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Abstract

Caianiello’s derivation of Quantum Geometry through an isometric
embedding of the spacetime (M, g̃) in the pseudo-Riemannian struc-
ture (T∗M, g∗

AB
) is reconsidered. In the new derivation, a non-linear

connection and the bundle formalism induce a Lorentzian-type struc-
ture in the 4-dimensional manifold M that is covariant under arbitrary
local coordinate transformations in M. If models with maximal accel-
eration are required to be non-trivial, gravity should be supplied with
other interactions in a unification framework.

1 Introduction

The maximal proper acceleration of a massive particle has been introduced
by Caianiello as a consequence of its re-interpretation of QuantumMechanics
in the contest of Information Theory and System Theory ([1]). In Caianiello’s
theory, the value of the maximal acceleration is given by the relation:

Amax :=
2mc3

h̄
. (1.1)

This value was obtained considering the evolution of a free particle in a
flat, torsion-free phase-space and constitutes a notable element of his the-
ory. Relevant too, the different interpretations can in principle be checked
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experimentally and their refutation can be an striking test of their support-
ing frameworks.

There are two different kinds of interpretations of the formula (1.1). In
the first one, m is the rest mass of the particle being accelerated. In the sec-
ond interpretation, m is an universal mass scale, typically of the same order
than Planck’s mass Mp. Indeed, for m ∼ Mp the order of the maximal accel-
eration coincides with the value obtained from string theory ([2]). Another
possibility was considered in ref. [7], where the maximal acceleration has an
universal value, corresponding with m of the order the lightest neutrino’s
mass. It is important to note that in all these interpretations, the value of
the maximal acceleration is given in terms of relativistic constants and that
it is invariant under arbitrary local coordinate changes.

We state the index convention used in this note. Indices denoted by minor
and greek letters run from 0 to 3, while capital indices run from 0 to 7. If
the contrary is not stated, Einstein’s convention should be understood. In
Caianiello’s Quantum Geometry the spacetime manifold M is 4-dimensional,
the tangent bundle TM is 8-dimensional and the projection π : TM −→ M
induces an effective 4-dimensional geometry different from the original metric
geometry of M. This can be achieved through an embedding procedure ([3]).
As result, the metric of the space-time M is modified from

ds20 = gµνdx
µdxν , µ, ν = 0, 1, 2, 3

to the new line element

ds2 =
(

1 +
ẍσ(s0)ẍσ(s0)

A2
max

)

ds20 = λ(ẍ(s0))ds
2

0, σ = 0, 1, 2, 3. (1.2)

gµν(x) is the initial Lorentzian spacetime metric at the point x ∈ M and

ẍµ are the components of the acceleration at this point, ẍµ(s0) = d2xµ

ds2
0

.

When it is possible to invert the equation ẋµ(s0) = yµ(s0), the immersion
procedure is an embedding and the metric (1.2) lives in M, because the
factor λ(ẍ(s0)) → λ̃(x(s0)) lives in M. However, λ̃(x(s0)) is not an invariant
factor and therefore the line element (1.2) is not invariant under arbitrary
coordinate transformations of the spacetime manifold M.

The aim of this note is to provide a solution to this covariance problem
using the minimal geometric content and standard methods from Differen-
tial Geometry. In this sense, the paper is a minimal extension of the initial
model, compared with other attempts to describe the geometry of maxi-
mal acceleration ([16]). In addition to the original embedding procedure
suggested by Caianiello et al. ([3]), we introduce an alternative approach,
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where a higher order non-degenerate Finsler-Lagrange structure appears.
These type of structures were extensively studied by Miron’s school ([13],
[20]), at least in the positive definite case.

