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We onsider hydrodynamis with non onserved number of partiles and show that it an be

modeled with e�etive �uid Lagrangians whih expliitly depend on the veloity potentials. For

suh theories, the �shift symmetry� φ → φ+onst. leading to the onserved number of �uid partiles

in onventional hydrodynamis is globally broken and, as a result, the non onservation of partile

number appears as a soure term in the ontinuity equation. The partile number non-onservation

is balaned by the entropy hange, with both the entropy and the soure term expressed in terms

of the �uid veloity potential. Equations of hydrodynamis are derived using a modi�ed version of

Shutz's variational priniple method. Examples of �uids desribed by suh Lagrangians (tahyon

ondensate, k-essene) in spatially �at isotropi universe are brie�y disussed.

I. INTRODUCTION

It is well known that omplex physial phenomena an

be often modeled with good auray by an e�etive the-

ory. One suh e�etive marosopi model, for example,

is the hydrodynamial model of Landau [1℄, whih has

had a onsiderable suess in explaining ertain features

of the ollisions of highly relativisti nulei [2, 3℄. The

universe, the most omplex of all the physial systems, is

in general suessfully modeled by an isentropi perfet

�uid. Hydrodynami language, bak in high regard, is

now invoked to desribe non-trivial �eld theories [4℄.

In osmology, as mentioned above, the perfet �uid de-

sription, despite the generi omplexity of the system,

works �ne. One of the usual assumptions in the on-

ventional hydrodynamial desription of the universe is

that the universe expands adiabatially. Closely related

to it is the assertion that the so-alled mass, or parti-

le number onservation, holds. Yet, one an imagine a

universe where reation or destrution of partiles takes

plae. This may happen due to the time variation and

inhomogeneities of the gravitational �eld itself, not to

disard a more speulative possibility of a universe �lled

with white and blak holes where partiles suddenly ap-

pear or disappear. What kind of an e�etive hydrody-

namis would then desribe suh a universe?

There are several ways to approah the problem of the

universe where partiles are reated or annihilated. If

this happens due to quantum proesses, then presum-

ably the most diret approah would be to onsider the

quantization of the matter �elds on a urved bakground

using the mahinery of the quantum �eld theory [5℄, and

then evaluating the bak-reation of the reated �elds on

the lassial geometry. The promising diretion within

this approah is the study of stohasti gravity [6℄.

It is possible, though, that for some reason, one is

not interested in the detailed desription of the parti-

le reation (destrution) mehanism. Then one would

∗
wtbditea�lg.ehu.es

†
wtpfexxa�lg.ehu.es

be trying to model the e�ets of the mirosopi pro-

esses by a kind of an e�etive marosopi model. In

hadron-hadron ollision theory [2, 3℄, suh an e�etive

marosopi model is the Landau's hydrodynamial de-

sription.

In the framework of osmology with non onserved

number of partiles, a possible marosopi desription

was put forward by Prigogine et al [7℄, and later gener-

alised by Calvao et al [8℄ some years ago. In this ap-

proah, the reation of partiles is onsidered in the on-

text of thermodynamis of open systems. What follows

then, roughly speaking, is that an extra negative �vis-

ous� pressure term appears in the energy-momentum

tensor to aount for the reated partiles.

Yet, there exists a more �eonomi� and elegant way to

desribe partile reation (annihilation) without a hange

in the form of the energy-momentum tensor, and with-

out introduing an extra pressure term . To introdue a

soure term into the partile number onservation equa-

tion it is su�ient to allow entropy �ow. The hange in

the partile number allowed by the ontinuity equation

will then ome at the expense of the entropy hange.

In this paper we are interested in exploring a La-

grangian formulation of relativisti hydrodynamis with

non onserved number of partiles. In the onventional

variational approah to relativisti hydrodynamis de-

veloped by Shutz [9℄, the ation does not depend on

the veloity potential, but rather is a funtional of its

derivatives. This, in turn, maintains the symmetry

φ → φ+onst. whih allows partile number onserva-

tion. Here, we propose a Lagrangian formulation for the

equations of hydrodynamis, where the Lagrangian, to

break globally the symmetry leading to the partile num-

ber onservation, depends not only on the derivatives,

but on the veloity potential itself.

