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Abstract

We formulate the data analysis problem for the detection of the New-

tonian waveform from an inspiraling compact-binary by a network of arbi-

trarily oriented and arbitrarily distributed laser interferometric gravitational

wave detectors. We obtain for the first time the relation between the opti-

mal statistic and the magnitude of the network correlation vector, which is

constructed from the matched network-filter. This generalizes the calculation

reported in an earlier work (gr-qc/9906064), where the detectors are taken to

be coincident.
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I. INTRODUCTION

Inspiraling compact binaries form prime candidates for detection by earth-based interfer-
ometric gravitational-wave (GW) detectors owing to the well understood waveform (chirp)
emitted by them. Searching for chirps using a network of such detectors is gaining impor-
tance due to (a) its superior sensitivity vis a vis that of a constituent detector [1] and (b)
improving feasibility for a real-time computational search. Here, we formulate the problem
of how to optimally detect the Newtonian chirp using a network of arbitrarily orientated
and arbitrarily located detectors. This extends a similar study in Ref. [2] of a network with
coincident detectors.

We use the maximum likelihood method for optimizing the detection problem.[3] A
single likelihood ratio (LR) is deduced for the entire network. A super-threshold value
for the maximized likelihood ratio (MLR) implies a detection. The MLR is obtained by
maximizing the LR over the eight parameters that determine the Newtonian chirp: the
distance r to the binary, the inital phase δ of the waveform, the polarization angle ψ, the
inclination angle ǫ of the binary orbit, the time of arrival ta at a fiducial detector (fide), the
source-direction angles {φ, θ}, and the chirp time ξ. In principle, this can always be done
numerically using a grid in the eight dimensional parameter space. In practice, however,
such a strategy is computationally unfeasible and wasteful. We show that maximization of
the LR over four parameters, {r, δ, ψ, ǫ}, can be performed analytically using the symmetries
in detector responses. This allows us to scan this parameter subspace continuously. Further,
the Fast Fourier Transform (FFT) can be used to maximize LR over ta, as in the case of a
single detector. Such an analytic maximization and the FFT allow us to save substantially
on computational costs. Numerical maximization is required over the remaining parameters,
{φ, θ, ξ}, which we discuss in a future work. Here, we follow the convention laid out in Ref.
[2].

II. THE SIGNAL

There are four distinctly different reference frames of interest, associated with the source,
wave, fide, and a representative detector in the network. Physical quantities in these frames
are related by orthogonal transformations, Ok, which are defined in terms of three sets
of Euler angles that specify the orientation of one frame with respect to another.[4] Let
x be an arbitrary three-dimensional real vector. Then, xwave = O1(ψ, ǫ, 0)xsource, xfide =
O2(φ, θ, 0)xwave, and xdetector = O−1

3 (α, β, γ)xfide, Here, the source axes have been chosen in
accordance with Ref. [5].

The wave tensor wij associated with any source can be expanded in terms of the STF-2
tensors Y ij

2n in an arbitrary frame as [2]:

wij(t) =

√

2π

15

[

(h+(t)− ih×(t))T2
nY ij

2n + (h+(t) + ih×(t))T−2
nY ij

2n

]

, (2.1)

where i, j denote spatial indices, and h+ and h× are the two GW polarizations in the
transverse-traceless gauge, as measured in some given frame. The expansion coefficients
T±2

n are the Gel’fand functions,[2] which depend on the Euler angles through which one
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must rotate that frame into the frame in which wij is being analyzed. The above form

suggests the definitions, eijL =
√

8π/15 T2
nY ij

2n and eijR =
√

8π/15 T−2
nY ij

2n, for the left- and

right-circular polarization tensors, respectively. They obey, eij ∗L = eijR, e
ij
L, R e

∗
L, R ij = 1, and

eijL, R e
∗
R, L ij = 0, in any frame. Thus,

wij(t) = Re
[

(h+(t) + ih×(t)) e
ij
R

]

≡ 2κ Re
[

R(t)eijR
]

, (2.2)

where κ =
√
ξ/r (up to a normalization factor) and R ≡ (h+(t) + ih×(t))/(2κ). For a chirp,

we define R in the source frame.[5] Then h+,× are GW amplitudes for a face-on binary (i.e.,
for ǫ = 0), and R depends only on {δ, ta, ξ}.

The response amplitude (i.e., the signal) in the I-th detector is the scalar product sI =
wijdIij, which depends on projections of eijL, R onto the I-th detector tensor, dIij. One such
projection defines the extended beam-pattern function:

F I = eijLd
I
ij ≡ T2

p(ψ, ǫ, 0)DI
p , p = ±2 , (2.3)

which corresponds to the left-circular polarization. Above,

DI
p ≡

√

8π

15
Tp

n(φ, θ, 0)dIijY ij
2n = igITp

n(φ, θ, 0)
(

T I∗2n − T I∗−2n

)

, (2.4)

where T I±2n = T±2n(αI , βI , γI) and dIij = gI(nI1in
I
1j − nI2in

I
2j), with nI1,2 being unit vectors

along the two arms of the I-th interferometer, respectively. Also, gI is the detector’s noise
power spectral density.[6] Then,

sI(t) = 2κ Re
(

F I∗RI
)

≡ 2κ Re
(

F I∗SIeiδ
)

(2.5)

where RI is defined via Eq. (2.2) and SI is independent of δ.