The present paper is organized in the following way. First, we review in
section 2 the deduction of equation (1.2) in usual Quantum Geometry. Then,
after the introduction of the notion of non-linear connection in section 3, we
understand the covariance problem and we show how using the non-linear
connection is possible to solve it. In section 4 we re-derive the immersion
interpretation of (1.2) but using the correct formalism introduced in section
3. We also discuss the usefulness of the standard embedding procedure and
we describe an alternative interpretation of the original formalism. In order
to provide a general framework for the new formulation, we briefly introduce
the relation of maximal acceleration with Finslerian Deterministic Systems.
Finally, a discussion of some implications of the new formulation and its
connection with the old one is also presented in section 5.

2 Elements of Caianiello’s Model

We review the formal procedure of the derivations of the Quantum Geometry
in Caianiello’s model. Let us consider the 8-dimensional tangent bundleTM.
It is endowed with a pseudo-Riemannian metric defined by the expression

ds2 = gABdX
AdXB , A,B = 0, ..., 7 (2.1)

and where the natural coordinates are defined by

XA = (xµ, yµ) =
(

xµ;
c2

Amax

dxµ

ds0

)

, µ = 0, ..., 3.

The metric coefficients gAB is given in terms of the space-time metric gµν by

gAB = gµν ⊕ gµν .

The associated line element in TM is expressed as

ds2 =
(

dxµdxν +
c4

A2
max

dẋµdẋν
)

gµν , (2.2)

where it was supposed that the set {dxµ, dẋµ} = {dxµ, dyµ} is a basis for
the dual frame along a possible trajectory ([3]). The embedding procedure
requires the introduction of a timelike congruence, associated with the trajec-
tories of particles with fixed positive mass. Indeed, the original Caianiello’s
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argument introduces an embedding procedure depending on this congruence,
jointly with a quantum mechanical probability density, in order to reproduce
Quantum Mechanics in the spacetime (M, g̃) induced from the phase space
geometry (T∗M, g∗B), with g∗AB = gAB = g−1

AB . Then, the Lorentzian-type
structure that they induce on M from the initial metric (2.1) depends on the
particular timelike congruence and this is why is not a properly Lorentzian
structure.

Let us consider in some detail the embedding procedure. It can be
understood in a simple way if the vector field dxµ

ds0
, µ = 0, ..., 3 is given in

terms of the coordinates of the particle along its physical trajectory. That
means that trajectories are injective curves, which is very likely the case if
these trajectories are in spacetime, where there are no physical loops due to
causality. This was the method used by Caianiello and co-workers’s papers:
there is a one to one correspondence between the values of the parameter
s0 and the points x(s0). The embedding procedure consist on the inversion
x(s0) → s0(x), where s0 is the length of the physical trajectory, counting
from a fixed point. This produce a non-local dependence on the effective
metric, due to the intrinsic dependence on the whole trajectory, as discussed
before.

In Caianiello’s model, an associated metric structure is defined for the
co-tangent bundle T∗M. Caianiello’s model is based on the fact that the
geometry of the associated pseudo-Riemannian cotangent bundle provides a
geometric description of Quantum Mechanics where, for instance, the cur-
vature tensor components obtained from the above metric are related with
Heisenberg’s indeterminacy relations. Maximal acceleration is obtained as
a consequence of this approach to the foundations of Quantum Mechanics
([1]).

Following with the deduction of Caianiello’s model, for a particle of mass
m, the line element (2.2) is reduced to (1.2). The associated structure has a
metric components given by

g̃µν =
(

1 +
ẍσẍσ

A2
max

)

gµν , (2.3)

which depend on the squared length of the space-time 4-acceleration ‖ẍ‖2 :=
gµν ẍ

µẍν . The term

hµν =
ẍσẍσ

A2
max

gµν

is called the quantum correction, because it vanishes when h̄ goes to zero.
There is another possibility that is to consider (2.3) as a higher order

Lagrange structure, investigated by the group Miron’s school ([13], [20]). A
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a modern approach to these structures, with treatment of spinor and other
related geometric topics, is compiled in [12] and also ref. [14] is of interest at
this point. In these references, the mathematical formalism of diverse non-
Riemannian metric structures is exposed and formulated with generality.

