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Modified gravity and the stability of de Sitter space
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Within the context of modified gravity and dark energy scenarios of the accelerated universe, we
study the stability of de Sitter space with respect to inhomogeneous perturbations using a gauge–
independent formalism. In modified gravity the stability condition is exactly the same that one
obtains from a homogeneous perturbation analysis, while the stability condition in scalar–tensor
gravity is more restrictive.

The recent discovery that the expansion of the universe
is accelerated, obtained by studying type Ia supernovae
[1], and the cosmic microwave background experiments
showing that the universe has nearly critical density [2],
call for a theoretical explanation. Two classes of models
are predominant in the literature: the first class assumes
that there is a form of dark energy (or quintessence) un-
clustered at all scales, that accounts for 70% of the en-
ergy density ρ of the universe. This dark energy, of un-
known nature, is necessarily exotic: to generate accel-
eration in Einstein gravity it must have negative pres-
sure PDE < −ρDE/3. The best fit to the observational
data favours an even more exotic dark energy (phantom
energy or superquintessence) with equation of state pa-
rameter w ≡ PDE/ρDE < −1, which is evolving in time
[3]. Were a value w < −1 to be confirmed by observa-
tions, it can not be explained by general relativity with
a canonical scalar field φ, which is the most common
model of dark energy, because of the Einstein–Friedmann
equation Ḣ = −κ (Pφ + ρφ) /6 = −κφ̇2/2 ≤ 0, which is
incompatible with Pφ < −ρφ (equivalent to superacceler-

ation Ḣ > 0). To model an equation of state parameter
w < −1, a phantom field [4] or a field coupled nonmin-
imally to the Ricci curvature R (see Refs. [5, 6] for re-
views) have been considered. These theories can be seen
as special cases of scalar–tensor gravity, described by the
action [7]

S =

∫

d4x
√
−g
[

ψ(φ)R − 1

2
∇cφ∇cφ− V (φ)

]

. (1)

The second class of models does not require the pres-
ence of exotic dark energy but modifies gravity at large
scales by introducing non–linear (in R) corrections to
the Einstein–Hilbert Lagrangian which become dominant
only at late times (low curvatures) [8]–[10]. These theo-
ries often suffer from problems with the post–Newtonian
limit [11, 12, 13] or from instabilities [14], and are not
yet accepted as completely viable theories, but they are
nevertheless interesting as the cosmic acceleration that
we are observing may be the first sign of a departure
from Einstein’s gravity. Furthermore, these models are
motivated by certain compactifications of M–theory [16].
In both dark energy models and modified gravity, de-

pending on the model adopted, the universe may acceler-

ate forever or end its existence at a finite time in the fu-
ture in a Big Rip or sudden future singularity [17, 18, 19].
Such singularities have been classified in Ref. [15]; accord-
ing to this classification, it is known that singularities of
type I can occur in these models [18], but singularities of
other types are not excluded.
The fate of the universe depends on the presence and

size of the attraction basins of attractor solutions in the
phase space. In many models of both dark energy and
modified gravity, a de Sitter attractor solution is found
[21]. In this paper we address the issue of the stability
of de Sitter space in modified gravity and scalar–tensor
theories. It is straightforward to assess stability with re-
spect to homogeneous (time–dependent only) perturba-
tions; however, it is more significant to establish whether
de Sitter space is also stable with respect to more general
inhomogeneous (space– and time–dependent) perturba-
tions. This is a much more difficult task because of the
gauge–dependence problems associated with this kind of
perturbations [22]. In the following we show that for
modified gravity the stability condition obtained with a
gauge–independent inhomogeneous perturbation analysis
reduces to that obtained in the much simpler homoge-
neous perturbation analysis, whereas this is not the case
for scalar–tensor gravity.
We begin from the generalized gravity action

S =

∫

d4x
√
−g
[

f (φ,R)

2
− ω(φ)

2
∇cφ∇cφ− V (φ)

]

,

(2)
which contains scalar–tensor gravity as the case
f (φ,R) = ψ(φ)R, and modified gravity f(R) when the
scalar field φ is absent and fRR 6= 0. In the spatially flat
Friedmann–Lemaitre–Robertson–Walker (FLRW) metric

ds2 = −dt2 + a2(t)
(

dx2 + dy2 + dz2
)

, (3)

the field equations are

H2 =
1

3F

(

ω

2
φ̇2 +

RF

2
− f

2
+ V − 3HḞ

)

, (4)

Ḣ = − 1

2F

(

ωφ̇2 + F̈ −HḞ
)

, (5)

φ̈+ 3Hφ̇+
1

2ω

(

dω

dφ
φ̇2 − ∂f

∂φ
+ 2

dV

dφ

)

