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Abstract

This is the completion of an exploratory study of Compact lattice Quantum Elec-

trodynamics with a weak four-fermi interaction and four species of massless fermions.

In this formulation of Quantum Electrodynamics massless fermions can be sim-

ulated directly and Finite Size Scaling analyses can be performed at the theory’s

chiral symmetry breaking critical point. High statistics simulations on lattices

ranging from84 to 244 yield the equation of state, critical indices, scaling func-

tions and cumulants. The measurements are well fit with the orthodox hypothesis

that the theory is logarithmically trivial and its continuum limit suffers from Lan-

dau’s zero charge problem.
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1

http://arxiv.org/abs/hep-lat/0501003v1


1 Introduction

This is the final paper in a series of simulation studies searching for a nontrivial

ultra-violet fixed point in abelian gauge theories. Previous studies have provided

simulation evidence that scalar QED [1] and noncompact lattice QED with four

species of massless fermions [2] are logarithmically trivial.

This work employs theχQED formulation of the model in which a weak four-

fermi interaction is added to the standard action. This affords us two advantages

over standard methods: 1. we can simulate massless fermionsdirectly on the

lattice and see how massless fermion charge screening affects the dynamics, and

2. the four-fermi interaction separates the chiral transition of the model from

its confinement/deconfinement transition which is a first order transition and is

controlled by monopole condensation.

TheχQED action contains two couplings,β = 1/e2 wheree is the usual elec-

trodynamic charge, and the four-fermi coupling,G = 1/λ. The model’s phase

diagram contains two separate lines of transitions, one describing monopole con-

densation which is first order and a line of second order chiral transitions. We

will show that the line of second order chiral transitions describes a logarithmi-

cally trivial continuum limit, presumably identical to thecontinuum limit of the

noncompactχQED lattice model studied earlier [2].

This will be accomplished by exploiting the fact that FiniteSize Scaling (FSS)

applies simply toχQED because it is formulated without a bare fermion mass. In

the conventional lattice action the bare fermion mass explicitly breaks chiral sym-

metry and introduces scale breaking. A nonzero fermion massis needed so that the

standard algorithm converges. By contrast,χQED allows us to study the physics

of the critical point by doing simulations in its immediate vicinity and extracting

information from FSS arguments without ever needing uncontrolled extrapola-

tions to the chiral limit. One of the purposes of this paper isthe illustration of FSS

methods for lattice gauge theories with massless fermions.This represents new

territory for lattice gauge theory.

Of course, this work is not without its disappointments. We cannot simulate

the model in a range of parameters where monopoles are relevant degrees of free-
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dom in the theory’s continuum limit. For this action, the line of monopole con-

densation transitions is distinct from that of the chiral transitions and monopole

condensation appears to be first order. It has been argued elsewhere [4] that a sec-

ond order transition where there is both chiral symmetry breaking and monopole

condensation would be a natural scenario for a nontrivial form of continuum QED

because screening effects coming from fermions could balance anti-screening ef-

fects coming from monopoles. A future formulation of lattice monopoles and

fermions will have to be developed to see if this possibilitycould work out.

Since this paper is a continuation in a series we refer the reader to reference

[3] for additional background and formulas. Here our emphasis is on the new

simulations, FSS methods and results.

The paper begins by laying out the lattice theory’s two dimensional phase di-

agram and presenting some simulations which pin down its qualitative features.

Then some highly accurate164 and244 simulations in the broken symmetry phase

are presented and analyzed. This is the approach used in paststudies which

showed that the noncompact model is logarithmically trivial [2]. The compact

model should also be logarithmically trivial because the chiral transition occurs

in a region of the model’s phase diagram where monopoles are not critical. Un-

der these conditions the differences between the compact and noncompact models

should become irrelevant and the models should have the samecontinuum limit

[5]. This conventional idea was not well supported by our first simulation study

[3] of the model which motivated us to do a more thorough job which we report

here. The conclusions presented here are based on over ten times the statistics of

