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The Erwin Schrödinger International Institute for Mathematical Physics,

Boltzmanngasse 9, A-1090 Wien, Austria and

Institut für Theoretische Physik, Technische Universität Wien,

Wiedner Hauptstr. 8-10, A-1040 Wien, Austria

T. Harko†

Department of Physics, The University of Hong Kong,

Pokfulam Road, Hong Kong SAR, P. R. China

(Dated: October 24, 2018)

Abstract

We show that in the framework of the classical general relativity the presence of a positive cosmo-

logical constant implies the existence of a minimal mass and of a minimal density in nature. These

results rigorously follow from the generalized Buchdahl inequality in the presence of a cosmological

constant.
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I. INTRODUCTION

One of the most important characteristics of compact relativistic astrophysical objects

is their maximum allowed mass. The maximum mass is crucial for distinguishing between

neutron stars and black holes in compact binaries and in determining the outcome of many

astrophysical processes, including supernova collapse and the merger of binary neutron stars.

The theoretical values of the maximum mass and radius for white dwarfs and neutron stars

were found by Chandrasekhar and Landau and are given by Mmax ≈
[

(~c/G)m
−4/3
B

]3/2

and Rmax ≤ (~/mc) (~c/Gm2
B)

1/2
, where mB is the mass of the baryons and m the mass of

either electron or neutron [1]. Thus, with the exception of composition-dependent numerical

factors, the maximum mass of a degenerate star depends only on fundamental physical

constants. For non-rotating neutron stars with the central pressure at their center tending

to the limiting value ρcc
2 an upper bound of around 3M⊙ has been found [2]. The maximum

mass of different types of astrophysical objects (neutron stars, quark stars etc.) under

different physical conditions, including rotation and magnetic fields, was considered by using

both numerical and analytical methods ([3], and references therein).

With the use of the gravitational field equations for a static equilibrium configuration,

Buchdahl [4] obtained an absolute limit of the mass-radius ratio of a stable compact object,

given by 2GM/c2R ≤ 8/9. This limit has been generalized in the case of scalar-tensor

theories [5], for charged fluid spheres [6], and for the Schwarzschild-de Sitter geometries in

the presence of a cosmological constant [7].

If the problem of the maximum mass of compact objects had been considered in great

detail, the more fundamental question of the possible existence of a minimum mass in

the framework of general relativity had been investigated at a much lesser extent. The

minimum mass of neutron stars or of white dwarfs can be derived qualitatively from en-

ergy considerations [8]. A lower limit for the radius of the neutron stars of the form

R ≥ (3.1125− 0.44192x+ 2.3089x2 − 0.38698x3), with x = M/M⊙ and 1 ≤ x ≤ 2.5 has

been found in [9].

At a microscopic level two basic quantities, the Planck mass mP and the Planck length lP

are supposed to play a fundamental physical role. The Planck mass is derived by equating

the gravitational radius 2Gm/c2 of a Schwarzschild mass with its Compton wavelength

~/mc. The corresponding mass mP l = (c~/2G)1/2 is of the order mP l ≈ 1.5 × 10−5 g. The
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Planck length is given by lP l = (~G/c3)
1/2 ≈ 1.6×10−33 cm and at about this scale quantum

gravity will become important for understanding physics. The Planck mass and length are

the only parameters with dimension mass and length, respectively, which can be obtained

from the fundamental constants c, G and ~.

The observations of high redshift supernovae [10] and the Boomerang/Maxima data [11],

showing that the location of the first acoustic peak in the power spectrum of the microwave

background radiation is consistent with the inflationary prediction Ω = 1, have provided

compelling evidence for a net equation of state of the cosmic fluid lying in the range −1 ≤
w = p/ρ < −1/3. To explain these observations, two dark components are invoked: the

pressure-less cold dark matter (CDM) and the dark energy (DE) with negative pressure.

CDM contributes Ωm ∼ 0.25, and is mainly motivated by the theoretical interpretation of

the galactic rotation curves and large scale structure formation. DE provides ΩDE ∼ 0.7

and is responsible for the acceleration of the distant type Ia supernovae. The best candidate

for the dark energy is the cosmological constant Λ, which is usually interpreted physically

as a vacuum energy. Its size is of the order Λ ≈ 3 × 10−56 cm−2 [12]. In some theoretical

models is is assumed that the cosmological constant can be derived from the reduction to

4D of higher-dimensional unified theories [13]. Since at least 70% of the Universe consists

of vacuum energy, it is natural to consider Λ as a fundamental constant. Therefore we can

chose as the set of fundamental constants (c, G, ~,Λ).