We propose to modify Shutz's original Lagrangian

[9, 10, 11℄, by introduing soures and sinks in the on-

tinuity equation, modeled by a veloity potential depen-

dent funtion. Our formulation is matemathially self-

onsistent, in that it gives the right set of hydrodynam-

ial equations. Physially, the �uid Lagrangians we on-

sider have onnetion to matter desribed by the rolling

tahyon ondensate [13℄ or by the K-essene [14, 15℄.

http://arxiv.org/abs/gr-qc/0501101v2
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II. THE HYDRODYNAMICS WITH PARTICLE

NUMBER VARIATION

We start by assuming that we deal with simple ther-

modynamial systems (�uids), whih are haraterised

by a fundamental equation of the form U = U [S, V,N ],
where all the variables have their usual meanings, and

we use kB = c = 8πG = 1. Assuming the standard

thermodynami relations, one may show that suh a sys-

tem is ompletely spei�ed by the energy density funtion

ρ(n, s) and the system's size V :

U [S, V,N ] = V ρ(n, s),

where n is the partile number density and s is the en-

tropy per partile. We an write the �rst law of thermo-

dynamis as

dρ = hdn+ nTds, (1)

where h is the enthalpy per partile. Assuming further

that the partile number in the system is not onserved,

the equations of hydrodynamis take the following form:

T µν
;µ = 0, (2)

(nuµ);µ = ψ, (3)

where T µν
stands for the usual stress-energy tensor of a

perfet �uid:

T µν = (ρ+ p)uµuν + pgµν . (4)

Here p and ρ are the pressure and the energy density

of the �uid respetively, and uµ is the four-veloity �eld

(uµu
µ = −1). The equation (2) represents the onserva-

tion of the energy-momentum tensor, whereas (3) is the

ontinuity equation with the soure (ψ > 0) or the sink

(ψ < 0) term for the partiles. We must further speify

the equation of state ρ = ρ(n, s), along with the soure

term ψ, whih we take to have the form ψ = ψ(n, s).
To lose this system of equations we add the �rst law

of thermodynamis (1). The equations (2), (3) and (1)

form a self onsistent �eld theory desribing a �uid with

partile number variation in terms of �ve marosopi (or

Eulerian) variables (n, s, uµ).
To obtain a more intuitive form of these equations it

is onvenient to projet the energy onservation equa-

tion (2) along and, in the diretion perpendiular, to the

four-veloity. The parallel projetion (uµT
µν

;ν = 0), af-
ter the balane equation (3) and the thermodynamial

relations have been substituted, gives the following on-

tinuity equation:

s,µu
µ = −hψ

nT
. (5)

This equation was �rst given, in a somewhat di�erent

form, by Shutz and Sorkin [10℄. One an appreiate how

the hange in the number of partiles (ψ) is aompanied

by a hange in the entropy per partile (uµs,µ 6= 0). The
�uid �ow no longer follows lines of onstant s, as it hap-
pens in the onventional hydrodynamis when no soure

is present (ψ = 0). The projetion perpendiular to the

four-veloity gives (PµαT
µν

;ν = 0, with P ν
µ ≡ uνuµ+δ

ν
µ):

(ρ+ p)uα;νu
ν = −p,νP ν

α ,

whih is the relativisti Euler equation. The last two

equations are ompletely equivalent to the eqs. (2) and

(3).

The variation rate of the number of partiles N and

the total entropy S of the �uid may still be written in a

more suggestive way:

dN

dτ
= V ψ,

dS

dτ
= − µ

T

dN

dτ
, (6)

where µ = h − sT is the hemial potential. From the

�rst of these two equations we see that the sign of the

soure term determines as to whether the partiles are

reated or annihilated. The other equation desribes the

variation of the entropy, whose hange is determined by

both, the sign of the hemial potential and the soure

term.

III. THE ACTION PRINCIPLE

The relativisti perfet �uid ation funtionals were

developed by Taub [12℄ and Shutz [9℄. Here we follow

losely Shutz's veloity potential formalism [9℄. In the

ase of the onventional hydrodynamis, where no par-

tile reation takes plae (ψ = 0), one starts with the

following ation [9, 10, 11℄:

S =

∫

d4x
{

−√−gρ(n, s) + Jµ
(

φ,µ + sθ,µ + βAα
A
,µ

)}

,

with A taking the values 1, 2 and 3. Here, φ and θ are La-
grange multipliers introdued to satisfy the partile num-

ber and the entropy onservation onstraints respetively.