3 The Non-Linear Connection

In this section we introduce the minimal mathematical notions and tools
that we need in order to formulate in a covariant way Caianiello’s Quantum
Geometry Model. The references on basic Finsler Geometry that we use
are [4] and [20], and for its higher order generalizations is [20], adapting
definitions and notions to the formulation in the case of non-degenerate
Finsler and higher order structure. The major changes with these references
consists on using non-homogeneous tensors and structures, instead of the
usual homogeneous of degree zero expressions found in standard treatments.

Definition 3.1 A non-degenerate Finsler structure F defined on the n-
dimensional manifold M is a real function F 2 : TM → [0,∞[ such that
it is homogeneous of dimension 2 in y and it is smooth in the split tangent
bundle N = TM \ {0} and the hessian matrix

gµν(x, y) :=
1

2

∂2F 2(x, y)

∂yµ∂yν
(3.1)

is non-degenerate in N. The particular case when the manifold is 4-dimensional
and gµν have signature (+,+,+,−) is called Finsler spacetime ([23]).

gµν(x, y) is the matrix of the fundamental tensor g = gµνdx
µ ⊗ dxν . In gen-

eral, a non-degenerate structure will be defined by a generalized fundamental
tensor g that is non-degenerate, symmetric and some smoothness conditions
hold.

We should take care of the singularities F (x, y) = 0. In the above defini-
tion and the principal notions that we develop below eludes this singularity,
following the above definition, based on the treatment of J. Beem ([21]).

Definition 3.2 Let (M, F ) be a non-degenerate Finsler structure and (x, y,U)
a local coordinate system on TM. The Cartan tensor components are defined
by the set of functions,

Aµνρ =
1

2

∂gµν

∂yρ
, µ, ν, ρ = 0, ..., 3. (3.2)
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The components of the Cartan tensor are zero if and only if the Finsler
spacetime (M, F ) is a Lorentzian structure. It is an homogeneous tensor of
order −1 in y.

One can introduce several non-linear connection in the manifoldN. First,
the non-linear connection coefficients are defined by the formula

Nµ
ν = γµνρy

ρ −Aµ
νργ

ρ
rsy

rys, µ, ν, ρ, r, s = 0, ..., 3. (3.3)

The coefficients γµνρ are defined in local coordinates by

γµνρ =
1

2
gµs(

∂gsν

∂xρ
−

∂gρν

∂xs
+

∂gsρ

∂xν
), µ, ν, ρ, s = 0, ..., 3;

A
µ
νρ = gµlAlνρ and gµlglν = δ

µ
ν . As a consequence, Nµ

ν are not homogeneous
coefficients.

Using these coefficients one obtains a splitting of TN. Let us consider
the local coordinate system (x, y) of the manifold TN and an open subset
U ∈ N. The induced tangent basis for TuN is

{
δ

δx1
|u, ...,

δ

δxn
|u,

∂

∂y1
|u, ...,

∂

∂yn
|u},

δ

δxν
|u =

∂

∂xν
|u −Nµ

ν

∂

∂yµ
|u.

The set of local sections { δ
δx1 |u, ...,

δ
δxn |u, u ∈ U} generates the local hori-

zontal distribution HU while { ∂
∂y1

|u, ...,
∂

∂yn
|u, u ∈ U} the local vertical dis-

tribution VU . The subspaces Vu and Hu are such that the splitting of TuN
holds:

TuN = Vu ⊕Hu, ∀ u ∈ U.

This decomposition is invariant by the right action of GL(2n,R) and defines
a connection in the bundle TN → M. The corresponding dual basis in the
dual vector bundle T∗N is

{dx0, ..., dx3, δy0, ..., δy3}, δyµ = (dyµ +Nµ
ν dx

ν).