By using dimensional analysis Wesson [14] has found two different masses which can

be constructed from this set of constants. The mass mP relevant at the quantum scale is

mP = (~/c)
√

Λ/3 ≈ 3.5× 10−66 g while the mass mPE relevant to the cosmological scale is

mPE = (c2/G)
√

3/Λ ≈ 1× 1056 g.

The interpretation of the mass mPE is straightforward: it is the mass of the observable

part of the universe, equivalent to 1080 baryons of mass 10−24 g each. The interpretation of

the mass mP is more difficult. By using the dimensional reduction from higher dimensional

relativity and by assuming that the Compton wavelength of a particle cannot take any value,

Wesson [14] proposed that the mass is quantized according to the rule m = (n~/c)
√

Λ/3.

Hence mP is the minimum mass corresponding to the ground state n = 1.

These results about the fundamental mass have been obtained by using a phenomeno-

logical approach. It is the purpose of the present Letter to give a rigorous proof on the

existence of a minimum mass in general relativity. The existence of such a mass is a di-
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rect consequence of the presence of a non-zero cosmological constant in the gravitational

field equations. Therefore these two quantities are strongly inter-related. In order to prove

the existence of a minimum mass we follow the approach introduced by Buchdahl [4] and

generalized to the case of a non-zero Λ in [7].

The present Letter is organized as follows. The limiting density and mass for a general

relativistic object is derived in the next Section. We conclude our results in the last section.

II. LOWER MASS AND DENSITY BOUNDS FOR STATIC GENERAL RELA-

TIVISTIC SPHERES

We assume that the spherically symmetric general relativistic mass distribution is de-

scribed by the metric (in the present Section we set c = 1):

ds2 = −eν(r)dt2 + eλ(r)dr2 + r2(dθ2 + sin2θ dφ2). (1)

Static and spherically symmetric perfect fluids in general relativity are described by three

independent field equations (for four unknown functions) that imply conservation of energy-

momentum. Eliminating the function ν(r) from the field equations yields the well known

Tolman-Oppenheimer-Volkoff equation in the presence of a cosmological constant Λ [7].

Let us introduce Buchdahl variables, defined by [4]

y2 = e−λ = 1− 2w(r)r2 − Λ

3
r2, ζ = eν/2, x = r2, (2)

where w(r) is the mean density up to r, w(r) = m(r)/r3 and m(r) is the mass inside radius

r, m(r) = 4π
∫ r

0
ρ (r′) r′2dr′, with ρ the mass density of the compact object with radius R.

Eliminating the pressure function from the field equations, one obtains the following

differential equation [4, 7]

(yζ,x),x −
1

2

w,xζ

y
= 0. (3)

Eq. (3) can be used to compare solutions with decreasing energy density with ones having

constant density, for which the second term in Eq. (3) vanishes. In the latter case one can

integrate Eq. (3) and compare it with a decreasing solution, which then yields the generalized

Buchdahl inequality in the presence of the cosmological constant [7]:

√

1− 2GM

R
− Λ

3
R2 ≥ 1

3
− Λ

12πGρ
. (4)
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Eq. (4) provides a lower bound for the mass and density of general relativistic objects.

To prove this result, we start by squaring Eq. (4), multiplying it by G2M2, eliminating the

density on the right-hand side by ρ = 3M/(4πR3) and taking all terms to the left-hand side.

Then we obtain the following expression

−2G3M3 +
8

9
G2M2R− Λ

3
G2M2R3 +

2Λ

27
GMR4 −

(Λ

9
R3
)2

R ≥ 0, (5)

which can be written as a product of three terms

−2

(

GM +
Λ

6
R3

)

[

GM − 2R

9

(

1−
√

1− 3Λ

4
R2

)][

GM − 2R

9

(

1 +

√

1− 3Λ

4
R2

)]

≥ 0.

(6)

Dividing by the factor (−2) reverses the inequality sign. Hence either one or all three

terms of the product must have a negative sign in order to fulfill the latter equation.

With Λ = 0 we can easily find the correct signs. The first term is strictly positive for

Λ = 0 (it reads GM), hence only one of the remaining terms is negative. The second term

for Λ = 0 also yields GM . Therefore, the last term must be negative, which for vanishing Λ

gives 2GM ≤ 8R/9, which is nothing but the standard Buchdahl inequality [4].

Since the signs of the three terms are now known, let us analyze Eq. (6) with a non-zero

cosmological constant. We shall consider separately the cases of a positive (Λ > 0) and of

a negative (Λ < 0) cosmological constant. For Λ > 0 the analysis of the signs of Eq. (6)

gives the following algebraic conditions to be satisfied by the mass and radius of the matter

distribution and by the cosmological constant.