One further assumes the existene of Lagrangian oordi-

nates αA
whih label the �ow lines, and onsequently

introdues the βA potentials in form of Lagrange multi-

pliers. Jµ
is the partile number urrent-density, de�ned

as Jµ ≡ √−gnuµ. The expression for the urrent permits

to write the partile number density as n = |J | /√−g. To
inlude the gravity as a dynamial �eld into the piture,

one adds, as usual, the Einstein-Hilbert term to the above

ation. The variables in whih the ation is formulated

are, therefore: gµν , Jµ
, φ, s, θ, βA and αA

. Starting with

this ation, one derives both the hydrodynamial equa-

tions of motion and the energy-momentum tensor for the

�uid [11℄.

We now onsider the ation priniple for the hydrody-

namis desribed in the previous setion. For this pur-

pose, we put forward the following ation [16℄:

S =

∫

d4x
{

−√−gρ(n, s) + Jµ
(

φ,µ + βAα
A
,µ

)}

,
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where now the entropy per partile s is not an indepen-

dent variable any more. We assume s = s(φ), so that the
�shift symmetry� φ → φ+onst. present in the Shutz's

original ation is globally broken. We have also sup-

pressed the term Jµsθ,µ in the ation, sine now we do

not expet the entropy per partile s to onserve. To jus-
tify physially the funtional dependene of the entropy

on the veloity potential (apart from the fat that suh

an ation leads to the equations of motion we expet) we

suggest that sine the non-onservation of the partiles

via the equation (5) leads to the entropy hange, on one

hand, and that we model the partile non-onservation

by the symmetry breaking with the φ-dependent term in

the ation on the other, it looks reasonable to introdue

this dependene in the entropy term. One must bear in

mind, however, that due to the partiular parametrisa-

tion s(φ), the partile variation rate is neither arbitrary,

nor generi, yet we �nd it su�iently general for the pur-

poses of the physis we are interested in. With this in

mind, one may show [16℄ that the equations of hydro-

dynamis as well as the form of the energy momentum

tensor of the setion II an be reovered from the above

ation.

Introduing the equations of motion bak into the a-

tion we obtain the on-shell expression

Son−shell =

∫

d4x
√−gp,

whih oinides with the on-shell expression of Shutz

for onventional hydrodynamis. Thus, we have that

the Lagrangian for the hydrodynamis with partile non-

onservation may still be given by the pressure of the

�uid.

IV. THE IRROTATIONAL FLOW

We now assume the �uid �ow to be irrotational. We

also note, that although until now we have expressed the

ation in terms of ρ(n, s), it is often onvenient to use,

with the help of the usual thermodynami relations, a

di�erent parametrisation of the ation [11℄. In the on-

text of the irrotational �ow it will be more onvenient to

work with the equation of state p = p(h, s).
First, let us see what happens in the onventional ase

when the partile number is onserved. In this ase we

have an isentropi �uid (s =onst.) and the ation may

be expressed as

S =

∫

d4x
√
−g

{

p (|V |)−
(

∂p

∂h

)

s

[

|V | − V µϕ,µ

|V |

]}

,

where we have de�ned the urrent V µ ≡ huµ, and the

subindex s refers to the fat that the partial derivative

(∂p/∂h) is evaluated at onstant s. The variables are

gµν , V µ
and ϕ, and the following equations of motion

result:

uµ = −h−1ϕ,µ, (7)

(nuµ);µ = 0, (8)

with the energy-momentum tensor given by

T µν =
2√−g

δS

δgµν
=

(

∂p

∂h

)

s

huµuν + pgµν . (9)

Comparing the last equation with the equation (4) allows

to de�ne the pressure and the energy density of the �uid

as: p = p and ρ = nh−p (with n = (∂p/∂h)s). The pres-
sure and the density de�ned via the stress-energy tensor

oinide with their usual thermodynamial de�nitions.