earlier work. High statistics allowed the simulation program to reach thermody-

namic equilibrium and produce more accurate ensembles of configurations which

reduced the error bars substantially. The164 and244 data in the broken sym-

metry phase can be fit with both power laws whose critical indices deviate from

mean field theory, as reported in [3],or log-improved mean field theory. The log-

improved mean field theory fits are somewhat better than the power law fits, but

a conclusive result eludes us if we just use this subset of oursimulations. How-

ever, the combination of the broken phase results together with new simulations,
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analyzed with FSS methods on lattices ranging from84 to 164, in the immediate

vicinity of the model’s critical point lead to stronger results: they favor the log-

arithmically trivial fermionic field theory scenario. Thisis the new conclusion

which will be presented below.

This paper is organized as follows: In the next section we briefly review the

formulation of the lattice action and define the parameters we use in our fits and

simulations. In the third section we sketch the phase diagram and present a few

simulations which led to it. Then we examine several points in the phase dia-

gram along the line of chiral transitions and show that the data for the chiral order

parameter in the broken symmetry phase is compatible with log-improved mean

field theory. Next we review the relevant features of FSS and present several sec-

tions of analysis of high statistics data sets using lattices ranging from84 through

164. This is the most decisive analysis in this study. Its success depended crucially

on the use of theχQED action and statistically large data sets which are several

orders of magnitude larger than those used in typical lattice simulations of QCD,

for example. FSS simulations at and near the critical coupling were essential to

establishing the logarithmic triviality of this model.

2 Formulation

The lattice Action of compactχQED, where the gauge symmetry is interpreted as

a compact localU(1) symmetry, following Wilson’s original proposal [6], reads

S =
∑

x,y

ψ̄(x)(Mxy+Dxy)ψ(y)+
1

2G

∑

x̃

σ2(x̃)+
1

2e2

∑

x,µ,ν

(1−cos(Fµν(x))), (1)

where

Fµν(x) = θµ(x) + θν(x+ µ̂) + θ−µ(x+ µ̂+ ν̂) + θ−ν(x+ ν̂), (2)

Mxy = (m+
1

16

∑

〈x,x̃〉

σ(x̃))δxy, (3)

Dxy =
1

2

∑

µ

ηµ(x)(e
iθµ(x)δx+µ̂,y − e−iθµ(y)δx−µ̂,y). (4)
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The auxiliary scalar fieldσ is defined on the sites of the dual latticex̃ [7], and the

symbol〈x, x̃〉 denotes the set of the 16 lattice sites surrounding the direct sitex.

The factorse±iθµ are the gauge connections andηµ(x) are the staggered phases,

the lattice analogs of the Dirac matrices.ψ is a staggered fermion field andm is

the bare fermion mass, which will be set to zero. Note that thelattice expression

for Fµν is the circulation of the lattice fieldθµ around a closed plaquette, the gauge

field couples to the fermion field through compact phase factors to guarantee local

gauge invariance andcosFµν enters the action to make it compact.

It will often prove convenient to parametrize results with the inverse of the

four-fermi coupling,λ ≡ 1/G, and the inverse of the square of the gauge coupling,

β ≡ 1/e2.

The globalZ2 chiral symmetry of the Action reads:

ψ(x) → (−1)x1+x2+x3+x4ψ(x) (5)

ψ̄(x) → −ψ̄(x)(−1)x1+x2+x3+x4 (6)

σ → −σ. (7)

where(−1)x1+x2+x3+x4 is the lattice representation ofγ5.

Interesting limiting cases of the above Action are: (i) theZ2 Nambu−Jona-

Lasinio model with no gauge fields, sete2 to zero here, which has a logarithmi-

cally trivial chiral phase transition at nonzeroG; (ii) the compact QED model with

no four-fermi interactions, whose first order chiral phase transition is coincident

with its first order monopole condensation transition nearβ ≡ 1/e2 ≈ 0.89(1)

for four flavors [9]; and (iii) theG → ∞ limit in which the fermions obtain a

dynamical mass comparable to the reciprocal of the lattice spacing and therefore

decouple, leaving quenched compact QED which has a first order transition at

β = 1.011124(1) [10].

