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Abstract. The scheme developed by Hartle for describing slowly rotating bodies
in 1967 was applied to the simple model of constant density by Chandrasekhar and
Miller in 1974. The pivotal equation one has to solve turns out to be one of Heun’s
equations. After a brief discussion of this equation and the chances of finding a
closed form solution, a quickly converging series solution of it is presented. A
comparison with numerical solutions of the full Einstein equations allows one to
truncate the series at an order appropriate to the slow rotation approximation.
The truncated solution is then used to provide explicit expressions for the metric.

PACS numbers: 04.20.-q, 04.25.-g, 04.40.-b, 04.40.Dg

1. Introduction

Until now, no one has succeeded in finding an analytic solution to Einstein’s equations
that describes an isolated, rotating, three dimensional perfect fluid. If such a solution
is to be found, then most likely for a homogeneous body in equilibrium. After all,
three limiting cases are known analytically for this equation of state: the non-rotating
limit (inner and outer Schwarzschild solution), the portion of the Newtonian limit
made up of the Maclaurin spheroids and the disc limit (the relativistic disc of dust,
see [1]).

Given such an analytic solution, it could then be expanded about various limits.
An appropriate post-Newtonian expansion would yield the Maclaurin spheroids in
the zeroth order, then the analytically known first post-Newtonian corrections to the
next order (see [2, 3]) and so on. Such a post-Newtonian expansion can be expressed
entirely in terms of elementary functions at least up to the fourth order [4]. Similarly,
an expansion with respect to the angular velocity would result in the inner and outer
Schwarzschild solution in the zeroth order. In this paper we shall consider the first
order contribution to the slow rotation expansion using the formalism introduced by
Hartle [5].

Chandrasekhar and Miller [6] already considered this problem in 1974 by solving
the equations numerically. Since there now exist computer programs capable of
solving the complete Einstein equations in the case of stationarity and axial symmetry
to extremely high accuracy, a further numerical treatment of the slowly rotating
approximation would only be useful inasmuch as it provides a fairly simple alternative
for arriving at a good approximation to the full field equations. An analytic treatment,
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however, can pinpoint where the stumbling blocks preventing further progress lie, and
can augment the disc solution [1] in suggesting a “lower bound” for the complexity of
the full-solution. A discussion of some of the analytic issues that arise in this context
can be found in [7] and references therein.

We present the basic equations for a slowly rotating homogeneous perfect fluid in
§2 and show that the equation of primary importance is one of Heun’s equations.
In §3 we discuss some of the properties of Heun’s equations and consider what
transformations could result in a simpler equation. Various series solutions are
discussed and derived in §4, and use is made of the numerical solution of the full
Einstein equations in order to determine an appropriate truncation order. Using these
truncated series, approximate expressions for all metric functions are discussed in §5
and provided in Appendix A.

2. Basic Equations for Slow Rotation

As in [6], we devote this section to listing the fundamental equations derived by Hartle
and then specialize them to the case of constant energy density.

The metric describing a slowly rotating, stationary and axisymmetric fluid is
given by

ds2 = −e2νS (1 + 2h) dt2 + e2λS

[

1 +
e2λS

r
2m

]

dr2

+r2 (1 + 2k)
[

dθ2 + sin2 θ (dϕ− ω dt)
2
]

+O(Ω3) (1)

with

h = h0(r) + h2(r)P2(cos θ)

m = m0(r) +m2(r)P2(cos θ)

k = k2(r)P2(cos θ)

ω = ω(r).

In the above equations, P2(cos θ) denotes Legendre’s polynomial of order 2, Ω is the
angular velocity (see [5] for an account of what ‘slow rotation’ means in terms of Ω),
ω is of order Ω and h, m and k are of order Ω2. In the above expansion in spherical
harmonics, use was made of a coordinate freedom in order to transform away the term
k0(r).

The non-rotating metric, obtained when Ω → 0, is

ds2 = −e2νS dt2 + e2λS dr2 + r2
(

dθ2 + sin2 θ dϕ2
)

.

For a non-rotating perfect fluid with pressure pS, constant energy density ε, radius2

rS and mass

MS =
4

3
πεr3S, (2)

the metric functions are3 (see e.g. [8])

r ≥ rS : eλS =
r

r − 2MS
, eνS =

r − 2MS

r
(3)

r ≤ rS : eλS =
1

B(r)
, eνS =

1

2
[A−B(r)] (4)

2 The coordinate radius of the star rS is not to be confused with RS in [6], which they use to denote
the Schwarzschild radius.
3 We adopt units in which c = G = 1.
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with

A := 3

√

1− 2MS

rS
, B(r) :=

√

1− 2MSr2

r3S
(5)

and the normalized pressure is given by

pS
ε

=
A/3−B

B −A
.