III. THE OPTIMAL NETWORK STATISTIC

Under the Neyman-Pearson decision criterion,[3] the optimal network statistic is the
network LR, λ. If the noise in each detector is additive and independent of the noise in any
other detector in the network, then λ reduces to a product of the individual detector LR’s.[2]
Further, for Gaussian noise,[7] the logarithmic likelihood ratio (LLR), lnλ, simplifies to the
following sum of LLR’s of N individual detectors [2]:

lnλ =
N
∑

I=1

〈sI , xI〉I −
1

2

N
∑

I=1

〈sI , sI〉I = b

N
∑

I=1

〈zI , xI〉I −
1

2
b2 , (3.1)

where b ≡ 2κ(
∑N
I=1 ‖FI‖2)1/2 and zI = sI/b. Above, r appears only in b.

Maximizing lnλ with respect to b and δ gives, lnλ|
b̂,δ̂ =

∣

∣

∣

∑N
I=1QIC

∗
I

∣

∣

∣

2
/2, where

QI ≡ 2κFI/b and C∗
I ≡ 〈SI , xI〉I .[2] This shows that the network vector S, with SI ’s as

its components, is the matched network-filter. Also, lnλ|
b̂,δ̂ is a function of six parameters,
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namely, {ψ, ǫ, ta, φ, θ, ξ}. To extend these results to the case where the detectors are arbi-
trarily located, note that the dependence of lnλ|

b̂,δ̂ on {ψ, ǫ} can be isolated. This is because

the network vector Q, with QI ’s as its components, is:

Q = ‖ F ‖−1
(

T−2
2 (ψ, ǫ, 0)D−2 + T 2

2 (ψ, ǫ, 0)D2

)

≡ Q−2
D̂−2 +Q2

D̂2 , (3.2)

where Dp define network vectors with DI
p as their components; D̂p are their normalized

counterparts. Thus, Q2 = D̂2 · Q = Q+2 + Q−2D̂2 · D̂−2. Hence, {D̂2, D̂−2} define a two-
dimensional complex plane, P (the helicity space, a subspace of CN), on which a metric gpq
can be defined. Then, Qp = gpqQ

q with p, q = ±2. The N -dimensional correlation vector C,
in general, lies outside P. However, Q lies totally in P. Thus, the statistic reduces to

lnλ|
b̂,δ̂ = |Q · C∗|2 /2 = |Q · C∗

P |2 /2 , (3.3)

where CP is the projection of C onto the helicity space.
Maximization of lnλ|

b̂,δ̂ over {ψ, ǫ} is achieved by aligning Q along CP . This requires that

Q±2 = C±2
P /‖ CP ‖P , which implies: Q+2/Q−2 = C+2

P /C−2
P . Since the RHS above can take

any value in the complex plane, we need to prove that Q+2/Q−2 obeys the same property.
To this end, note that,

Q+2

Q−2
=
T−2
2 (ψ, ǫ, 0)

T 2
+2(ψ, ǫ, 0)

=
(

1− cos ǫ

1 + cos ǫ

)2

exp(4iψ) , (3.4)

which can indeed attain any value on the Argand plane. The values of ψ and ǫ that maximize

the statistic are, ψ̂ = arg(x)/4 and ǫ̂ = cos−1[(1−
√

‖x‖ )/(1+
√

‖x‖ )] where x ≡ C+2
P /C−2

P .
Thus, the statistic maximized over these four parameters is,

lnλ|
b̂,δ̂,ψ̂,ǫ̂ = ‖ CP ‖2/2 . (3.5)

Let V̂ ± denote a pair of orthonormal, complex basis vectors on P. Then,

‖ CP ‖2 = ‖ C+ ‖2 + ‖ C− ‖2 = (c+0 )
2 + (c+π/2)

2 + (c−0 )
2 + (c−π/2)

2 , (3.6)

where C± = CP · V̂ ± = c±0 + ic
±
π/2. It can be verified that the network statistic is, therefore, a

sum of the squares of four Gaussian random variables with constant variance. This simplifies
the computation of thresholds and detection probabilities.

A network filter is constructed as follows: For a given ξ compute the Newtonian chirp
for ta = 0. Then, for a given direction {φ, θ}, use the appropriate time-delays with respect
to fide to time-displace the chirp at each detector. This collection of time-displaced chirps
constitute the network filter. Also, t̂a is obtained by shifting the network filter ‘rigidly’ on
the time axis, which can be done efficiently using FFT. The bank of filters on {φ, θ, ξ} can
be obtained by correlating two neighboring normalized filters in the usual way. This work
is now in progress.
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IV. CONCLUSION

We have given here a formulation to optimally detect the Newtonian chirp with a network
of detectors in which the noise is additive, Gaussian, and uncorrelated between detectors.
We have shown how this can be done efficiently by analytically maximizing the LR over
four parameters and using FFT to maximize over the time-of-arrival. In a future work we
hope to address key issues such as required computational power for such a search and also
estimate errors in parameter values.
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