We refer the reader to earlier papers in this series [3] for more motivation and

details. We only emphasize new simulations and analyses here.
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Region I

Region IIRegion III

0.25 G = 1/λ

< ψ̄ψ >6= 0M = 0< ψ̄ψ >= 0M = 0
β

1.0

< ψ̄ψ >6= 0M 6= 0

Figure 1: Phase Diagram of Gauged CompactU(1) Nambu Jona-Lasinio Model

3 Overview of the Phase Diagram.

The phase diagram for the model [3] is shown in Fig. 1. The monopole concentra-

tionM and the chiral condensate,〈ψ̄ψ〉, label the three phases. Region I has chiral

symmetry breaking in a condensate of monopoles, Region II has chiral symmetry

breaking in a monopole free vacuum, and Region III is chirally symmetric in a

monopole free vacuum. Past simulations suggest that the dashed line consists of

second order transitions and the thick line consists of firstorder transitions [3].

It is interesting to confirm that the dashed line of chiral symmetry breaking

transitions in the upper reaches of Fig. 1 turns vertical andthe four-fermi coupling

alone breaks chiral symmetry at strong coupling, in agreement with [8]. This is

shown in Fig. 2 where we confirm that the model breaks chiral symmetry for

G = 1.0 no matter how small the gauge couplinge2 = 1/β.

In reference [3] we concentrated on the vertical lineG = 1/1.4 and showed

that the line of first order monopole concentration transitions is clearly separate

from the line of chiral symmetry transitions. We felt that itwas important to

simulate along another vertical line in the phase diagram toverify this result and
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Figure 2:〈σ〉 vs. gauge couplingβ = 1/e2 at fixed four-fermi couplingG = 1.0.

to see how sensitive the characteristics of the transitionsare to the bare couplings.

There are several questions we need to address. They include: (i) Does the order

of the transition(s) change along the lines in the phase diagram? (ii) Do the critical

indices change along the lines? There are related models where this is known to

happen, such as in the quenched noncompact gauged Nambu-Jona Lasinio model

[11]. It is unknown if such phenomena can occur in unquenchedabelian models

where fermion screening leads to the zero charge problem in perturbation theory

and produces only perturbatively trivial models.

In Fig. 3 we show the monopole concentration as the gauge coupling β passes

through the phase boundary atG = 0.50 between regions I and II. The monopole

concentration appears to have a discontinuous jump just below β = 0.935.

Measurements of〈σ〉 in Fig. 4 also show the first order transition nearβ =

0.935 and indicate that region II (see Fig. 1) extends from this point to approxi-

matelyβ ≈ 0.96 along the vertical line atG = 0.50.

The simulations reported in [3] along the vertical lineG = 1/1.4 found a con-

tinuous chiral transition atβ = 1.393(1). It is interesting to check the consistency
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Figure 3: Monopole concentration vs. gauge couplingβ at fixed four-fermi cou-
plingG = 0.50.
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Figure 4:〈σ〉 vs. gauge couplingβ at fixed four-fermi couplingG = 0.50.
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Figure 5:〈σ〉 vs. four-fermi couplingλ = 1/G at fixed gauge couplingβ = 1.393.

of this prediction with simulations approaching the critical point from a different

direction in the phase diagram. Therefore, we simulated themodel on164 lat-

tices along the horizontal direction, fixingβ = 1.393 and varying the four-fermi

coupling. The results are shown in Fig. 5.

We see that Fig. 5, although not competitive in accuracy withthe study at

fixed four-fermi coupling and variable gauge coupling due toan apparently narrow

scaling region, is indeed compatible with the earlier results: the critical point is

again predicted to be atG = 1/1.4 andβ = 1.393. The dashed curve in Fig. 5 is

just meant to guide the eye to the horizontal line.