The equation (7) is the expression of the fat that the

�uid �ow is irrotational, whereas the equation (8) is the

partile number onservation equation.

The identity uµu
µ = −1 and the equation (7), lead to

the following expression for the enthalpy:

h =
√

−ϕ,µϕ,µ. (10)

To make ontat with the now popular K-essene osmol-

ogy [14, 15℄, we write the ation on-shell as

Son−shell =

∫

d4x
√−gF (X), (11)

where we de�ne:

X ≡ −1

2
ϕ,µϕ

,µ =
h2

2
, (12)

p(h) = p
(√

2X
)

≡ F (X), (13)

Therefore, if one has an irrotational �uid where the

number of partiles is onserved, it is desribed by the

hydrodynamis derived from the Lagrangian (11), whih

depends only on the derivatives of the veloity potential

de�ned by the equation (7). Moreover, the onservation

equation (8), is just the Euler-Lagrange equation derived

from the ation (11):

− (nuµ);µ = [F ′(X)ϕ,µ];µ = 0,

where we have used n = (∂p/∂h)s = hF ′(X), and the

prime stands for the derivative of the funtion with re-

spet to its argument. For ompleteness, we give the

expression for the density and the pressure of the �uid in

terms of the variable X :

p = F (X), ρ = 2XF ′(X)− F (X). (14)

These expressions are known in the ontext of K-�eld as

purely kineti K-�eld [14, 15, 17℄.

Typially, in osmology, one uses an equation of state

p = f(ρ) to desribe an isentropi �uid. To obtain an

ation in the form (11) desribing suh a �uid, one only

has to express the energy density as ρ = f−1(p), insert
the latter expression into the equation of energy density

(14), and obtain the di�erential equation for F, f−1(F ) =
2XF ′ − F . This gives then for F (X):
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∫ F dF ∗

f−1(F ∗) + F ∗
= ln

[

CX1/2
]

, (15)

where C is an arbitrary integration onstant. The equa-

tion (15) establishes how to pass from the standard hy-

drodynamial desription of an isentropi irrotational

perfet �uid (p = f(ρ)), to the language of an ation prin-
iple (11). Put di�erently, the purely kineti K-�eld, is

interpretable in terms of an isentropi perfet �uid with

an equation of state whih an be easily put into the

form p = p(ρ). Thus, any solution to the Einstein's �eld

equations with the energy momentum tensor of the irro-

tational perfet �uid with the equation of state p = p(ρ)
is by default interpretable as a solution for the purely ki-

neti K-�uid.

We now onsider the irrotational �ow where the num-

ber of partiles is not onserved. In this ase, the ation

an be expressed as [16℄:

S =

∫

d4x
√−g

{

p (|V | , s)−
(

∂p

∂h

)

n

[

|V | − V µφ,µ
|V |

]}

along with s = s(φ). The variables still are gµν , V µ
and

φ, and the equations of motion that follow are

uµ = −h−1φ,µ, (16)

(nuµ);µ = −nT ds
dφ
. (17)

In the last equation we have used −nT = (∂p/∂s)h. The
form of the energy-momentum tensor is left unhanged

and is given by the equation (9). The equation (16) ex-

presses again the fat that the �ow is irrotational, and

the ontinuity equation (17), if we de�ne the partile re-

ation rate as

ψ ≡ −nT ds
dφ
, (18)

is the balane equation (3). We hene model the reation

of partiles through the funtion s = s(φ). Using the

property uµu
µ = −1 and the equation (16), we obtain

the equation (10), and now the on-shell ation beomes:

Son−shell =

∫

d4x
√−gL(φ,X), (19)

where we have used the equation (12) and have de�ned

p(h, s) = p
(√

2X, s(φ)
)

≡ L(φ,X). (20)

We thus have sueeded in giving the ation for the ir-

rotational �uid �ow where number of partiles is not

onserved in terms of the salar veloity potential and

its derivatives. Moreover, the ontinuity equation of

the �uid (17), using n = (∂p/∂h)s = h∂L/∂X , uµ =

−h−1φ,µ and ψ = −nTds/dφ = ∂L/∂φ beomes the

Euler-Lagrange equation for the ation (19):

[

∂L

∂X
φ,µ

]

;µ

+
∂L

∂φ
= 0. (21)

We �nally express the pressure and the density of the

�uid in terms of the salar �eld:

p = L(φ,X), ρ = 2X
∂L(φ,X)

∂X
− L(φ,X). (22)

V. K-FLUID

A speial ase arises when the �uid has a separable

equation of state p(h, s) = f(s)g(h). In this ase, the

ation takes the form

S =

∫

d4x
√−gK(φ)F (X), (23)

with de�nitions F (X) ≡ g(
√
2X) and K(φ) ≡ f (s(φ)).