Integrating the equation for hydrostatic equilibrium, it is natural to define

p∗ = ln(ε+ p)−
∫ ε dε′

ε′ + p(ε′)
(6)

= ln(ε+ p) (ε = constant),

which we expand as with the metric coefficients

p∗ = p∗S + δp∗0(r) + δp∗2(r)P2(cos θ).

Hydrostatic equilibrium is then realised when

δp∗0 + h0 −
1

3
r2e−2νS ω̃2 =constant = γ

δp∗2 + h2 +
1

3
r2e−2νS ω̃2 =0,

(7)

where we have introduced4

ω̃ := Ω− ω.

Letting

j := e−(λS+νS)

v2 := h2 + k2,

and restricting ourselves to the case of constant density, we can write the field
equations as

d2ω̃

dr2
= −dω̃

dr

d

dr
ln(r4j)− 4ω̃

r

d

dr
ln(j) (8a)

dm0

dr
=

1

12
r4j2

(

dω̃

dr

)2

− 1

3
r3ω̃2 d

dr
j2 (8b)

dh0

dr
=

[

m0e
2λS

(

1

r2
+ 8πpS

)

− 1

12
r3j2

(

dω̃

dr

)2

+ 4πr (ε+ pS) δp
∗

0

]

e2λS (8c)

dh2

dr
=

(−2e2λS

r2

/dνS
dr

)

v2 +

[

−2
dνS
dr

− 1

r

/dνS
dr

(

1

2j2
d
(

j2
)

dr
+

dλS

dr

)]

h2

+

[

r2 j2

6

(

dω̃

dr

)2

− r ω̃2

3

d
(

j2
)

dr

]

(

r2
dνS
dr

− e2λS

2

/dνS
dr

)

(8d)

dv2
dr

= −2
dνS
dr

h2 +

(

1

r
+

dνS
dr

)

[

1

6
r4j2

(

dω̃

dr

)2

− 1

3
r3ω̃2 d

(

j2
)

dr

]

(8e)

m2 = re−2λS

(

−h2 +
1

6
r4j2

(

dω̃

dr

)2

− 1

3
r3ω̃2d

(

j2
)

dr

)

. (8f)

4 Our notation ω̃ = Ω− ω corresponds to ω̄ in [5] and ̟ in [6]. In this paper, a bar above a symbol
will denote a dimensionless quantity.
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In the vaccum region, where ε = p = 0 and j = 1, the solutions to the above
equations are

r ≥ rS :

ω̃ = Ω− 2J

r3
(9a)

m0 = δM − J2

r3
(9b)

h0 =
δM

r − 2MS
+

J2

r3(r − 2MS)
(9c)

h2 =
J2

r3

(

1

MS
+

1

r

)

+KQ2
2

(

r

MS
− 1

)

(9d)

v2 = − J2

r4
−K

2MS
√

r(r − 2MS)
Q1

2

(

r

MS
− 1

)

(9e)

m2 =
1

9
rA2

(

−h2 +
6J2

r4

)

, (9f)

where Qm
n is the associated Legendre function of the second kind5 and J , δM and

K are constants, J being the angular momentum and δM the change in mass with
respect to the non-rotating configuration.

Equations (8a) are listed in a hierarchical order, each equation being soluble once
the preceding equations have been solved (note that (8d) and (8e) form a coupled
system). Eq. (8a) plays a pivotal role, since the solution of the remaining equations
relies on the solution of this equation. Hence we shall devote the next section entirely
to this equation. Before doing so, it will be convenient to put (8a), which is a Heun
equation, into the standard form (see e.g. [9]).

To bring it into this form, let us begin with a transformation of variables in (8a)
from r to the B(r) of (5). Making use of the constant A from (5), we find

(B −A)(B2 − 1)
d2ω̃

dB2
+ (4B2 − 5AB + 1)

dω̃

dB
− 4Aω̃ = 0. (10)

With the further substitution (see [10] (2.329))6

z :=
1−B

2

we arrive at

d2ω̃

dz2
+

(

γ

z
+

δ

z − 1
+

ǫ

z − a

)

dω̃

dz
+

αβz − q

z(z − 1)(z − a)
ω̃ = 0 (11)

with

a =
1−A

2
, q = −2A, α = 3, β = 0, γ =

5

2
,

δ =
5

2
, ǫ = α+ β + 1− γ − δ =⇒ ǫ = −1.