4 High Statistics 164 Simulations along the Vertical
Line λ = 1.4

The real focus of this series of simulations is to determine the quantitative nature

of the line of chiral transitions in the phase diagram. We, therefore, developed

a very fast, parallel version of the simulation code and madehigh statistics runs
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Figure 6: 〈σ〉 vs β at four-fermi couplingλ = 1.4. The fit has the critical index
βmag = 0.65(4).

along the vertical lineλ = 1.4, complementing the exploratory runs reported

earlier [3]. In fact, between10×106 and20×106 sweeps of the Hybrid Molecular

Dynamics algorithm were done at each of fifteen couplingsβ ranging fromβ =

1.393 toβ = 1.125. This is more than an order of magnitude greater statistics than

those previously reported and represent between100, 000 and200, 000 trajectories

of the Hybrid Molecular Dynamics algorithm [12] at each coupling (the Monte

Carlo time interval was chosen to bedt = 0.01 to keep systematic errors negligible

in the molecular dynmics steps). The data on the broken chiral symmetry side of

the transition is plotted in Fig. 6 and a power-law fit is included in the figure. (The

data on the other side of the transition will be used in a FSS analysis below.) The

power-law fit,〈σ〉 = A(βc−β)βmag , is acceptable,χ2/DOF = 1.7 with a critical

pointβc = 1.33(1) and a critical magnetization exponentβmag = 0.65(10).

It is interesting that the critical index is larger than the mean field value of

1/2, but the deviation from mean field theory is less than reported in our earlier,

lower statistics, exploratory work [3]. The high statistics of this run are making a
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difference in the results. We recall from other works usingU(1) gauge fields and

the simplest Wilson action, that very long relaxation timesare noted [10]. Our

time correlation analysis suggests that the20 million sweeps used here suffice and

the error bars in the figure conservatively account for the correlations in Monte

Carlo time. It is interesting that simulations of the noncompact model [2] didnot

require such enormous statistics to achieve equally accurate results.

Following our analysis of the noncompact model, however, itis interesting to

attempt to fit the same data with the hypothesis of logarithmic triviality. As dis-

cussed in previous work, including reference [8], the logarithms of triviality effect

the scaling laws and equation of state differently for fermionic theories than for

bosonic theories. In particular, in references [2, 8], the leading order equation of

state had the formβc − β = A〈σ〉2(ln(1/〈σ〉) +B). Fits of this form accomodate

the data of Fig. 6 very well, in fact, just like in the noncompact model. Fitting

routines predict the parameterB = 0.84(8), A = 7.3(9) andβc = 1.33(1) with

χ2/DOF = 0.66. To emphasize the need for the logarithm here, we plot the quan-

tity (βc − β)/〈σ〉2 againstln(1/〈σ〉) in Fig. 7, and show the fit. This makes the

point that the simulation results are compatible with logarithmic triviality. In fact,

they appear to rule out bosonic triviality fits which would have the logarithm of

triviality in the denominator of the equation, likeβc−β = A〈σ〉2/(ln(1/〈σ〉)+B),

rather than the numerator. Our work, therefore, supports the analytic predictions

of A. Kocić [13]. Perhaps, the fact that theχ2/DOF from the log-improved

mean field relation (which is a three-parameter function) isless than half the

χ2/DOF we get from the fit to the standard power-law relation (which is also

a three-parameter function) is evidence that the data favorthe triviality scenario

over the interacting field theory scenario. More compellingand straight-forward

evidence for triviality will be presented in the sections onFSS below.

This result is not above criticism, however. As is clear fromthe figures, we

are not able to simulate the model very close to the critical point on this lattice

size without meeting uncontrollable finite size effects. For example, simulations

closer toβc display tunneling between theZ2 vacua through the unbroken phase

and make reliable measurements of the order parameter impossible. We will turn
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Figure 7:(βc − β)/〈σ〉2 vs ln(1/〈σ〉) at Four Fermi couplingλ = 1.4.

to FSS simulations below to remedy this limitation and obtain a better estimate

for βc.

5 24
4 Simulations along the Vertical Line λ = 2.0

Next consider simulations on larger lattices in the broken symmetry phase. In

Fig. 8 we show the raw data from simulations on244 lattices at a somewhat weaker

four-fermi couplingG = 0.5. These larger lattices allowed us to run simulations

closer to the critical point without suffering from large finite size effects. The

algorithm was also somewhat better behaved at weaker four-fermi couplingG =

0.5. Of course we were not able to amass as high statistics in thiscase: one million

sweeps per coupling were accumulated.