An extensive and general treatment of the notion of non-linear connec-
tion, allowing for connections in associated bundles that are g-compatible,
can be found in the work of Vacaru et al. (for example [12] and [14]) in
the contest of Lagrange spaces and other generalizations. In this general
framework, the coefficients of an alternative non-linear connection are given
by:

Nµ
ν =

1

2

∂

∂yν

[

gµρ
( ∂2F 2

∂yρ∂yσ
yσ −

∂F

∂xρ

)]

, µ, ν, ρ, σ = 0, ..., 3. (3.4)
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These coefficients also define an splitting of TN similar to the described
before, such that the formal formulae is maintained. Note that in contrast
with (3.3), this non-linear connection is homogeneous in y and does not have
singularities at F = 0.

The covariant splitting is equivalent to the existence of a particular se-
lection of the non-linear connection. These non-connections, that are also
connections in the sense of Ehresmann ([5]), are associated with particular
splitting of TN due to associated non-degenerate metric structures in N. In
our case, the structure is given by

gAB = gµνdx
µ ⊗ dxν + gµν

(

δyµ ⊗ δyν
)

. (3.5)

The metric (3.5) is called a Sasaki-type pseudo-Riemannian metric in N. A
particular definition for the non-linear connection, with respect the corre-
sponding structure (3.3), the horizontal sub-space spanned by the distribu-
tions { δ

δxµ , µ = 0, ..., 3} is orthogonal respect the distribution developed by

{ ∂
∂yµ

, µ = 0, ..., 3}.
For the case of timelike trajectories, we can also introduce the treat-

ment of Asanov for non-degenerate Finsler spacetimes ([22]), which we will
extend to non-degenerate Lagrange and generalized Finsler-Lagrange struc-
tures. Asanov considered the same notion as in definition 3.1, but restricting
the smoothness condition of the hessian gµν to the vectors y ∈ TxM with
F (x, y) > 0. In particular, let us denote the sets of admissible vectors by

Ñx := {y ∈ TxM |F (x, y) > 0}, Ñ = ∪x∈MÑx.

In the case of non-degenerate Finsler structures, the treatment of Asanov
starts with the definition (3.1) for Finsler spacetimes, but restricted to the set
of admissible vectors Ñ. Under these restrictions homogeneous definitions of
Cartan, non-linear connection and Sasaki-type metric can be introduced (for
standard definitions see [4] or [20]). In particular, the Sasaki type metric is
defined by

gAB = gµνdx
µ ⊗ dxν + gµν

(δyµ

F
⊗

δyν

F

)

. (3.6)

It defines a non-degenerate metric in Ñ and has associated an arc-length
function that is re-parametric invariant (the main difference with the metric
(3.5)). However, Asanov’s treatment excludes the null trajectories F = 0.
Although this is not too expensive for the discussion of this paper, about
maximal acceleration, it is incomplete as a whole picture.
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4 Covariant Quantum Geometry

In this section we will follow Beem’s convention. Since using Asanov’s treat-
ment, the effective non-degenerate structure in the spacetime manifold Mis
also non-homogeneous, no advantage is obtained using this approach to avoid
the singularities at F = 0. Indeed in this contest, Beem’s treatment appears
less restrictive than Asanov’s ones.

In order to investigate the properties of the pseudo-Riemannian structure
(Ñ, gAB), we have to note first that the distributions {(dxµ, dyµ), µ =
0, ...3} do not form a consistent basis of T∗

uÑ for a general non-flat manifold.
The problem is localized in the set of 1-forms {dyµ, µ = 0, ..., 3}. Under
local coordinate transformations of M, the induced transformation rules are

dx̃µ =
∂x̃µ

∂xρ
dxρ, dỹµ =

∂x̃µ

∂xν
dyν +

∂2x̃µ

∂xν∂xρ
yνdxρ.

