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Abstract

Discussions about Bose-Einstein correlations between decay products of copro-
duced W-bosons again raise the question about the behaviour of correlations if
several strings are produced. This is studied by the multiplicity dependence of
correlation functions of particle pairs with like-sign and opposite-sign charge in p̄p
reactions at

√
s = 630 GeV.
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1 Introduction

Recently, there has been much discussion regarding the possibility that Bose-
Einstein correlations and other interconnection effects 1 between decay prod-
ucts of different strings could affect the measurement of the W mass. Since
measurements are hampered by low statistics and experimental difficulties, the
question arises whether and where effects of the superposition of several strings
can be tested independently. Within the Dual Parton Model, the number of
strings may be expected to be proportional to multiplicity and thus influence
the multiplicity dependence of various effects, in particular Bose-Einstein cor-
relations. While the decrease in observed λ as function of multiplicity can be
explained naturally in terms of products of different strings, 2,3 other features
such as the radius cannot. 4

Improvements in experimental analysis techniques, 5 larger data samples
and the above theoretical background make it desirable to repeat and extend
Bose-Einstein analyses with an advanced strategy. In this contribution, we
investigate like-sign and opposite-sign correlations at different total multiplic-
ities with the same model-independent strategy and good statistics. The bias
introduced by selecting events of a given overall multiplicity is eliminated with
the use of “internal cumulants”. 5

2 Data sample and normalized density correlation functions

The data sample consists of 600.000 non-single-diffractive p̄p reactions at
√
s =

630 GeV measured by the UA1 central detector. 6 As before, only vertex-
associated charged tracks with transverse momentum pT ≥ 0.15 GeV/c, |η| ≤
3, good measurement quality and fitted length ≥ 30cm have been used. To
avoid acceptance problems, we restricted the azimuthal angle to 450 ≤ |φ| ≤
1350 (“good azimuth”).

Fig. 1 shows the normalized density correlation functions for pairs of like-
sign charge and for opposite-sign charge separately. Restricting the total un-
corrected charged multiplicity N in |η| ≤ 3 to the windows 1≤N ≤ 6 (Fig.
1a) and 28≤N ≤ 35 (Fig. 1b), one obtains for the corrected particle density
in the central rapidity region dn/dη = 0.83 ± 0.08 and dn/dη = 5.3 ± 0.17 re-
spectivelya. All quantities measured are defined in the notation of correlation

aEvents are selected according to multiplicity in all azimuthal regions, while the subsequent
analysis is performed for particles in the good azimuth only. This is done because the total
rather than the good-azimuth multiplicity is physically relevant. Total multiplicity density
(dn/dη) is estimated as twice the density measured in the good-azimuth region.
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integrals 7,

r2(Q) =
ρ2(Q)

ρ1⊗ρ1(Q)
=

∫

Ω
d3p1 d

3p2 ρ2(p1,p2) δ [Q− q(p1,p2)]
∫

Ω
d3p1 d3p2 ρ1(p1) ρ1(p2) δ [Q− q(p1,p2)]

with p the three-momenta and q ≡
√

−(p1 − p2)2, with p being the correspond-
ing four-momenta. The integration region Ω is identical with our experimental
cuts as specified above. All particles have been assumed to be pions.

In p̄p reactions and in full phase space the number of positive and nega-
tive particles are equal; furthermore in the central rapidity region the corre-
sponding ρ-functions are also equal. Given the charged multiplicity ρ1(p) =
ρ+1 (p) + ρ−1 (p), we hence assume that ρ+1 (p) = ρ−1 (p) ≃ 1

2
ρ1(p) and therefore

also ρ+1 ⊗ρ+1 (Q) ≃ 1
4
ρ1⊗ρ1(Q) etc. The like-sign and opposite-sign normalised

correlation densities hence become, respectively,

rℓs2 (Q) =
ρ±±
2 (Q)

ρ±1 ⊗ρ±1 (Q)
=

ρ++
2 (Q) + ρ−−

2 (Q)

ρ+1 ⊗ρ+1 (Q) + ρ−1 ⊗ρ−1 (Q)
≃ ρ++

2 (Q) + ρ−−
2 (Q)

1
2
ρ1⊗ρ1(Q)

,

ros2 (Q) =
ρ±∓
2 (Q)

ρ±1 ⊗ρ∓1 (Q)
=

ρ+−
2 (Q) + ρ−+

2 (Q)

ρ+1 ⊗ρ−1 (Q) + ρ−1 ⊗ρ+1 (Q)
≃ ρ+−

2 (Q) + ρ−+
2 (Q)

1
2
ρ1⊗ρ1(Q)

.