The raw data in Fig. 8 is fit with a simple power,〈σ〉 = A(βc−β)
βmag , and the

parametersA = 2.8(9), βc = 0.952(1), βmag = 0.77(10), were determined with

χ2/DOF = 1.18. We again see that the best power law predicts a critical index

βmag higher than that of pure mean field theory, as in reference [3]. However,
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Figure 8:〈σ〉 vsβ at Four Fermi couplingλ = 2.0. The fit has the critical index
βmag = 0.77(10).

the data is also well fit with the hypothesis of triviality. Fits to the formβc −

β = A〈σ〉2(ln(1/〈σ〉) + B) gave the parametersA = 0.21(10), βc = 0.951(1)

andB = −0.061(1) with a fine quality of fitχ2/DOF = 0.78. Following our

presentation above, we plot(βc−β)/〈σ〉2 againstln(1/〈σ〉) in Fig. 9, which shows

the importance of the logarithms and the deviation from puremean field theory.

As in Sec. 4 we find that the log-improved triviality fit is preferred to the power

law form.

6 Results near the critical coupling

6.1 Background on Finite Size Scaling

In order to study the critical behavior of our theory arbitrarily close to the critical

coupling we used FSS methods. FSS techniques first developedby Fisher [14]

are important tools used in the determinations of critical exponents near second

order phase transitions. The critical behavior of a system in the thermodynamic
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Figure 9:(βc − β)/〈σ〉2 vs ln(1/〈σ〉) at Four Fermi couplingλ = 2.0.

limit may be extracted from the properties of finite size systems by examining the

size dependence of the singular part of the free energy density. According to FSS

theory, for dimensionalityd less than the upper critical dimensiondc, the singular

part of the free energy is described phenomenologically by auniversal scaling

form,

Fs(t,m, L) = L−dF(tL1/ν , mL(βmag+γ)/ν), (8)

wherem is the fermion bare mass andt ≡ (βc−β). The critical exponentsν, βmag

andγ are all the thermodynamic values for the infinite system. Scaling forms for

various thermodynamic quantities can be obtained from appropriate derivatives of

the free energy density. On a finite volume and with the fermion bare mass set to

zero, the direction of symmetry breaking changes over the course of the run so the

chiral condensate averages to zero over the ensemble. Another option is to intro-

duce an effective order parameterΣ ≡ 〈|σ|〉, which in the thermodynamic limit

is equal to the true order parameter〈σ〉. The FSS scaling form forΣ determined
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from Eq. 8 is

Σ = L−βmag/νfσ(tL
1/ν). (9)

A standard method to measureβc for a second order transition is to com-

pute the Binder cumulant [15] for various system sizes. On sufficiently large

lattices where subleading corrections from the finite lattice sizeL are negligible,

the Binder cumulantUB(β, L), defined by

UB ≡ 1−
1

3

〈|σ|4〉

〈|σ|2〉2
, (10)

is given byUB = fBL(tL
1/ν) and, therefore, atβc it becomes independent ofL.

Another quantity of interest is the susceptibilityχ which, in the static limit of

the fluctuation-dissipation theorem, is

χ = lim
L→∞

V [〈σ2〉 − 〈σ〉2], (11)

whereV is the lattice volume. For finite systems this expression leads to the

following finite-lattice estimates forχ:

χ1 = V 〈σ2〉 β > βc, (12)

χc = V [〈σ2〉 − 〈|σ|〉2] β < βc, (13)

where the subscriptc stands for “connected.” Both relations should scale at criti-

cality likeLγ/ν . Furthermore, the maxima ofχc in the scaling region should also

obeyχpeak
c ∼ Lγ/ν .