The entropy per partile s an be then expressed as a

funtion of the potential term K(φ):

s = f−1 [K(φ)] , (24)

and the equation (22) permits to express the pressure

and energy as:

p = K(φ)F (X), ρ = K(φ) [2XF ′(X)− F (X)] . (25)

The above expressions are analogous to fatorisable K-

�eld theories [14, 15℄, and we therefore refer to these

�uids as K-�uids. The ase in whih there is no par-

tile reation (purely kineti K-�uid) is obtained with

K(φ) =onst.
One usually assumes without lost of generality that

K(φ) > 0 (f(s) > 0), while F (X) may be either pos-

itive or negative, allowing for tensions instead of pres-

sure. Yet, we want to have a positive energy density, we

therefore must have

2XF ′(X)− F (X) ≥ 0. (26)

In addition, the partile number density n must also be

positive, so we need

F ′(X) ≥ 0 (27)

and

sgn [f ′(s)] = −sgn [p] (28)

to have positive temperature. One may further de�ne

the sound speed in a usual way:

c2s =

(

∂p

∂ρ

)

s

=
F ′(X)

2XF ′′(X) + F ′(X)
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(f [18℄). For ordinary �uids one usually also imposes

0 ≤ c2s ≤ 1, and therefore using (27), we have:

F ′′(X) ≥ 0. (29)

We therefore refer to K-hydrodynamis, or K-�uid for

short, as to an irrotational �uid with an equation of state

p(h, s) = f(s)g(h) and a partile variation rate given by

ψ(h, s) = k(s)g(h). The partile variation rate is fur-

ther parametrised by s = s(φ), where φ is the veloity

potential of this irrotational �uid, and the peuliar fun-

tional form of the partile prodution rate ψ(h, s) is a

onsequene of this parametrisation hoie. The ation

for the K-�uid is given by the equation (23). We impose

positivity of the energy density (26), the partile number

density (27) and the temperature (28), but are less strin-

gent with the pressure, though one may always impose

the positivity of the pressure as well. The �uid �ow is

stable as long as (29) holds.

We an now express the �uid parameters in terms of

the salar �eld. The partile number density and partile

prodution rate take the form:

n = K(φ)
√
2XF ′(X), (30)

ψ = F (X)K ′(φ), (31)

and onsequently the sign of the derivative ofK de�nes as

to whether the reation or annihilation of partiles takes

plae. When K(φ) =onst., the expression N = V n is

the Noether's harge assoiated with the �shift symetry�

φ → φ+onst. of the ation. These expressions above

an be written in terms of the ation without the expliit

knowledge of the funtion f(s). However, to evaluate

the entropy per partile (24), total entropy S = V ns and
temperature

T =
−f ′(s)

n
F (X), (32)

one must know the form of f(s). Some examples will be

given in the following setion.

With the above hydrodynamial interpretations, let us

look for a moment at the K-�uids where the number of

partiles is onserved. The entropy per partile is then

a onstant, say s0, and therefore the equation of state

has the form p = p(h). This is an isentropi �uid har-

aterised by the funtion F (X) and the onstant f(s0).
The ation for the �uid beomes:

S =

∫

d4x
√−gf(s0)F (X), (33)

where the funtion F (X) is given by (15) subjet to the

onditions (26), (27) and (29), while f(s) must verify

(28). The Lagrangian (33), up to a non-essential mul-

tipliative onstant, is the Lagrangian for the purely ki-

neti K-�eld [17℄, for whih we have de�ned the pressure,

the energy density (25), the entropy per partile (24)

s = s0, the partile number density (30) and the temper-

ature (32).