= 0 , (6)
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where F ≡ ∂f/∂R, H ≡ ȧ/a, and an overdot denotes
differentiation with respect to the comoving time t. By
choosing (H,φ) as dynamical variables, the equilibrium
points of the dynamical system (4)–(6) are de Sitter
spaces with constant scalar field (H0, φ0). These solu-
tions exist subject to the conditions

6H2

0 F0 − f0 + 2V0 = 0 , (7)

f0
′ − 2V0

′ = 0 , (8)

where F0 ≡ F (φ0, R0), f0 ≡ f (φ0, R0), V0 ≡ V (φ0),

V0
′ ≡ dV

dφ

∣

∣

∣

φ0

, a prime denotes differentiation with respect

to φ, and R0 = 12H2
0 .

Inhomogeneous perturbations of de Sitter space are
investigated by using the covariant and gauge–invariant
formalism of Bardeen–Ellis–Bruni–Hwang [22] in the ver-
sion studied by Hwang [23] for generalized gravity. The
metric perturbations are defined by

g00 = −a2 (1 + 2AY ) , (9)

g0i = −a2B Yi , (10)

gij = a2 [hij (1 + 2HL) + 2HT Yij ] , (11)

where the scalar harmonics Y are the eigenfunctions of
the eigenvalue problem ∇̄i∇̄i Y = −k2 Y . Here hij is
the three-dimensional metric of the FLRW background
and the operator ∇̄i is the covariant derivative associated
with hij , while k is an eigenvalue. The vector and tensor
harmonics Yi and Yij obey

Yi = − 1

k
∇̄iY , Yij =

1

k2
∇̄i∇̄jY +

1

3
Y hij . (12)

Bardeen’s gauge–invariant potentials

ΦH = HL +
HT

3
+
ȧ

k

(

B − a

k
ḢT

)

, (13)

ΦA = A+
ȧ

k

(

B − a

k
ḢT

)

+
a

k

[

Ḃ − 1

k

(

aḢT

)

˙

]

,(14)

and the Ellis–Bruni variable

∆φ = δφ+
a

k
φ̇
(

B − a

k
ḢT

)

. (15)

are used, with equations similar to eq. (15) defining the
gauge–invariant variables ∆f , ∆F , and ∆R. The first
order equations obeyed by the gauge–invariant perturba-
tions are given in Ref. [23] and they simplify considerably
in the de Sitter background (H0, φ0). To first order, they
are:

∆φ̈+ 3H0∆φ̇+

[

k2

a2
− 1

2ω0

(f ′′

0 − 2V ′′

0 )

]

∆φ =
fφR
2ω0

∆R , (16)

∆F̈ + 3H0 ∆Ḟ +

(

k2

a2
− 4H2

0

)

∆F +
F0

3
∆R = 0 , (17)

ḦT + 3H0 ḢT +
k2

a2
HT = 0 , (18)

− Φ̇H +H0ΦA =
1

2

(

∆Ḟ

F0

−H0

∆F

F0

)

, (19)

ΦH = −1

2

∆F

F0

, (20)

ΦA +ΦH = −∆F

F0

, (21)

Φ̈H + 3H0Φ̇H −H0Φ̇A − 3H2

0ΦA = −1

2

∆F̈

F0

−H0

∆Ḟ

F0

+
3H2

0

2

∆F

F0

, (22)
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with

∆R = 6

[

Φ̈H + 4H0Φ̇H +
2

3

k2

a2
ΦH −H0Φ̇A +

(

k2

3a2
− 4H2

0

)

ΦA

]

, (23)

Furthermore, vector perturbations do not have any ef-
fect to first order in the absence of ordinary matter [23]
and de Sitter space is always stable with respect to first
order tensor perturbations, as can be seen from eq. (18),
so we only need to worry about scalar perturbations (see
Ref. [24] for details). We first consider modified gravity
theories obtained by setting φ ≡ 1 and f = f(R) with
fRR 6= 0 in the action (2). The gauge–invariant pertur-
bations are related by [24]

ΦH = ΦA = − ∆F

2F0

, (24)

∆R = 6

[

Φ̈H + 3H0Φ̇H +

(

k2

a2
− 4H2

0

)

ΦH

]

, (25)

where a = a0e
H0t. By using the fact that ∆F

F0

= fRR

F0

∆R,

one obtains ∆R = − 2F0

fRR
ΦH . The perturbations ΦH and

ΦA evolve according to

Φ̈H + 3H0Φ̇H +

(

k2

a2
− 4H2

0 +
F0

3fRR

)