(i) Positivity of the first term of (6) implies

GM ≥ −Λ

6
R3. (7)

For positive Λ this is trivially fulfilled.

(ii) Positivity of the second term yields

GM ≥ 2R

9

(

1−
√

1− 3Λ

4
R2

)

, (8)

which as before gives a lower bound on the mass.

(iii) Finally, negativity of the last term of the product (6) reads

GM ≤ 2R

9

(

1 +

√

1− 3Λ

4
R2

)

. (9)

5



Putting the three above conditions (i)–(iii) together, leads to

2R

9

(

1 +

√

1− 3Λ

4
R2

)

≥ GM ≥ 2R

9

(

1−
√

1− 3Λ

4
R2

)

, for Λ > 0. (10)

We may Taylor expand the lower bound which then reads (2R/9)
(

1−
√

1− 3ΛR2/4
)

≈
ΛR3/12.

Therefore for a positive cosmological constant one obtains a lower bound for the mass

and the density of a general relativistic object, given by

2GM ≥ Λ

6
R3, ρ =

3M

4πR3
≥ Λ

16πG
=: ρmin,Λ ≥ 0. (11)

In the case of a negative cosmological constant, Λ < 0, by repeating the previous analysis

of the signs in Eq. (6) we obtain the condition

2R

9

(

1 +

√

1− 3Λ

4
R2

)

≤ GM ≤ 2R

9

(

1−
√

1− 3Λ

4
R2

)

, for Λ < 0. (12)

By performing a small Λ Taylor expansion we find

4
R

9
− Λ

12
R3 ≤ GM ≤ −Λ

6
R3, for Λ < 0. (13)

The original Buchdahl inequality [4], with Λ = 0 requires that 4R/9 ≥ GM . Since Λ < 0

we may write Eq. (13) as

4
R

9
+

|Λ|
12

R3 ≤ GM ≤ +
|Λ|
6
R3, for Λ < 0. (14)

Eq. (14), derived by assuming a negative cosmological constant, obviously violates in the

limit Λ → 0 the Buchdahl bound. The physical consequence of this fact is that we could

have massive fluid balls which are surrounded by a horizon.

Therefore the requirement of the absence of a regular solution contained in the horizon

rules out the possibility of the existence of a minimum bound for the mass in the pres-

ence of a negative cosmological constant. Moreover, the right hand side of Eq. (14) gives

GM ≤ |Λ|R3/6, which would imply the un-physical condition that the numerical value of

the minimal mass derived for Λ > 0 is actually the maximal allowed mass in nature for

Λ > 0.
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The same results on the non-existence of a minimum mass for a negative Λ can be obtained

by considering the inequality 2R
(

1 +
√

1− 3ΛR2/4
)

/9 ≤ GM ≤ −ΛR3/6,Λ < 0, which

can be obtained from Eq. (6), by assuming that the first bracket is negative, the second is

always positive (for a negative Λ) and that the last bracket is positive.

III. CONCLUSIONS

For Λ = 0 Eqs. (11) expresses the positivity of the total mass and of the total energy

density of a compact general relativistic matter distribution, M ≥ 0 and ρ ≥ 0. For Λ > 0

we conclude that no object present in classical general relativity can have a density that is

smaller than ρmin. In the derivation of this result we have also assumed that R < 2/
(√

3Λ
)

,

that is, R is smaller than the size of the event horizon.

From Eq. (11) one can estimate the numerical value of the minimal density for a positive

Λ as ρmin = Λc2/16πG = 8.0× 10−30 g cm−3 (in the present Section we shall restore c in all

equations).

By assuming that the minimum mass in nature is mP = (~/c)
√

Λ/3 [14], it follows that

the radius corresponding to mP is given by

RP = 481/6
(

~G

c3

)1/3

Λ−1/6 ≈ 1.9 l
2/3
P l Λ−1/6, (15)

with the numerical value RP = 4.7×10−13 cm= 4.7 fm. Hence, the radius RP is of the same

order of magnitude as the classical radius of the electron re = e2/mec
2 = 2.81× 10−13 cm.

Therefore from the previous analysis we conclude that in the framework of classical

general relativity the possible existence of a minimal mass and of a minimal density in

nature is strictly related to the presence of a positive cosmological constant. On the other

hand, the positivity of Λ is confirmed by the cosmological observations [12].

If an absolute minimum length does exist, then, via the first of Eqs. (11), a positive

cosmological constant also implies the existence of an absolute minimum mass in nature.
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Gen. Rel. Grav., 36, 1039, 2004; C. G. Böhmer, gr-qc/0409030, 2004; A. Balaguera-Antolinez,
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