5 The minus sign in front of the second term of (9e) has to do with the normalization of the Legendre
function and the choice of the branch cut.
6 Both this substitution and the resulting (11) are not unique, since there is freedom as to how the
original four singularities of the equation, (1,−1, A,∞), are mapped onto (0, 1, a,∞). This freedom
will be considered amongst the transformation of §3.
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3. Heun’s Equation: Properties and Transformations

Using the terminology of [9], we consider three categories of solutions to Heun’s
equation: local solutions, Heun functions and Heun polynomials.

Local solutions to Heun’s equation are valid in the neighbourhood of one
singularity and are associated with one of the two exponents there. Since there are four
singularities, there are a total of eight such solutions. Heun functions are solutions
valid in an region containing two adjacent singularities. Heun polynomials are
solutions to Heun’s equation valid at three singularities. Despite the name, not all
such solutions are polynomials, but are of the simple form

Hp (z) = zσ1(z − 1)σ2(z − a)σ3pn(z), (12)

where pn(z) is a polynomial of degree n and σ1,2,3 is one of the exponents associated
with the singularity at z = 0, 1, a respectively.

In order to determine which type of solution we need to look for, we have to
determine the domain of relevance for our particular Heun equation given by (11).
The parameter A and the quantities that depend on it are defined on the intervals

A ∈ (1, 3), a ∈ (0,−1), q ∈ (0,−3/2).

The limit of inifinite central pressure is given by A → 1 and the Newtonian limit by
A → 3. We exclude these limits in this analysis (as indicated by the open intervals),
but note that Chandrasekhar and Miller include an interesting discussion of the limit
of infinite central pressure in [6] and believe that consideration of such limits in the
context of the confluent Heun equation could lead to interesting results.

The interior of the star, i.e. the region of validity of (11), is given by the interval

B ∈ [1, A/3] =⇒ z ∈
[

0,
3−A

6

]

=

[

0,
a+ 1

3

]

, (13)

where z = 0 represents the centre of the star and z = (3−A)/6 its surface.
Since a is always strictly negative whereas z is always real and positive, we are

interested in a solution including the singularity at zero and extending along the real
axis toward the singularity at z = 1 (though not reaching it). The function ω̃ must
remain finite (and non-zero) at the point z = 0, whence we require at the very least
the local solution there corresponding to the exponent σ1 = 0.

The remainder of this section is devoted to a survey of attempts that can be
made to find a closed form solution to our Heun equation satisfying these constraints.
Although none of these attempts proved successful, the following subsections are
intended to stimulate new ideas in this direction, explain where problems lie in what
may seem promising solution strategies and help the reader avoid choosing fruitless
paths of thought.

3.1. Heun Polynomials

The most tractable solution to Heun’s equation is one of the Heun polynomials, so
that we begin by searching for such a solution even though the validity at the two
‘additional’ singularities is not necessary for our purposes. As was mentioned in
footnote 6, the particular form of the Heun equation given in (11) is not unique
since various transformations map a Heun equation onto a new Heun equation with
other parameters and exponents. Indeed there are 192 mappings of Heun’s equation
onto itself, corresponding to the 192 local solutions that can be provided for it.
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Table 1. The values of the exponents σi of (12) and the parameters α and β
corresponding to the four classes of Heun polymials that would yield permissible
solutions to our physical problem. The numbering of the classes follows the
conventions in [9].

Class σ1 σ2 σ3 α β

I 0 0 0 −n γ + δ + ǫ + n− 1
III 0 1− δ 0 δ − n− 1 γ + ǫ+ n
V 0 0 1− ǫ ǫ− n− 1 γ + δ + n
VII 0 1− δ 1− ǫ δ + ǫ− n− 2 γ + n+ 1

These are made up of 24 transformations of the independent variable, which map
the four singularities onto themselves, and 8 elementary power transformations of the
dependent variable. A chapter on these transformations is contained in [9] and a
discussion of their group structure as well as a useful table containing all of them can
be found in [11]. These transformations will not occupy us further in this paper, but
the statements made and conclusions drawn are valid (modulo obvious modifications
resulting from the transformation) for all mappings of (11) onto itself.

The exponents σi (see (12)) of the four Heun polynomials consistent with our
physical problem as well as the parameters α and β for the solutions are listed in
Table 1. A comparison with (11) shows us that only a Heun polynomial of class I is
consistent with the given parameters since n, the degree of the polynomial pn(z) in
(12), can of course only be a non-negative integer. The set of equations that must be
solved in general in order to determine pn(z) provides a polynomial equation of degree
n+ 1 for the accessory parameter q. In our case, the equation is simply q = 0, which
lies just outside the allowed range for q and thus there exists no Heun polynomial,
which is a solution of the physical problem being considered.