ΦH = 0 ; (26)

at late times the term k2/a2 can be safely neglected and
stability is achieved if the coefficient of ΦH in the last
term of the left hand side of eq. (26) is non–negative, i.e.
(using eq. (7)), if

F 2
0 − 2f0fRR

F0fRR

≥ 0 . (27)

The spatial dependence of the inhomogeneous pertur-
bations is encoded in the eigenvector k of the spherical
harmonics; the fact that the only term containing k (or
the physical wave vector kphys = k/a) in eq. (26) be-
comes negligible on a de Sitter background implies that
the spatial dependence effectively disappears from the
analysis. Eq. (27) coincides with the stability condition
that can be obtained by a straightforward homogeneous
perturbation analysis of eqs. (4) and (5). Hence, in the
stability analysis of de Sitter space in modified gravity
theories one can safely neglect inhomogeneous perturba-
tions and limit oneself to the much more approachable
homogeneous perturbations, thus bypassing the gauge–
dependence problems. However, this conclusion could
not be drawn a priori but it necessarily relies on the in-
homogeneous perturbation analysis presented. Further,
this result has been shown to be true only for the sta-
bility of de Sitter space and not for different attractor
solutions that may be present in the phase space.
Naively, the physical reason for this considerable for-

mal simplification could be looked for in the fact that,

during the quasi–exponential expansion of the universe,
inhomogeneities (and anisotropies [25]) are redshifted
away; this is not the whole story though, because the
simplification found for modified gravity does not occur
in scalar–tensor theories. In fact, in this case, eqs. (18),
(24), and (25), together with

∆F

F0

=
fφR
F0

∆R , (28)

yield

∆φ̈+ 3H0∆φ̇+







k2

a2
−

(

f ′′

0

2
− V ′′

0 +
6f2

φR

F0

H2
0

)

ω0

(

1 +
3f2

φR

2ω0F0

)






∆φ = 0

(29)
if 1 + 3f2

φR/(2ω0F0) 6= 0. The stability condition of de
Sitter space in scalar–tensor gravity then becomes [24]

(

f ′′

0

2
− V ′′

0 +
6f2

φR

F0

H2
0

)

ω0

(

1 +
3f2

φR

2ω0F0

) ≤ 0 . (30)

For general scalar–tensor theories, this condition is more
restrictive than the corresponding stability condition ob-
tained from a straightforward homogeneous perturbation
analysis of eqs. (4)–(6), which is

f ′′

0

2
− V ′′

0

ω0

≤ 0 . (31)

However, for scalar–tensor theories of the form

S =

∫

d4x
√
−g
[

φR− ω(φ)

φ
∇cφ∇cφ− V (φ)

]

(32)

with a single coupling function, eqs. (30) and (31) coin-
cide [26]. The reason for the failure of these equations
to coincide in the general case can be traced to the right
hand side of eq. (16), in which perturbations ∆R act as
a source for the perturbation ∆φ (roughly speaking, per-
turbations δH in the Hubble parameter, and their deriva-
tives, source scalar field perturbations δφ): such a term is
absent in the homogeneous perturbation analysis of the
Klein–Gordon equation (6). Analogously, such a term is
absent in eq. (26) obeyed by the gauge–independent per-
turbations ΦH (or ΦA) in modified gravity. This shows
that although modified gravity is mathematically equiva-
lent to a scalar–tensor theory [11, 28], the corresponding
physics is not completely equivalent.
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As an example of application of the stability condition
(27), let us consider the theory described by [10, 11, 29]

f(R) = R− µ4

R
. (33)

The de Sitter space must satisfy the condition R0 =
12H2

0 =
√
3µ2 and the stability condition (27) can never

be satisfied: this de Sitter space is always unstable. This
situation can be ameliorated by a quadratic correction –
in the theory with

f(R) = R− µ4

R
+ aR2 , (34)

the condition for the existence of de Sitter space is again
R0 =

√
3µ2; by applying the stability condition (27) one

obtains that de Sitter space is stable if

a >
1

3
√
3µ2

(35)

and unstable otherwise (in particular for negative a).
This result agrees with those of Refs. [27], which follow
from an independent analysis of the effective potential in
the Einstein conformal frame version of the scalar–tensor
theory equivalent to the action (2) with f(R) specified
by eq. (34). Furthermore, the theory described by cor-
rections in both 1/R and R2 has much better chances of
passing the Solar System tests than the theory based on
simple 1/R corrections [27].
A more complete discussion of the relation between

stability of modified gravity and of scalar–tensor theo-
ries, and the application of eqs. (27) and (30) to other
specific dark energy and modified gravity scenarios will
be presented elsewhere.
This work was supported by the Natural Sciences
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and by a grant from the Senate Research Committee of
Bishop’s University.
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