Therefore, the non-covariance problem of the covariance of eq. (1.2) is at the
begin of the Caianiello’s construction: the distributions {(dxµ, dyµ), µ =
0, ..., 3} is not convenient to describe differential forms over N and produces
non-covariant results.

In order to solve this problem, we propose to consider the analogous
construction as in Caianiello’s model but using the basis (3.2). In a similar
way as in Caianiello’s model, we consider the Sasaki-type metric in N

dl2 = gµνdx
µdxν + (

1

Amax

)2gµνδy
µδyν ,

It is because the existence of the non-linear connection, represented by
the above splitting of TN, that this construction have invariant meaning.
This metric can be expressed at the point u ∈ N as

dl2|u = ds2 + (
1

Amax

)2gµν(N
µ
ρ N

ν
ξ dx

ρdxξ + dyµNν
ρ dx

ρ + dyνNµ
ρ dx

ρ).

From this pseudo-Riemannian structure in N we obtain a Lorentzian-type
structure in the spacetime manifoldM. Let us recall that ds2

0
= gµν(x)dx

µ
xdx

ν
x.

Then,

ds20

(dyµ

ds0

dyν

ds0

)

= dyµdyν .

When the constraint yµ = dxµ

ds0
= ẋµ is imposed, replacing dxµ|u by dxµ|x

and using a particular timelike congruence to produce the inversion xµ(s0) →
s0(x), the metric (3.3) induces an embedding in M given by

dl2x = ds20

(

1 +
( 1

Amax

)2

ẍσẍσ

)

+ gµν(x)
( 1

Amax

)2

(Nµ
ρ N

ν
ξ dx

ρdxξ+
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+dẋµNν
ρ dx

ρ + dẋνNµ
ρ dx

ρ)
)

.

Therefore the new space-time metric can be written as

dl2x = ds20

(

1 +
( 1

Amax

)2

(ẍσẍσ + gµν(N
µ
ρ N

ν
ξ ẋ

ρẋξ + ẍµNν
ρ ẋ

ρ + ẍνNµ
ρ ẋ

ρ))
)

.

(4.1)
We note that (4.1) is a Lorentzian-type structure, due to the use of the
inversion procedure, except for the fact that it is not re-parametrization in-
variant an its dependence on the trajectories. The above procedure requires
to introduce a timelike congruence, describing the particular evolution of the
test particles. This implies that the Lorentzian-type metric (4.1) depends
on the particular congruence. Although it is not a contradiction, this depen-
dence is problematic because we do not know a priori the motion of the test
particles and the initial configuration, which constitutes a rather uncomfort-
able geometric model and eventually a probability density function must be
introduced.

An alternative treatment to obtain the embedding consists on consider
that (4.1) defines a higher order Lagrange structure (for a definition of these
structures see ref [20]), that being not homogeneous in y does not define a
re-parametrization invariant arc-length in the tangent space (or via duality,
in the phase space). We interpret the conditions yµ = dxµ

ds
and dyµ = dẋµ

in a more liberal way, in the sense that they are not directly differential
equations associated to the evolution of a point particle, although we can
accommodate any particular physical configuration in this formalism.

Either considering a Lorentzian-type structure associated with a congru-
ence or as the line element corresponding to a generalized Lagrange structure,
let us denote the quantum contributions by

h1 = ds20

( 1

Amax

)2

(ẍσẍσ), h2 = ds20

( 1

Amax

)2

gµν(N
µ
ρ N

ν
ξ ẋ

ρẋξ+

+ẍµNν
ρ ẋ

ρ + ẍνNµ
ρ ẋ

ρ).

Note that our treatment depends on the particular non-linear connection:
different non-linear connections provides different quantum geometries. Al-
though these contributions can be formally the same, since they depend
on the non-linear connection, different non-linear connection will promote
different competing theories.

If both quantum contributions are comparable, one expects |h1| ≈
1

3
|h2|.