To lose this setion we give the dynamial equation

(21) in the ase of the fatorisable K-�uid theory:

∇µ [K(φ)F ′(X)φ,µ] +K ′(φ)F (X) = 0. (34)

VI. PARTICULAR EXAMPLES

Let us onsider some partiular examples. We start by

speifying the following equation of state:

p(h, s) = e∓sg(h), (35)

where we have − for p > 0 and + for p < 0, in aor-

dane with (28). We see that this equation of state is

of the form desribed in the previous setion. One must

further speify the funtion s(φ) in terms of the partile

reation rate, so that the entropy per partile (24) an

be expressed as a funtion of the potential:

s = ∓ ln [K(φ)] . (36)

For the entropy per partile to be positive, one should

impose 0 < K(φ) < 1 (K(φ) > 1) for p > 0 (p < 0).
With the equation of state (35), the temperature of the

�uid beomes

T =
−1

n

∂p

∂s
=

|p|
n
.

Note, that this expression for the temperature oinides

with the expression one would have for a typial �uid

omposed of non-interating physial partiles (general-

ized to negative pressures), and is a onsequene of the

hoie we made for the equation of state (35). In terms of

the �eld we have the partile number density (30), par-

tile rate prodution (31), and with this hoie of f(s)
we an ompute the entropy per partile (36) and the

temperature (32)

T =
|F (X)|√
2XF ′(X)

. (37)

If we onsider the ase where the partile number remains

onstant, the ation for the �uid beomes

S =

∫

d4x
√−ge∓s0F (X), (38)

where the funtion F (X) is evaluated from (15).

Example 1: Fluid with onstant adiabati index p =
wρ (w = onst.). We have ρ = f−1(F ) = F/w. >From

(15) we obtain:

F (X) = ±X 1+w

2w , (39)

where the sign + orresponds to w > 0, while the sign −
orresponds to the ase−1 ≤ w < 0, after the onstraints
(26) and (27) have been applied [23℄. In the ase of the
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stable �ow, the onstraint (29) imposes the positivity of

the pressure together with 0 < w ≤ 1. Suh a �uid is

then desribed by the ation

S =

∫

d4x
√−ge−s0X

1+w

2w ,

with 0 < w ≤ 1, and where

p = e−s0X
1+w

2w , ρ =
e−s0

w
X

1+w

2w ,

n = e−s0 (1 + w)√
2w

X
1

2w , T =

√
2w

1 + w
X

1
2 .

In a spatially �at FRW universe (ds2 = −dt2 +
a2(t)

[

dr2 + r2
(

dθ2 + sin2 θdϕ2
)]

), solving the dynami-

al (34) and Friedmann (3H2 = ρ) equations , we easily
reover X(a) ∝ a−6w

and a(t) ∝ t2/3(1+w)
.

Now, let us turn to the theories where the number of

partiles is not onserved. The kind of ation we have

is (23), stiking to the fatorisable theories. A typial

potential to use would be the well studied K(φ) ∝ 1/φ2

[14, 15, 19℄, due to the fat that it leaves one with solu-

tions with onstant enthalpy per partile in spatially �at

isotropi universes. Yet, if we would use the equation of

state (35) we would ertainly run into trouble beause

of the restritions on the funtion K(φ). There are two

ways to irumvent this problem: either onsider a dif-

ferent equation of state, or a di�erent potential. If we

stik to the above equation of state, then for example

the following potentials K(φ) = A coshφ with A ≥ 1 and
K(φ) = A exp(−φ2) +B, with A,B > 0 and A+B < 1,
will do. Now, the only advantage of using the equation

of state (35) is that the temperature is given as the ratio

of the pressure to the partile number density. The next

simplest hoie for an equation of state would be the one

for whih the entropy funtion f(s) is a power-law. We

thus take

p(h, s) = sbg(h), (40)

where b is an arbitrary onstant suh that sgn(b) =
−sgn(p) to satisfy (28). The entropy then, aording to

(24), is

s = [K(φ)]
1
b , (41)

and is ompatible with the potentials of the formK(φ) ∝
1/φ2. The partile number density and the partile rate

prodution in terms of the �eld are given by (30) and

(31), whereas the temperature now takes the form

T =
|bF (X)|√
2XF ′(X)

[K(φ)]
− 1

b . (42)

We will now look at two �similar� �uids in a spatially

�at FRW universe, but with di�erent properties with re-

spet to the partile number onservation. In the �rst

ase, the �uid is isentropi with a onserved partile num-

ber and provokes interest in both �eld theory [4℄ and os-

mology [20℄. The seond ase represents the same �uid

where the number of partiles is not onserved and has

a Lagrangian of the form of Sen's tahyon ondensate

[13℄, whih has reently beome of onsiderable interest

in osmology [19, 22℄.