In Fig. 1, both the like-sign and opposite-sign correlation densities show a
strong dependence on multiplicity. To perform, however, a quantitative anal-
ysis, one has to get rid of the combinatorial background by calculating the
cumulants and secondly to correct for the bias introduced by fixing multiplic-
ityb.

3 Cumulants for limited multiplicity ranges

A quantitative study of the bias introduced by fixing multiplicity has been
performed by Lipa et al. 5 At fixed total multiplicity N , the standard factorial
cumulants

κ2(p1,p2 |N) = ρ2(p1,p2 |N) − ρ1(p1 |N) ρ1(p1 |N) (1)

are nevertheless nonzero, even when particles are completely uncorrelated.
These purely “external” correlations appear because the cumulant for any
multinomial distribution is nonzero; for example, in second order,

κmult
2 (p1,p2 |N) = − 1

N
ρ1(p1 |N) ρ1(p2 |N) . (2)

b The usual Bose-Einstein analysis assumes that rℓs
2

tends to a constant for large Q, ie.

rℓs
2 BE

(Q ≥ 1) = constant. It should be clear from Figure 1 that no such constancy exists for

limited multiplicity windows.
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As shown in Ref. 5, the “internal cumulants”

κI
2(p1,p2 |N) ≡ κ2(p1,p2|N) − κmult

2 (p1,p2 |N) (3)

correct this bias exactly: they are zero whenever the N particles behave multi-
nomially. Integrating (1)–(3) to obtain the correlation integral and normaliz-
ing, we arrive at the normalized internal cumulants for given fixed N ,

KI
2 (Q |N) =

κI
2(Q |N)

ρ1⊗ρ1(Q |N)
= r2(Q |N) −

(

1 − 1

N

)

. (4)

The prescription for calculating the KI
2 (Q |N) is therefore to measure at fixed

N (in Ω) first r2(Q |N) = ρ2(Q |N)
/

ρ1⊗ρ1(Q |N) and then to subtract

1 − 1

N
=

N(N − 1)

N2
=

∫

Ω
ρ2(Q |N)dQ

∫

Ω
ρ1⊗ρ1(Q |N)dQ

.

To obtain adequate statistics, we have to measure averages over limited mul-
tiplicity ranges rather than at fixed N . The internal second-order cumulant
averaged over the multiplicity range [A,B] is given in 5 by

κ2
I(p1,p2) =

∑B

N=A PNκI
2(p1,p2 |N)

∑B

N=A PN

, (5)

where PN is the experimental multiplicity distribution in [A,B] and the bar

over any quantity S denotes S ≡
∑B

N=A PNS(N)/
∑B

N=A PN .
Assuming that the shape of ρ1(p |N) does not vary in [A,B]

ρ1(p |N) ≃
(

N/N
)

ρ1(p1) ,

and adopting again the correlation integral prescription, we can write

K2
I
(Q) =

κ2
I(Q)

ρ1⊗ρ1(Q)
=

ρ2(Q)

ρ1⊗ρ1(Q)
−

∫

Ω
ρ2(Q)dQ

∫

Ω
ρ1⊗ρ1(Q)dQ

. (6)

For like-sign measurements, this becomes

K2
I ℓs

=
ρℓs2 (Q)

1
2
ρ1⊗ρ1(Q)

−
∫

Ω
ρℓs2 (Q)dQ

1
2

∫

Ω
ρ1⊗ρ1(Q)dQ

(7)
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Figure 1: rℓs
2

versus Q for like-sign pairs (full circles) and ros
2

versus Q for opposite-sign
pairs (open cirles) at a) dn/dη = 0.83 and b) dn/dη = 5.3.