3.2. Heun Functions

Since we require a solution valid at z = 0 and extending along the real axis toward
z = 1, a Heun Function seems to be the appropriate solution. It is related to the two-
point connection problem treated in [12] and discussed further in [13]. The search for
such solutions generally implies solving an eigenvalue problem and is valid only for a
restricted set of values for the accessory parameter q. In our case, q is not independent
of the singularity a, and no such solutions exist.

3.3. Rational and other Transformations

The next step we take in looking for a solution of our Heun equation is to consider
a broader set of transformations. Since Heun’s equations are closely related to
the hypergeometric equations, one can hope to find a transformation relating the
two equations. Kuiken [14] addressed the question as to when a hypergeometric
equation can be transformed into a Heun equation via a rational substitution of
the independent variable (excluding the trivial case αβ = q = 0). Her work was
reexamined and completed by Maier [15]. Using their results, we have found that no
rational transformation of the independent variable maps our Heun equation (with
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the specified parameter range) onto a hypergeometric equation7. Even had such a
transformation been found, it would only have been valid for specific values (or one
specific value) of the parameter A, because of the nature of the necessary conditions
for such a transformation to exist.

Having ruled out rational transformations, we turn our attention briefly to integral
transformations derived by Carlitz and Valent and described in [16], which impose no
restriction on the accessory parameter. Such transformations have proved useful in
finding previously unknown, closed form solutions to Heun’s equation. In our case,
these methods only allow for marginal progress. Consider first a transformation of the
independent variable

B′ =
B − a

B(1− a)
.

Applying to this the transformation (9) of [16], and denoting the new quantities by a
douple prime, one finds that

γ′′ = ε′′ =
1

2
and α′′ + β′′ = δ′′

and can apply the quadratic transformation discussed on pg. 59 of [17]. Here, however,
one is not guaranteed that the solution will be regular at the centre of the star.

More modern ideas, such as relating the Heun equation to the Schrödinger
equation through the “generalized associated Lamé” (GAL) potential seem tailor made
to the situation being considered here. Indeed, the analogue of (32) in [18] with b = 3/2
can be applied to (11), but the restriction to the accessory parameter is q = 0 as it
was in the case of a Heun polynomial.

We know in fact that no meromorphic solution to our Heun equation exists (for
arbitrary q) since the necessary condition ǫ = 1/2−m, m ∈ Z [19] is not met.

4. Series Solutions

The power series solution (Frobenius solution) is the most obvious local solution to
Heun’s equation. It could be used to generate a solution regular at the point z = 0
and corresponding to the exponent zero,

S :=

∞
∑

m=0

c̃mzm,

which converges, in general, within a circle extending out to the next singularity. It
is also possible to generate a series solution in terms of hypergeometric functions as
described in [20]

H :=

∞
∑

m=0

cmφm, with (14)

φm =
Γ(α− δ +m+ 1)Γ(β − δ +m+ 1)

Γ(α+ β − δ + 2m+ 1)
zmF (α+m,β +m;α+ β − δ + 2m+ 1; z),

where Γ(x) is the gamma function and F (a, b ; c ; z) the hypergeometric function. The
coefficients cm are given by the three term recurrence relation

L0c0 +M0c1 = 0

Kmcm−1 + Lmcm +Mmcm+1 = 0 (m = 1, 2, 3, . . .)
(15)

7 Many of the computations in this paper made use of the computer algebra program MapleTM.
Maple is a trademark of Waterloo Maple Inc.
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Table 2. The error of the partial sums Sn and Hn is shown at the point on the
star’s surface z = (3 −A)/6 for the value A = 5/2.

n |S − Sn| |H −Hn| |H − 1
1+z

(zHn +Hn+1)|

0 2× 10−1 2× 10−1 2× 10−2

1 2× 10−2 4× 10−3 2× 10−4

2 2× 10−3 1× 10−4 3× 10−6

3 2× 10−4 7× 10−6 6× 10−8

4 2× 10−5 5× 10−7 1× 10−9

5 2× 10−6 5× 10−8 5× 10−10

where

Km+1 = a
(α+m)(β +m)(ǫ+m)(α + β − δ +m)

(α+ β − δ + 2m)(α+ β − δ + 2m+ 1)

Lm = am(γ +m− 1)
[ (α+m)(α− δ +m+ 1) + (β +m)(β − δ +m+ 1)

(α+ β − δ + 2m− 1)(α+ β − δ + 2m+ 1)

− 1

α+ β − δ + 2m− 1

]

−m(α+ β − δ +m)− q

+ a
αβ(γ − 2m)− ǫm(δ −m− 1)

α+ β − δ + 2m+ 1

Mm−1 = a
(α− δ +m)(β − δ +m)m(γ +m− 1)

(α+ β − δ + 2m− 1)(α+ β − δ + 2m)
.