Example 2: Fluid with equation of state p = −A/ρ,
A =onst.> 0 (Chaplygin gas). In this ase we have

ρ = f−1(F ) = −1/F . Inserting this in (15), we obtain,

up to some unessential onstants:

F (X) = ±
√
1±X.

We assume the onstraints (26) and (27) hold, and we

are left therefore with negative pressure:

F (X) = −
√
1−X (43)

with 0 ≤ X ≤ 1, and there is no problem with the on-

straint (29), indiating that the �ow is stable. We an

think of suh a �uid as a �uid with the equation of state

p(h, s) = −sb
√

1− h2

2
(44)

in whih the number of partiles is onserved (b =
onst.>0). The ation is then

S = −
∫

d4x
√−g (s0)b

√
1−X,

and therefore

p = − (s0)
b
√
1−X, ρ =

(s0)
b

√
1−X

,

n = (s0)
b

√

X

2 (1−X)
, T =

b

s0

√

2

X
(1−X) .

Solving the �eld equation (34) in a spatially �at FRW

model, one obtains

X(a) =
1

1 +Ba6
,

where B is an integration onstant. From here one may

evaluate all the hydrodynamial parameters in terms of

the sale fator, arriving to the unusual result that the

temperature of the Chaplygin gas rises with the expan-

sion. This basially happens due to the negative pressure

of the �uid [21℄. One an further solve, as well, the Fried-

mann equation to �nd the behaviour of the sale fator

as a funtion of time [20℄.

Example 3: Tahyon ondensate. The possibility of

�uid desription of tahyon ondensate in bosoni and su-

persymmetri string theories disovered by Sen [13℄ has

motivated a onsiderable amount of work studying the

onsequenes of the rolling tahyon in osmology [19, 22℄.
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Here we are interested to look at tahyon ondensate a-

tion in the light of the formalism developed above as a

�uid where the number of partiles is not onserved. The

ation for the K-�uid with the form of the tahyon on-

densate is [13, 19℄

S = −
∫

d4x
√−gK(φ)

√
1−X.

We an think of the above ation as one desribing a

�uid with equation of state (44) in whih the partile

rate prodution is modeled by (41). From this ation we

an reed o�:

p = −K(φ)
√
1−X, ρ =

K(φ)√
1−X

,

n = K(φ)

√

X

2(1−X)
, T =

b

[K(φ)]
1
b

√

2

X
(1−X) .

It is simple to obtain partiular osmologial solutions

for suh a �uid if one assumes a spatially �at isotropi

osmology and a potential of the form K(φ) = β/φ2 with
β > 0 [19℄. Solving Einstein's equations one �nds for the

veloity potential φ(t) and the sale fator of the universe
a(t):

φ(t) =

√

4

3n
t, a(t) = tn, (45)

where n is a onstant given in terms of the parameter of

the potential n = n(β). Therefore the parameter β, the
slope of the potential, de�nes the partile reation rate as

well as di�erent expansion rate. For these partiular so-

lutions the enthalpy per partile of the �uid (10) remains

onstant. This is in ontrast with the ase of Chaplygin

gas, where the entropy per partile was onstant.

We an use the expressions (6) to evaluate the inrease

of the number of partiles and entropy of the system in

a time interval ∆t. For the toy models with equation of

state of the form (40), and a partile reation rate mod-

eled byK(φ) = β/φ2, we obtain the following expressions
in a spatially �at FRW universe:

∆N(t1, t2) = −8πβ

3
F (X)

∫ t2

t1

(

a

φ

)3

dt,

∆S(t1, t2) = −8πβ
1+b

b

3
F (X)

[

1 +
2XF ′(X)

bF (X)

]
∫ t1

t2

a3

φ
2+3b

b

dt.