Figure 2: Internal cumulants eqns. (7) for ℓs pairs (full circles) and os pairs (open circles)
for two different multiplicity densities, a) dn/dη = 0.83 and b) dn/dη = 5.3.
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and similarly for K2
I os

. Since all quantities shown here and below are to be
understood as mean values in multiplicity ranges like in (5) – (7), we henceforth
(and in Fig. 1) omit the bar on the symbols.

Fig. 2 shows both like- and opposite-sign internal cumulants for two selec-
tions of dn/dη. Three features are immediately apparent:

I. The cumulants differ from the moments of Fig. 1 by a shift constant
in Q, but the amount of the shift changes for different cumulants. The
importance of changing from r2 to KI

2 lies in the fact that the latter
demarcate clearly the “line of no correlation”.

II. Internal cumulants integrate to zero over the entire phase space; hence
the positive part of KI

2 at small Q is compensated by a negative part
at larger Q. Physically, this means that particles like to cluster, so that
there is a surfeit of pairs at small Q and a dearth of pairs at large Q
compared to the uncorrelated case.

III. The dependencies of the like- and opposite-sign cumulants on multiplicity
are rather similar in that both decrease markedly with dn/dη. This is
discussed below.

4 Multiplicity dependence of normalized cumulants

The similar decrease of KI ℓs
2 and KI os

2 with dn/dη suggests that both could
have the same functional dependence on multiplicity density. Under this hy-
pothesis,

KI ℓs
2 (Q, dn/dη) = Y ℓs(Q)C(dn/dη,Q) , (8)

KI os
2 (Q, dn/dη) = Y os(Q)C(dn/dη,Q) ,

the quotient of the cumulants should be independent of multiplicity

KI ℓs
2 (Q, dn/dη)

KI os
2 (Q, dn/dη)

=
Y ℓs(Q)

Y os(Q)
=

(

constant in
dn

dη

)

. (9)

Figure 3a shows that (9) holds at least approximately within error bars. (In
the region where both cumulants are near zero, no meaningful quotients can
be formed.)

Having shown that like- and unlike-sign internal cumulants behave approx-
imately in the same way as functions of dn/dη, we now ask how this dependence
is structured. A first hypothesis, is that KI

2 depends inversely on N ; in the
notation of Eq. (8),
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KI a
2 (Q |N) = Y a(Q)C(N,Q) = Y a(Q)N−1 a = ℓs, os . (10)

This can be motivated theoretically by

a) Resonances: If the unnormalized cumulants κI os
2 and κI ℓs

2 were wholly
the result of resonance decays and if the number of resonances were
proportional to the multiplicity N , then κI

2 ∝ N . Assuming ρ1(p |N) ∝
Nρ1(p) gives ρ1⊗ρ1 ∝ N2, and hence after normalization, the resonance-
inspired guess

KI
2 =

κI res
2

ρ1⊗ρ1
∝ 1

N
.

b) Independent superposition in momentum space of n equal strings

would also lead to KI
2 = n · κI string

2 /(ρ1⊗ρ1) ∝ (1/n) ∝ (1/N). Devia-
tions can occur if the strings are unequal.

Eq. (10) implies that KIa
2 (Q |N1)/KIa

2 (Q |N2) = (N2/N1) = (constant in Q)
for two multiplicities N1 and N2. In Fig. 3b, we show the quotient of cumulants
for two multiplicities. Surprisingly, we find not one but two constants, one
for small Q <∼ 0.4 GeV, one for large Q >∼ 2 GeV, where only the latter
corresponds to the value (N2/N1) expected from (10), shown as the dotted
line. At small Q, one must clearly look for other functional forms for C(N,Q).
Some phenomenological guesses are as follows. 8

c) In the source picture of Bose-Einstein correlations, the independent

superposition of sources in configuration space leads to KI,BE
2 ≃ constant

in N . We would expect λ to be independent of multiplicity, but the
radius R to increase with N . Hence there should be a change of shape
of KI ℓs