Furthermore, logarithmic derivatives of〈|σ|n〉 can give additional estimates

for ν. It is easy to show that

Dn ≡
∂

∂β
ln〈|σ|n〉 =

[

〈|σ|nP 〉

〈|σ|n〉
− 〈P 〉

]

, (14)

whereP is the plaquette, has a scaling relation

Dn = L1/νfDn
(tL1/ν). (15)
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Other related quantities useful in determining the critical exponentν can be

defined from logarithms of derivatives of〈σn〉 [16]. In our analysis we will con-

sider

Q ≡ 2[σ2]− [σ4], (16)

where

[σn] ≡ ln
∂〈σn〉

∂β
. (17)

One can easily show that

Q ≃
1

ν
lnL+Q(tL1/ν). (18)

The above FSS relations rely on the traditional FSS hypothesis that in the

vicinity of the critical coupling the behavior of the systemis determined by the

scaled variableL/ξ, whereξ is the correlation length. The standard FSS hypoth-

esis fails ford ≥ dc. A modified hypothesis forO(N)-symmetricΦ4 theories in

four dimensions was proposed in [17], where it was shown thatin the vicinity of

the critical coupling the actual length of the finite size system is replaced by its

correlation lengthξL(0) ∝ L(lnL)
1

4 , independent ofN . However, as shown in

[8] and demonstrated numerically in earlier sections of this paper, the logarithmic

triviality in fermionic field theories such as the NJL model and QED is manifested

in a different way from the triviality in purely bosonic theories. The logarithmic

corrections in the scaling relations of QED are expected to be in the denomina-

tor of the scaling functions, whereas inΦ4 theory they are in the numerator. The

same is expected in the FSS relations of various thermodynamic quantities. By

generalizing the Privman-Fisher ansatz for the scaling relation of the singular part

of the free energy, the scaling function forFs(t,m0, L) becomes

Fs(t,m0, L) = L−dF(tL2lnpL,m0L
3lnqL). (19)

Consequently, the log-improved FSS relations for the effective order parameter

and the susceptibility obtained from appropriate derivatives at zero fermion mass

are,

Σ = L−1lnqLfσ(tL
2lnpL), (20)
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χ = L2ln2qLfχ(tL
2lnpL). (21)

In the next sections we will present our attempts to extract the critical expo-

nents and to check consistency with log-improved scaling. We studied the FSS

behavior of several observables in order to compare different results and reach

conclusions.

6.2 Analysis of the Binder cumulant

In the vicinity ofβc we can expand the Binder cumulant and find

UB(β, L) ≃ U∗ + U1(βc − β)L1/ν . (22)

By fitting this relation to data in the range1.2875 ≤ β ≤ 1.375 and lattice sizes

L = 8, .., 16 we foundν = 0.49(10), βc = 1.356(7) andU∗ = 0.153(26) with

χ2/DOF = 1.6. The measured value of the critical exponentν is consistent with

the mean field predictionν = 1/2, although the error is relatively large. More

measurements ofν with better precision are presented below. The location of the

critical pointβc = 1.356(7) refines the estimates found from the broken symmetry

fits given earlier. Since those studies were done far fromβc, a small discrepancy

is not surprising.

6.3 Analysis of effective order parameter

In this section we discuss the FSS analysis for the effectiveorder parameterΣ. We

fit our data toΣβc
= aL−βmag/ν for three values ofβ = 1.325, 1.350 and1.393,

which are close to the valueβc = 1.356 extracted from the analysis ofUB(L, β).

The results are presented in Table 1 and plotted in Fig. 11. Weconclude thatβc
is close to1.350 and the ratioβmag/ν = 1.14(6) at this value ofβ is also close to

the mean field resultβmag/ν = 1.

We also fit all the data in the vicinity of the transition to a single scaling func-

tion obtained from the Taylor expansion of Eq. 9, up to a linear term,

Σ ≃ [c1 + c2(βc − β)L1/ν ]Lβmag/ν . (23)

17
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Figure 10: Binder cumulant versus coupling for different lattice sizes.

After fixing βc = 1.356 we obtained the values ofβmag/ν andν. When all the

three values of the coupling (β = 1.325, 1.350 and 1.393) for L = 8, ..., 16,

and an extra couplingβ = 1.375 for L = 16, are included in the fit we get

βmag/ν = 1.13(4) andν = 0.48(8) with χ2/DOF = 1.4. For the same data

set and for fixedβc = 1.330 (which is the value of the critical coupling obtained

from the broken phase analysis) we getβmag/ν = 0.95(5) andν = 0.56(8) with

χ2/DOF = 1.3.