For the tahyon-like model, taking into onsideration

(45), we have

∆N ∝ t3n−2, ∆S ∝ t
3nb−2(b+1)

b .

Sine we must impose X < 1 for the ation to be well-

de�ned, one has n > 2/3, and, interestingly enough, this

implies that the partiles are reated in suh a universe.

The reation rate is best visualised by the expression

1

N

dN

dt
=

1√
2X

d
dφ [lnK(φ)]

d
dX [lnF (X)]

.

For the above tahyon example we readily �nd that the

reation rate fades with time as t−1
.

We see that the �uid we have is the same as in Chap-

lygin gas (has the same equation of state), but the pro-

dution of partiles hanges the evolution of the universe.

Changing the partile reation rate one hanges the ex-

pansion rate of the model.

VII. CONCLUSIONS

In this paper we have onsidered a Lagrangian ap-

proah to a Relativisti Hydrodynamis in whih the

number of partiles is not onserved. The partile num-

ber non-onservation is modeled by introduing an ex-

pliit veloity potential dependent term into the �uid La-

grangian. In doing so, the usual shift symmetry of the

ation is broken, resulting in the appearane of a soure

term in the ontinuity equation. The onservation equa-

tion derived from the stress-energy tensor indiates that

the partile number non-onservation must be balaned

by an entropy �ow. Both the entropy �ow and the hange

in the partile number are expressed as funtion of the

veloity potential. Although suh a desription is valid

for a general �ow, we onentrate on the purely poten-

tial �uid motion without vortiity, to make ontat with

some modern theories used for the desription of matter

in the universe.

By identifying the K-essene �eld variable 2X with the

square of the enthalpy per partile h we identify the K-

�eld theory and the hydrodynamial Lagrangians we look

at. In the ase of purely kineti K-essene, we observe

that this theory is idential to the isentropi perfet �uid,

and give a `ditionary' (15) as to how to pass from the

usual desription in osmology in terms of the equation

os state p = p(ρ) to the K-theory Lagrangians of the form
F (X). On a formal level, therefore, the purely kineti K-

essene is no `big news', but rather a simple onventional

hydrodynamis in a disguise.

The non-onventional hydrodynamis (K-

hydrodynamis), the one analogous to the K-essene

with the potential term, is rather more involved. First,

one must interpret suh a hydrodynamis as a �ow where

the number of partiles is not onserved. This, in turn,

leads to a hange in the entropy per partile, as well as

to a global entropy �ow. The �uid now is not isentropi

and to give an hydrodynamial desription the two

equations of state p = f(s)g(h) and ψ = ψ(s, h) must be
spei�ed. We have found [16℄ that our parametrisation

works for soure terms of the form ψ(s, h) = k(s)g(h),
i.e. the soure term must be separable in funtions of

entropy and enthalpy, and the enthalpy funtion must be
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the same as the one whih appears in the pressure. This

restrits the generality of the approah, nevertheless, it

is of diret appliation to the K-essene-like osmologies.

We have �nally osidered several examples of �uids

with both onserved and non-onserved number of par-

tiles in the ontext of spatially �at isotropi universe.

The telling example is the omparison of Chaplygin gas

on one hand and a K-�uid with the form of tahyon on-

densate on the other. In the �rst ase one deals with an

isentropi perfet �uid where the number of partiles is

onserved. The peuliarity of this example is that the

temperature of the gas rises up with the expansion. The

seond example represents a �uid with the same equa-

tion of state, but with the number of partiles (entropy

per partile) not onserved. It is interesting, however,

that for speial reation rates, those with the potential

K = β/φ2 with β > 0, the enthalpy per partile rather

than the entropy remains onstant in the ourse of the

expansion. We also observe that in suh a universe re-

ation rather than destrution of partiles takes plae.

From a tehnial point of view it appears that the ve-

loity potential/X-variable formalism is quite useful to

study the dynamis of the osmologial models. It would

be interesting in the future to obtain and study some of

the K-�uid type Lagrangians obtained as e�etive theo-

ries derived from fundamental interations. The work in

this diretion is in progress and will be presented else-

where.
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