2 (Q) but no overall N -dependence.

d) A mixture of processes, a) with c) could result in a dependence

KI ℓs
2 (Q |N) ≈ a(Q) +

b(Q)

N
(11)

However, no comparable source picture is available for the unlike-sign
case. Also, the quotient KI ℓs

2 /KI os
2 would not be constant in N , in

contradiction to the results of Fig. 3a.

e) Another guess would yield a N−1 dependence for large Q, while the
small-Q region scales with N−α, with a different “constant” Y2,

KI a
2 =

Y a
1 (Q)

N
Θ(Q− 2) +

Y a
2 (Q)

Nα
Θ(0.4 −Q) + . . . a = ℓs, os , (12)
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Figure 3: a) The ratio Eq. (9) is shown for two selections of dn/dη. b) The ratio of two
KI a

2
(Q) at different dn/dη as indicated on ordinate. The region around Q = 1 has been

omitted because the denominators are around zero.

In order to test the above ideas, we plot the cumulants against (dn/dη)−1

as follows. To avoid local statistical fluctuations, the normalized cumulants
KI ℓs

2 (Q) and KI os
2 (Q) are fitted with suitable functions in restricted Q-ranges

(not shown). The KI ℓs
2 (Q) have also been fitted to an exponential parametriza-

tion for Q < 1 GeV/c

KI ℓs
2 (Q) = a + λ e−RQ . (13)

The multiplicity dependence of the fitted KI ℓs
2 and KI os

2 (circles), as well as
the corresponding λ values (crosses) are plotted in Fig. 4. Fig. 4b shows that,
as in Fig. 3b, the (1/N)-dependence is satisfied only for large Q, but not for
small Q. The a+b/N dependence in Fig. 4a (solid line) provides a possible, but
hardly unique, explanation. The dashed line corresponding to N−α behaviour
(12) seems somewhat better. However, while this form is compatible with all
results shown so far, we have no phenomenological justification for it. Eq. (12)
also omits the region around Q ≃ 1 GeV (e.g. the region of ρ0 production)
where the phase space contributes maximally, but the KI os

2 decrease rapidly
with increasing Q and the KI ℓs

2 are already small (Fig. 2). It is difficult to
investigate this important region directly. A 1/N dependence (via resonances,
for example) in the dominant region around 1 GeV/c could presumably cause
the large-Q region to follow suit via missing pairs.
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Figure 4: a) Multiplicity dependence of KI ℓs
2

(Q = 0.1) (full circles) and of KI os
2

(Q = 0.1)
(open circles) and λ values of exponential fit, Eq. (13) (crosses), b) as in a) but for the
large Q region. For better comparison of the respective dependencies on dn/dη, the absolute
values have been scaled by constant factors. The straight lines are linear fits, the dashed
line corresponds to eqn.(12).

5 Summary

The multiplicity dependence of like-sign and opposite-sign two-body correla-
tion functions are studied with the same model-independent strategy. The bias
introduced by selecting events of a given overall multiplicity is eliminated in
measuring “internal cumulants”. We observe that

- the like-sign and opposite-sign functions have a very similar multiplicity
dependence, which is surprising because of their different shapes and
assumed origins,

- there exist two regions, one at small Q, where the multiplicity dependence
of both is smaller than 1/N , and one at large Q( >∼ 1 GeV/c), where the
functions are negative and follow roughly an 1/N law.

Theoretical work2,3,12 is challenged by these findings. The similar be-
haviour of ℓs and os functions at small Q, both decreasing with multiplicity,
favours suppression of Bose-Einstein correlations between products of different
strings. Resonance decays (Regge terms) should arguably contribute also to ℓs-
functions 8,13. One could therefore try to explain alternatively the decrease of
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ℓs functions with N by a mixture of Bose-Einstein correlations (assumed to be
constant in N) with resonance production. This leaves unexplained, however,
the similar behaviour of os and ℓs functions and the nearly N independent
shapec in the small-Q region.
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J. Häkkinen and M. Ringnér, preprint LUTP 97–32.
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