In order to check whether our results are consistent with log-improved mean

field scaling, we fitΣ to Eq. 20. The results are summarized in Table 2 and plotted

in Fig. 12. The best fit is atβ = 1.350 with p = −0.34(14). The negative sign of

p is consistent with the scenario of log-triviality in fermionic field theories [13].

6.4 Analysis of susceptibility

First, we fitχ1 (Eq. 12) as a function ofL at different values ofβ = 1.325, 1.350

and1.393. The results are displayed in Fig. 13 and Table 3. It is clear from these
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β = 1.393
β = 1.350
β = 1.325
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Σ

168

0.2
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0.008

Figure 11:Σ vs.L for different values ofβ.

results that the critical coupling is close toβ = 1.350 in agreement with analyses

presented in previous paragraphs. The measured value ofγ/ν = 1.76(14) is close

to its mean field value of2. We also fitχ1 in the vicinity of the transition to the

linear expansion ofχ(L, β) aroundβc.

χ1(L, β) ≃ [c1 + c2(βc − β)L1/ν ]Lγ/ν . (24)

After fixing the critical coupling to the value extracted from the broken phase

analysis (βc = 1.330) we getν = 0.66(9) andγ/ν = 2.15(9) with χ/DOF = 1.3,

whereas after fixingβc to the value extracted from theUB analysis we getν =

0.51(7) andγ/ν = 1.87(8) with the sameχ2/DOF as before. Furthemore, we

fit the data toχ1 ≃ aL2(ln2pL) in order to check whether the data are consistent

with log-improved mean field scaling. The results displayedin Table 5 provide

good evidence that the log-improved scaling relation describes the data well and

thatβc ≃ 1.350. The measured valuep = −0.28(16) is compatible with the result

extracted from log-improved fits ofΣ discussed in the previous section.
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Figure 12: Fits toLΣ = a lnp L for different values ofβ near the transition.

We repeated the above analysis for the connected susceptibility χc. The re-

sults presented in Table 5 indicate clearly thatβc is close toβ ≃ 1.350 with the

valueγ/ν = 1.70(11) close to the mean field result. The results of fits to the log-

improved FSS relation are summarized in Table 6. Again the results provide sig-

nificant evidence thatβc is close to1.350 andp = −0.36(13) which is consistent

with previous measurements ofp. We also fitted the peaks ofχc to χpeak
c ∼ Lγ/ν

and gotγ/ν = 1.99(16) in good agreement with the mean field prediction. The

data and the fitting function are shown in Fig. 14.

6.5 Analysis of Dj and Q

To make a further check of our results for the exponentν, we studied the finite

size scaling properties of logarithmic derivatives of〈|σ|n〉 defined in Eq. 14. We

fit Dj ∼ L1/ν for j = 1, 2, and3 at different values of the gauge coupling and

for L = 8, ..., 14. We note that the data generated on164 lattices were noisy and

therefore could not be included in the fits. The results for the exponentν and the
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Figure 13: Susceptibilityχ1 vs.L for different values ofβ.
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Figure 14: Peaks of connected susceptibilityχc vs.L.
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quality of each fit are shown in Tables 7,8,9. ithe values ofν are in very good

agreement with the mean field predictionν = 0.5. Although for these values

of gauge couplingν do not have a significant dependence onβ, the qualities of

the fits indicate thatβc ≃ 1.350 which is in agreement with results presented in

previous paragraphs. Our attempts to fit the data to log-improved FSS mean field

scaling lawsDj ∼ L2 lnp L did not give any signal forp.

D3

D2

D1

L

Dj

1614121086

0

-0.5

-1

-1.5

-2

-2.5

-3

-3.5

-4

-4.5

-5

Figure 15:D1, D2 andD3 vs.L atβ = 1.350.