The analysis in [20] shows that H converges in the domain
∣

∣

∣

∣

1− (1 − z)1/2

1− (1 + z)1/2

∣

∣

∣

∣

<

∣

∣

∣

∣

1− (1− a)1/2

1− (1 + a)1/2

∣

∣

∣

∣

. (16)

Taking into account the range of z (Eq. 13), in turns out that both of these series will
converge for A ∈ (3/2, 3), but not in the range A ∈ (1, 3/2]. If one chooses to use this
approximation as a rough model for neutron stars, one is unlikely to be interested in
A < 1.5 however.8

There are two reasons for opting for the series of hypergeometric functions H
in favour of the power series S. For one thing, it generally converges more quickly
than the corresponding power series. In addition, it is an alternating series in which
successive partial sums straddle the limiting value of the sum, so that they provide
both an upper and lower bound. A comparison of the two series can be found in
Table 2 for the value of the function ω̃ at the star’s surface z = (3−A)/6 for A = 5/2.
The partial sums Hn tend to be about one order of magnitude more accurate than
the corresponding Sn. Taking into account that H is an alternating series, a weighted
average such as the one presented in the last column of the table, ultilizes Hn and
Hn+1 to produce a somewhat more accurate estimate for H than would be given by
Hn+1 alone. The weight chosen in the table is based on the fact that each term in the
series (14) is multiplied by zm.

Whereas the table shows that H converges faster than S for A = 5/2, Fig. 1
shows how close S5 and H5 have come to their asymptotic values for the full range
of convergent A values. We see that both series converge very quickly for A → 3 and

8 For a density of ε = 1018 kg/m3, A = 3/2 corresponds in the static model to MS ≈ 5.5× 1030 kg =
2.8M⊙.
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1.5 2.0 2.5 3.0

1

10−10

10−20

A

∣

∣

S−S5

S

∣

∣

∣

∣

H−H5

H

∣

∣

Figure 1. |(S−S5)/S| and |(H−H5)/H| on the surface of the star z = (3−A)/6
are depicted over the range A ∈ (3/2, 3).

that the hypergeometric series converges faster than the power series for most of the
convergent interval.

5. The Approximate Metric

5.1. Determining the Truncation Order

Having found a convergent series solution to Heun’s equation (for a certain range
of A), we can now compare the slow rotation approximation with the solution of
the full Einstein equations for axially symmetric, stationary, homogeneous, uniformly
rotating fluids to motivate how to choose the truncation order of the partial sum
Hn. The solution of Einstein’s equations can be found numerically, and using the
spectral program described in [21], we can reach machine accuracy and thus have an
absolute measure for the accuracy of the Hartle approximation. We choose to compare
configurations with the same total mass9 M̄ and angular velocity Ω̄, where the bar
indicates that the quantity is expressed in terms of units of the energy density ε.

We are interested in solutions of Einstein’s equations that are connected to the
non-rotating limit via a continuous parameter transition. Such solutions were studied
in [22] and termed the ‘generalized Schwarzschild’ class of solutions. A sequence of
stars from this class with constant mass M̄ < 4/9R̄S ≈ 0.145 can be followed from
the non-rotating limit to the mass-shedding limit, at which a cusp forms along the
equatorial rim. Along any such sequence, Ω̄ reaches a global maximum somewhere
between the two limiting points. In the approximation considered here, however, the
mass is monotonic in A ∈ (3/2, 3) for a given Ω̄. Therefore it is not possible to find
more than one configuration for given M̄ and Ω̄ and we are forced to restrict our
attention to the portion of the sequence between the static limit and the maximum
value for Ω̄.

In Figs 2 and 3 we see how J̄ depends on Ω̄ for one sequence close to the Newtonian
limit (M̄ = 0.01) and one highly relativistic configuration (M̄ = 0.1). We see verified

9 A discussion as to how one can integrate (8a) to determine the mass follows in § 5.2.
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0.0 0.3 0.6 0.9
0

10−4

Ω̄

J̄

numerical
H1
H5

Figure 2. The angular momentum J̄ is shown as a function of angular velocity Ω̄
for a sequence of star’s with the constant mass M̄ = 0.01. The solid line depicts
numerical results, which are accurate to better than 10 digits and thus act as an
absolute standard of reference.