In the case of Riemannian structure, the Cartan tensor is zero and the non-
linear connection is reduced to N

µ
ν = γ

µ
νρy

ρ. Then the condition |h1| ≈
1

3
|h2|
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can be expressed as the set of ordinary differential equations

ẍµ + kγµνρẋ
ν ẋρ = 0, µ, ν, ρ = 0, ..., 3.

The factor k is of order 1 when h1 ≈ −1

3
h2. Conversely, if the evolution

is classical in the spacetime M, both quantum corrections are related by
h1 = −1

3
h2 and the metric is the initial one g. In this case k = 1. We obtain

that, for semi-classical particles, the new correction |h2| is as large as 3|h1|,
inducing a natural almost cancelation of the quantum geometry corrections.
Nevertheless, for pure quantum particles this is not necessary and a strong
difference can appear between them.

For flat phase-space models ([1]), there is a global coordinate system
where the connection coefficients are zero, recovering the original Caianiello’s
flat model:

dl2 = ds20(1 + h1 + h2) −→ dl2 = ds20(1 + h1)

with metric coefficients

g̃µν = (1 +
( 1

Amax

)2

ẍσẍσ)ηµν ,

being ηµν the Minkowski metric. This is the typical metric tensor appear-
ing in flat Quantum Geometry. Therefore, the predictions and corrections
coming from the original flat model are also maintained in our revision.

On the other hand, from the expression (4.1), one obtains the general
formula:

ds2 = (1 +
(Dẋ)σ(Dẋ)σ

A2
max

)ds20. (4.2)

For Berwald spaces with a linear connection D, the geodesic is just given by

(Dẋ)σ = ẍσ +Nσ
ρ ẋ

ρ = ẍσ + γσνρẋ
ρẋν = 0.

This geodesic interpretation is general for curved Berwald spaces and it is
covariant on the base manifolds.

Theorem 4.1 Consider a Berwald spacetime (M, F ) such that the geodesics
of an associated non linear connection are defined by the expression

ẍσ +Nσ
ρ ẋ

ρ = 0, σ, ρ = 0, ..., 3.

Then, the particles follow a non-geodesic evolution or the geometry induced
from the Quantum Geometry is the same as the initial geometry.
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In the case of a Berwald structure the geodesic equation of the Berwald
connection is just given by equation (4.39) (a Berwald space is a Finsler
structure where one can define a g-compatible connection that lives in the
base manifold ([19])). Berwald structures have the benefice that preserve
the Equivalence Principle and this is the reason why the theorem is stated
in this category. In the general case the theorem should be

Theorem 4.2 Consider a Finsler spacetime (M, F ) and suppose that the
classical evolution of point particles is governed in the spacetime by the ex-
pression

ẍσ +Nσ
ρ ẋ

ρ = 0, σ, ρ = 0, ..., 3.

Then the effects of the Quantum Geometry on the initial space-time geometry
are trivial.

Theorem 4.1 suggests that a non-trivial Quantum Geometry in Berwald
spaces, where the Equivalence Principle holds, will imply departures from
pure gravity. Unification and conjunction with other non-geometric inter-
actions, implying deviation from classical geodesic evolution, are required.
This conclusion follows if the induced structure in the spacetime M is of the
Berwald type, because Dẋẋ = 0 is the geodesic equation and the Equivalence
Principle holds. However, following a classical result of Einstein et al. ([15)],
in General relativity pointless particles follow geodesic evolution. Then, non-
trivial Caianiello’s models will depart from Einstein’s gravity. Nevertheless,
these models can be in principle compatible with the Equivalence Principle
and with deviation from the geodesic motion for the physical geodesics.