Furthermore, we fit all the data (β = 1.325, 1.350, 1.393) to the linear expan-

sion of the FSS relation

Dj(β, L) ≃ c1jL
1/ν + c2j(βc − β)L2/ν , (25)

with fixed βc = 1.356. The results are summarized in Table 10 and are in good

agreement with the mean field result although the quality of each fit is not as good

as before.

Finally, a fit to the linear expansion of the observableQ (defined in Eq. 18)

Q ≈
1

ν
lnL+ c1 + c2(βc − β)L1/ν (26)
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for β = 1.300, ..., 1.393,L = 8, ..., 14 and fixedβc = 1.356 givesν = 0.52(3) and

χ2/DOF = 1.5, in good agreement with all the measurements forν presented in

previous paragraphs.

7 Conclusions

We have presented evidence for the logarithmic triviality of the chiral transition

line in compact QED with four species of fermions. A weak four-fermi interaction

was employed in the action so that massless fermions could besimulated directly,

thus avoiding the need to extrapolate raw data to the chiral limit. χQED allowed us

to use the simplest single variable finite size scaling fits tothe data. Since the four-

fermi interaction is irrelevant in four dimensions and since the full modelχQED is

found to be logarithmically trivial, this study constitutes strong evidence that the

continuum limit of the standard compact lattice QED model isalso logarithmically

trivial.

Finite size scaling proved to be an effective approach to deciding the physics

issues inherent in these models. The FSS analyses provide strong evidence that

the critical exponents are the mean field theory ones. Especially in the case of

ν the analyses of various observables show in a consistent manner thatν is very

close to 0.5. The broken phase data at different values of thefour-fermi coupling

also favor fermionic log-improved mean field scaling over the interacting field

theory scenario.
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Table 1: Results from fits toΣ = aL−βmag/ν .

β βmag/ν a χ2/DOF

1.325 0.84(8) 0.46(9) 2.1
1.350 1.14(6) 0.84(12) 0.16
1.393 1.45(5) 1.48(20) 4.6

Table 2: Results from fits toΣ = aL−1 lnp L.

β a p χ2/DOF

1.325 0.49(8) 0.37(19) 2.2
1.350 0.80(10) -0.34(14) 0.20
1.393 1.26(14) -1.06(13) 5.4

Table 3: Fits forχ1 = aLγ/ν .

β a γ/ν χ2/DOF

1.325 0.29(10) 2.36(14) 2.0
1.350 0.94(30) 1.76(14) 0.12
1.393 2.7(7) 1.18(11) 4.0

Table 4: Results from fits toχ1 = aL2(ln2q L).

β a p χ2/DOF

1.325 0.33(10) 0.41(17) 2.2
1.350 0.86(23) -0.28(16) 0.13
1.393 2.06(45) -0.97(13) 4.7

Table 5: Results from fits toχc = aLγ/ν .

β a γ/ν χ2/DOF

1.325 0.056(15) 2.51(11) 31.3
1.350 0.36(9) 1.70(11) 0.9
1.393 0.80(18) 1.23(9) 4.5
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Table 6: Results from fits toχc = aL2(ln2p L).

β a p χ2/DOF

1.325 0.11(3) 0.30(17) 45.6
1.350 0.33(7) -0.36(13) 0.9
1.393 0.62(12) -0.91(11) 5.1

Table 7: Results of fits toD1 ∼ L1/ν

β ν χ2/DOF

1.325 0.46(4) 1.1
1.350 0.48(4) 0.4
1.393 0.47(6) 3.3

Table 8: Results of fits toD2 ∼ L1/ν

β ν χ2/DOF

1.325 0.47(4) 1.0
1.350 0.47(5) 0.3
1.393 0.48(7) 2.8

Table 9: Results of fits toD3 ∼ L1/ν

β ν χ2/DOF

1.325 0.49(4) 1.0
1.350 0.47(5) 0.3
1.393 0.51(7) 2.3

Table 10: Results of fits to eq. 25.

ν χ2/DOF

D1 0.49(3) 2.5
D2 0.51(3) 2.0
D3 0.51(3) 1.9
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