0.0 0.2 0.4 0.6 0.8 1.0
0

0.005

Ω̄

J̄

numerical
H1
H5

Figure 3. As in Fig. 2, but for a sequence with the mass M̄ = 0.1.

in each plot that the approximation becomes arbitrarily good for Ω → 0. Furthermore,
we see in agreement with Fig. 1 that H converges quickly for large A, and indeed H5

is bairly distiguishable from H1 in this figure (A ≈ 2.8 over the whole range of the
plot). This does not mean that the slow rotation approximation is good however. The
discrepancy between the correct and approximated values for J̄ are quite noticable for
Ω̄ = 0.6, although its maximal value along this sequence is Ω̄ ≈ 1.23. The inaccuracies
due to the slow rotation approximation are evident in Fig. 3 as well. Here, however,
the improvement brought about in going from H1 to H5 is more pronounced (A varies
from about 2.7 to 2.8 over the range of the plot).

To have more quantitative information as to when to truncate the series H ,
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Table 3. The relative error in the angular momentum as a function of Hn is
shown for various values of Ω̄ for a sequence with M = 0.01

Ω̄
˛

˛

˛

J−J(H1)
J

˛

˛

˛

˛

˛

˛

J−J(H2)
J

˛

˛

˛

˛

˛

˛

J−J(H3)
J

˛

˛

˛

˛

˛

˛

J−J(H∞)
J

˛

˛

˛

0.01 1.5× 10−2 2.5× 10−4 2.6× 10−5 1.8× 10−5

0.1 1.7× 10−2 1.6× 10−3 1.8× 10−3 1.8× 10−3

0.2 2.3× 10−2 7.1× 10−3 7.4× 10−3 7.3× 10−3

0.4 4.5× 10−2 2.9× 10−2 3.0× 10−2 3.0× 10−2

0.8 1.4× 10−1 1.3× 10−1 1.3× 10−1 1.3× 10−1

1.23 4.7× 10−1 4.6× 10−1 4.6× 10−1 4.6× 10−1

Table 4. As in Table 3, but for a sequence with M = 0.1.

Ω̄
˛

˛

˛

J−J(H1)
J

˛

˛

˛

˛

˛

˛

J−J(H2)
J

˛

˛

˛

˛

˛

˛

J−J(H3)
J

˛

˛

˛

˛

˛

˛

J−J(H∞)
J

˛

˛

˛

0.01 5.2× 10−2 1.3× 10−2 5.8× 10−3 1.5× 10−5

0.1 5.3× 10−2 1.1× 10−2 7.3× 10−3 1.5× 10−3

0.2 5.8× 10−2 6.7× 10−3 1.2× 10−2 6.0× 10−3

0.4 7.5× 10−2 1.1× 10−2 2.9× 10−2 2.4× 10−2

0.8 1.4× 10−1 7.9× 10−2 9.5× 10−2 9.0× 10−2

1.45 4.0× 10−1 3.6× 10−1 3.7× 10−1 3.7× 10−1

Tables 3 and 4 consider the same sequences and show the relative error in the angular
momentum as a function of Hn for various values of Ω̄. Each table shows a range of Ω̄
values extending up to its maximum for the respective sequence. The extremely large
errors emphasize how poor the slow rotation approximation is for homogeneous bodies
near the mass-shedding limit. One should keep in mind however that these errors are
not astrophysically relevant since the fastest known pulsars have an angular velocity
of Ω̄ ≈ 0.4, meaning that the approximation holds to within about 3%. If one chooses
the order of truncation, by requiring that the relative error in J̄ be in the vicinity
of a few percent whenever the slow rotation approximation allows for such accuracy,
then H2 seems an appropriate choice. When providing explicit expressions for metric
functions in the next section, we shall choose this truncation order.

5.2. Deriving Explicit Expressions

If we label the arguments in the hypergeometric functions of H (see (14)) by a, b
and c, then we find a + b − c = −3/2. By applying Gauss’ relations for contiguous
hypergeometric functions (see e.g. § 2.8 in [23]), we can convert this into two functions
with c = −1/2 and c = 1/2. Quadratic transformations are known to exist for such
functions so that they can be converted into associated Legendre functions of the form

P
±n+1/2
ν , n ∈ Z (see e.g. §7.3.1 Eqs (36) and 41 in [24]). Associated Legendre functions

of this form can, in turn, be represented with a finite number of terms, § 3.6.1 in [23].
The explicit expression that results for H2 can be found in the appendix.

