gap is simply to reducg, 0 & is considerably smaller than one) we have:
the density of transmissions by a facior «.

A (e) = max Ae, N) (12)

. INFORMATION DENSITY

C. Fixed vs. Random Networks

Our analysis holds for networks in which nodes aae- ~ (L) ib*(2b* —1)" & (13)
domly located according to a homogeneous 2-D Poisson md*/ R
process. It would be interesting to know how this comparggnere b* is defined in [[¥) and the quantity*(2°" — 1)—%
with the transmission capacity for any arbitrary, deteiistio, s denoted as the density constant in Fi§j. 1. The quantity
placement of nodes (with zero outage). By comparing the (¢) is the maximum allowable spatial density of attempted
two, we can determine the penalty that is paid for by havingansmissions pen? assuming each transmission occurs over
randomly rather than regularly placed nodes. a distance ofl meters at spectral utilizatioR (i.e., with rate

To allow for a fair comparison, we develop bounds on gqual to W R) and that an outage constraint efmust be
network in whichR = b* and thusV = 1 is optimal. A simple maintained.
upper bound on the transmission density can be developed byrom this expression we can make a number of observations
considering only the interference contribution of the esar regarding the tradeoffs between the various parameters of
interferer. The received SIR, again ignoring thermal noise interest. First note that density is directly proportioral
upper bounded by considering the contribution of only theutagee and to the inverse of the square of the ramgé.
nearest interferer, assumed to be a distanevay. The SIR Thus, doubling the outage constraint leads to a doubling of
upper bound is thus givenq%% = (g)o‘. The upper bound density, or inversely tightening the outage constraint by a
must be above the threshotdif the actual SINR is abov@, factor of two leads to a factor of two reduction in densityeTh

and thus the following is a necessary condition: quadratic nature of the range dependence implies that ithgubl
N N transmission distance leads to a factor of four reduction in
(3) >p = s=>dfe. density; this is not surprising given that the area of theleir

centered at the receiver with radidsis 7d2. Perhaps one
of the most interesting tradeoffs is between density anet rat
gince the two quantities are inversely proportional, dmgpl
éhe rate leads to halving the density, and vice versa. Nate th
this relationship is directly attributable to the fact th¥t is
inversely proportional tak: doubling rate leads to reducing
N* by a factor of two, which reduces total density (across all
\det < L(zb* —1)-2 (10) sub-bands) by a factor of two.

~ md? If we consider the product of density and spectral utilizati
A lower bound to the optimal density is derived by actuallye get a quantity that has units bps/HZ/m
designing a (infinite) placement of transmitters and ressiv . € .o 2
Indeed, by placing transmitters according to a standardrequ AN ()R ~ (?) b*(2” —1)7= (14)

Y

Iattlc_e anql placing receivers on a horl_zontglly shiftedsien This quantity is very similar to tharea spectral efficiency
of this lattice, one can achieve a density within about aofract(ASE) defined in [8]. In our random network setting, the ASE
of two of the upper bound. is inversely proportional to the square of the transmission
rEﬁzstance, which is somewhat analogous to cell radius in a
cellular network, and is directly proportional to the owtag

AN L(Qb* —1)h, (11) constraint. Since the quantity (2°° — 1)~ does not vary

wd? too significantly with the path-loss exponent (see Eig. 1) fo

Note that the random density is a factoismaller than the « between 2 and 5, we see that ASE and path-loss exponent
upper bound to the deterministic density. Thus, wheis are not very strongly dependent. Perhaps most interesding i
small, e.g..e = 0.1, there is a rather large penalty associatetie fact that the ASE does not depend on the desired rate

Therefore, a necessary but not sufficient condition for mget
the SINR threshold is that there is no interferer Witld;ﬁé
meters of a receiver. As a result, it is necessary that ancdre
wdQﬂg meter$ around each receiver be clear of interferer
which translates into a density upper bound;é{ﬂ—i. Since
B =20 — 1, this gives

density of a random network witk = b* found from [5):



(assumingN is optimized for rate). A random network can
support a low density of high rate transmissions or a high
density of low rate transmissions, or any intermediate fpoin
between these extremes.

VIl. CONCLUSION

In this work we studied bandwidth-SINR tradeoffs in ad-hoc
networks and derived the optimal operating spectral effiie
assuming that multi-user interference is treated as noise a
that no transmission scheduling is performed. A network can
operate at this optimal point by dividing the total avaikabl
bandwidth into sub-bands sized such that each transmission
occurs on one of the sub-bands at precisely the optimalrspect
efficiency. As a result, the optimal number of sub-bands is
simply the optimal spectral efficiency (which is a deterrsiiti
function of the path loss exponent) divided by the normalize
(by total bandwidth) rate.

The key takeaway of this work is that an interference-
limited ad-hoc network should operate in neither the witeba
(power-limited) nor high-SNR (bandwidth-limited) regisje
but rather at a point between the two extremes because this
is where the optimal balance between multi-user interfezen
and bandwidth is achieved. Although we considered a rather
simple network model, we believe that many of the insights
developed here will also apply to more complicated scesario
e.g., wideband fading channels and networks in which some
degree of local transmission scheduling is performed.
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