Deviation from geodesic motion naturally occurs and then new field equa-
tions should be contemplated. A possible mathematical framework was de-
veloped in section 2.3 of [12], where generalized Einstein’s field equations
for Finsler-Lagrange geometries were developed. Indeed, in the same refer-
ence but in section 3, particular examples were discussed in diverse general
frameworks. These solutions will be of interest to our problem if they are free
of singularities in the sense that geometric invariants are finite. This free-
singularity condition is equivalent to the existence of maximal acceleration.
Another possible general scheme for maximal acceleration is Deterministic
Finslerian Models ([6]). In these models, maximal acceleration is contained
in the geometric formulation of some dynamical systems, using the geometry
of the phase space T∗TM.

Theorem 4.1 also suggests the need of consider the value of the maximal
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acceleration in the sense of Brandt ([17]),

(Dẋ)µ(Dẋ)µ
A2

max

< 1. (4.3)

This definition of proper maximal acceleration is covariant. In general, the
connection used in our approach is not necessarily the same as in [17]. There
is another argument for the inequality (4.3). If we impose that the quantum
corrections leave invariant the sing of the spacetime interval, it is required
the inequality (4.3) holds. This requirement can be argued from fundamental
principles like locality and causality of the interactions: any interaction can
be so strong to change the interval sing and only locality properties will be
related with the interaction. The argument was explained in [6] and [7] in
the contest of Deterministic Finslerian Models.

On the other hand, theorem 4.2 implies that if we define the classical
evolution by the equation Dẋẋ = 0, then departure from it implies non-
trivial quantum effects. If we wish to interpret this equation as equivalent
to have the extremal of the classical finslerian arc-length functional, the
non-linear connection should be the Cartan non-linear connection [20] or
the Berwald non-linear connection ([19]) and similar conclusions as from
theorem 4.1 can be obtained, although allowing possible violations of the
equivalence Principle.

5 Conclusions

The approach advocated in this note to Caianiello’s Quantum Geometry has
shown that the non-linear connection, in both non-degenerate Finslerian and
pseudo-Riemannian frameworks (M, g), can play an important role on the
foundations of the theory and in some of the predictions of the Quantum
Geometry model in the case of non-zero curvature.

These deviations from standard Quantum Geometry are not negligible
and are in principle so large as the original corrections of Caianiello’s model.
For instance, semi-classical regimen requires small deviations from classical
evolution and therefore h1 ≈ −1

3
h2. Corrections coming from the non-linear

connection terms could be also important for the modified Schwarzschild’s
geometry and for the study of neutrinos oscillations in this framework and
in Kerr spaces([8],[9], [18]). Important changes can also be obtained in
some astrophysical and cosmological consequences of maximal acceleration
([10],[11]). However, in the case of flat space models, the correction h2 is zero
and no new corrections have to be added to the original Quantum Geometry.
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Covariant Caianiello’s QuantumGeometry should be considered as a phe-
nomenological description with origin in a deeper unified framework, because
the existence of a maximal acceleration is not natural only with gravitational
interaction. However with other interactions playing the game, maximal ac-
celeration could be in harmony with the absence of singularities in geometric
invariants.

In the case of violation of the Equivalence Principle, the approach in-
dicated by theorem 4.2 could be useful. If the particles follow the classical
geodesic Dẋẋ = 0, then Quantum Geometry will be trivial. But departure
from this geodesic evolution will indicate the need of consider Caianiello’s
Quantum Geometry in a unification scheme. In this contest, Cartan and
Berwald non-linear connections become an important tool for the study of
the geometry associated with these models, linear connections in associated
bundles are less relevant in our construction of Covariant Caianiello’s mod-
els. Similar conclusions follows from theorem 4.1 in the case that Equivalence
Principle holds.

Finally, we wish to stress that independently of the kind of field theory
behind the ideas expressed in this note, it seems that Covariant Caianiello‘s
Model is an example where diverse types of structures like Finsler, Lagrange
and generalized Lagrange as well as their non-degenerate analogous, appear
in a natural way. In this sense, it is a particular realization of higher or-
der Finsler-Lagrange geometries. This point is particularly important if we
interpret (4.1) as inducing a higher non-degenerate metric structure in M.
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