The requirement that the metric functions be continuous at the star’s boundary
leads via (9a) to

¯̃ω|r=R̄S
= Ω̄− 2J̄

R̄3
S

, (17)
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where we have chosen to express the relation in terms of dimensionless quantities.
Taking into account

M̄S =
4

3
πR̄3

S ⇐⇒ R̄2
S =

3

8π
(1 −A2/9), (18)

(cf. (2)), we thus know J̄ as a function of c0 and A for a given Ω̄. Since the normal
derivative of ¯̃ω must be continous on this surface (see e.g. § 30.5 in [8]),

d

dr
¯̃ω

∣

∣

∣

∣

r=rS

=
6J̄

R̄4
S

(19)

must hold as well. If we were to prescribe A as in [6], then this would suffice to
determine c0 and J̄ .

If on the other hand, we choose to prescribe Ω̄ and M̄ as in the previous section,
then we have to solve (8b) before being able to determine both A and c0.

Eq. (8b) can then be integrated from the centre out to the surface of the star to
give an expression for δM̄ = m̄0|r=R̄S

+ J̄2/R̄3
S from (9b). The constant of integration

must be chosen such that m0(0) = 0 so that grr remains finite at the star’s centre.
The total mass of the system is then M̄ = M̄S + δM̄ = 4/3πR̄3

S + δM̄ . Taking into
account our choice of normalization (cf. (2))

M̄S =
4

3
πR̄3

S ⇐⇒ R̄2
S =

3

8π
(1 −A2/9),

we have arrived at expressions containing the unknown variables c0 and A, which can
then be determined by prescribing M̄ and Ω̄.

Because the integrand in the integral to determine m0 contains quadratic terms
in ω̃ and its derivative, it does not seem possible to obtain an analytic expression for
m0 based on the hypergeometric representation discussed above. In the appendix,
expressions are thus provided for the metric functions in terms of a series in z.

Eq. (8c) for determining h0 is simply a first order, linear differential equation,
where (7) is used to replace δp∗0 by an expression in h0. The constant of intergation
can be chosen arbitrarily10 and is chosen in the appendix such that h0(0) = γ. This
choice amounts to identifying a rotating body with a non-rotating one of the same
central pressure since the choice implies through (7) that δp∗0(0) = 0. The nature of
such choices of identification and some of the effects different choices can have was
discussed in the context of the post-Newtonian approximation in [4]. The interior
solution for h0 must join continuously to its exterior solution, thus fixing the constant
γ of (7).

The system of equations (8d) and (8e) for obtaining h2 and v2 can be solved as
described in [6]. Both functions must vanish at the origin so that h and k have unique
values there. The remaining constant as well as the constant K in (9d) and (9e) can
then be determined by requiring that these two functions be continuous at the star’s
boundary.
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discussions. This work was supported by the Deutsche Forschungsgemeinschaft (DFG)

10The comment on pg. 67 of [6] that h0 must vanish at the origin seems to be an oversight. In that
work, as here, δp∗0 was chosen to vanish at the origin, which then implies through (7) that h0(0) = γ,
which is not zero in general.
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through the SFB/TR7 “Gravitationswellenastronomie” and by a “Landesgraduierten-
stipendium” from Thuringia.

Appendix A. Explicit Representation of the Truncated Metric

The formulæ for the metric functions are collected in this appendix. They are valid
over the range A ∈ (3/2, 3) and make use of the variable

z =
1

2

(

1−
√

1− r2/k2
)

, k =
rS

√

1−A2/9
.

The symbol F (a, b; c; z) refers to the hypergeometric function. The metric depends
on three paramters (one scaling parameter and two “physical” parameters) that were
here chosen to be A = 3

√

1− 2MS/rS (see (5)), rS and c0. MS and rS are the mass
and radius (in Schwarzschild coordinates) of a spherical star and c0 is an integration
constant (see (14) and (15)) giving the value of ω̃ at the star’s centre ω̃(0) = 4

√
π/3c0.

The expressions below do not diverge as one approaches the Newtonian limit A → 3
since c0 → 0 sufficiently quickly in that limit.

¯̃ω =
4
√
π c0
3

[

1 +
8Az

5(A− 1)
F

(

1, 4;
7

2
; z

)

+
8(Az)2

35(A− 1)2
F

(

2, 5;
11

2
; z

)]

+ . . . (1.1a)

which can be evaluated to yield

¯̃ω =

√
πc0

((A − 1) z)2(z − 1)

[

(

−1/24
(88 z − 63)A2

√
1− z

√
z

+ 2/3

√
zA√
1− z

)

arcsin
(√

z
)

+

(

− 2

45
z3 − 13

45
z2 +

23

12
z − 21

8

)

A2

− 2/9 z
(

4 z2 − 10 z + 3
)

A+ 4/3 z2 (z − 1)

]

+ . . . (1.1b)

or expanding as a power series and dropping higher terms

¯̃ω =
4
√
π c0
3

[

1 +
8A

5(A− 1)
z +

8A(9A− 8)

35(A− 1)2
z2
]

+ . . . (1.1c)

We now leave off the ellipsis at the end of each expression.

m0 =
512 π c0

2rS
3Az5/2

525 (9−A2)
3/2

(A− 1)
5

(

840 (A− 1)2 + 12 (A− 1) (A− 125) z

+
(

2975 + 602A− 441A2
)

z2
)

(1.2)

δM =
16 π c0

2rS
3 (3−A)

5/2

127575 (9−A2)3/2 (A− 1)5
×

(√
6A

(

84015− 109128A+ 34922A2 + 3176A3 − 441A4
)

+
8

63

(

9−A2
)

(A− 1) (A+ 3)
5/2 (

45− 56A+ 9A2
)2
)

(1.3)

h0 = γ − 1792Aπ c0
2rS

2

15 (A− 1)
3
(A2 − 9)

z2 (1.4)
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with

γ =
−9 δM

A2rS
+

64π c0
2rS

2 (A− 3)

893025A2 (A+ 3) (A− 1)
4

×
(

81A8 − 522A7 − 2102A6 + 14262A5 + 65961A4

−165591A3 − 47466A2 + 298890A− 164025
)

h2 = f0 z +

(

(3A− 25) f0
7(A− 1)

+
512πc0

2 rS
2A

3 (A2 − 9) (A− 1)
3

)

z2

+

(

2
(

5A2 − 17A+ 104
)

f0

21 (A− 1)
2 +

512πc0
2 rS

2A (129A− 575)

225 (A2 − 9) (A− 1)
4

)

z3 (1.5)

v2 =

(

−2f0
A− 1

− 512π c0
2rS

2A

3 (A2 − 9) (A− 1)3

)

z2

−
(

4 (A− 13) f0

7 (A− 1)
2 +

1024πc0
2 rS

2A (7A+ 25)

75 (A2 − 9) (A− 1)
4

)

z3

+

(

−2
(

5A2 − 26A+ 221
)

f0

21 (A− 1)
3

+
512πc0

2 rS
2A
(

51A2 − 2262A+ 9275
)

1575 (A2 − 9) (A− 1)
5

)

z4 (1.6)

where the continuity of h2 and v2 at the star’s boundary then give for the constant f0
and K of (9d) and (9e)

f0 = πc0
2RsS

2 ×
[

−512 (A− 1)
(

A2 − 9
)

(

81A8 − 522A7 − 3560A6 + 23658A5

+ 44370A4 − 120771A3 − 2046924A2 + 3774195A− 492075
)

Q1
2

(

rS
MS

− 1

)

− 768A
(

162A9 − 1206A8 − 3160A7 + 32728A6 + 14001A5 − 328536A4

+ 373590A3 − 2968596A2 + 4333095A+ 328050
)

Q2
2

(

rS
MS

− 1

)

]/

[

28350 (A− 3) (A+ 3)
2
(A− 1)

3

×
(

1989− 2514A+ 962A2 − 74A3 + 5A4
)

Q1
2

(

rS
MS

− 1

)

− 14175 (A− 3) (A+ 3) (A− 1)
2
A

(

5A4 − 92A3 + 1790A2 − 5052A+ 4149
)

Q2
2

(

rS
MS

− 1

)

]

(1.7)
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K =
πc0

2rS
3 A

8037225rS (A− 1)
4
(A+ 3)

×
[

64
(

2835A13 − 65331A12 + 893264A11

− 4933304A10 − 8773582A9 + 172596150A8 − 361180413A7 − 958944555A6

+ 1549090818A5 + 11997038790A4− 41313070791A3+ 54020240631A2

− 33095488275A+ 8082331875
)

]/

[

2 (A− 1) (A+ 3)
(

5A4 − 74A3 + 962A2 − 2514A+ 1989
)

Q1
2

(

rS
MS

− 1

)

−A
(

5A4 − 92A3 + 1790A2 − 5052A+ 4149
)

Q2
2

(

rS
MS

− 1

)

]

(1.8)

m2 can then be calculated algebraically using (8f).
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