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We present one-loop results for the forward twist-two matrix elements relevant to the unpolarised,
helicity and transversity baryon structure functions, in partially-quenched (Nf = 2 and Nf = 2+1)
heavy baryon chiral perturbation theory. The full-QCD limit can be straightforwardly obtained
from these results and we also consider SU(2|2) quenched QCD. Our calculations are performed in
finite volume as well as in infinite volume. We discuss features of lattice simulations and investigate
finite volume effects in detail. We find that volume effects are not negligible, typically around 5–10%
in current partially-quenched and full QCD calculations, and are possibly larger in quenched QCD.
Extensions to the off-forward matrix elements and potential difficulties that occur there are also
discussed.

I. INTRODUCTION

The quark and gluon sub-structure of hadrons has been probed for many years in high energy scattering experiments.
Much of the information that has been gleaned is encoded in the parton distribution functions (PDFs) that describe
the longitudinal momentum distributions of quarks and gluons within hadrons. Cross-sections for deep inelastic
scattering, for example, have been shown to factorise into short and long distance contributions [1, 2]. The short
distance pieces (Wilson coefficients) are perturbatively calculable whilst the long range effects are expressed in terms
of the PDFs. The utility of such PDFs is that they are universal; the same set of PDFs appear in deep-inelastic
scattering, Drell-Yan processes and heavy vector boson production. Whilst PDFs are scale dependent, once they are
known at one scale they can be calculated at higher scales via the DGLAP [3] evolution equations. A number of
groups [4, 5] have exploited the universality of PDFs and their known scale-dependence by performing global analyses
of experimental data, thereby providing convenient parameterisations of the PDFs. Such parameterisations have
proven very useful in testing perturbative QCD in high energy processes and constraining new physics, but nothing
is learnt about the non-perturbative origins of the PDFs.
Whilst experiments continually increase our knowledge of PDFs, there is much that is still unknown. Recent results

[6, 7, 8] have shown that ū(x) 6= d̄(x), however other simple qualitative questions such as whether ∆ū(x) = ∆d̄(x)
or s(x) = s̄(x) remain unanswered. Even for the unpolarised valence quark distributions, information is scarce at
large x and there is no experimental information about the transversity distributions. Consequently, any insight that
can be gained directly from QCD would be very useful. Since the PDFs encode the soft, hadronic scale physics of
QCD bound states, perturbative QCD is of little use. One can turn to models to suggest the qualitatively important
features of PDFs (for example ū(x) 6= d̄(x) was predicted on the basis of the pion cloud [9]), but to make concrete
predictions with systematically improvable errors one must solve QCD non-perturbatively. Currently this means one
must use lattice QCD.
In lattice QCD, one discretises space-time and uses Monte-Carlo techniques to evaluate the functional integrals over

the quark and gluons fields, necessarily making a Wick rotation to Euclidean space in the process. However, deep-
inelastic scattering and related processes are dominated by distances that are light-like, and as such are inaccessible
in Euclidean space calculations. The way around this difficulty is provided by the operator product expansion (OPE)
which relates matrix elements of certain local operators to Mellin moments of the various quark and gluon distributions
(defined below). For quark distributions, the twist-two (twist = dimension − spin) operators that arise from the OPE
of the bilocal light-cone operators in Nf = 2 QCD are

QCDO(A)
µ0...µn

= in
[
ψ̄γ{µ0

↔
Dµ1

. . .
↔
Dµn}τAψ − traces

]
, (1)

QCDÕ(A)
µ0...µn

= in
[
ψ̄γ{µ0

γ5
↔
Dµ1

. . .
↔
Dµn}τAψ − traces

]
, (2)

QCDÕT ;(A)
µ0...µn+1

= in
[
ψ̄σµ0{µ1

γ5
↔
Dµ2

. . .
↔
Dµn+1}τAψ − traces

]
, (3)

where τA is an isospin matrix (τ0 = 1, τ1,2,3 are the Pauli matrices), {. . .} indicates symmetrisation of indices, the

gauge covariant derivative
↔
Dµ = 1

2 (
→
Dµ −

←
Dµ), and ’traces’ are subtracted in order that the operator transforms

irreducibly under the Lorentz group. Additional twist-two operators can be built exclusively from gluon fields and
towers of higher twist operators can also be constructed, but we shall not consider these here.
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The above operators are related to the spin averaged, longitudinally polarised, and transversely polarised quark
distributions. We first define the Mellin moments of the quark distributions q = q↑+q↓, ∆q = q↑−q↓ and δq = q⊤−q⊥
(where q↑(↓) corresponds to quarks with helicity aligned (anti-aligned) with that of a longitudinally polarized target,
and q⊤(⊥) corresponds to quarks with spin aligned (anti-aligned) with that of a transversely polarized target) for
flavour q as

〈xn〉q =

∫ 1

0

dx xn [q(x) − (−1)nq(x)] ,

〈xn〉∆q =

∫ 1

0

dx xn [∆q(x) + (−1)n∆q(x)] , (4)

〈xn〉δq =

∫ 1

0

dx xn [δq(x) − (−1)nδq(x)] .

These moments are then related to the forward hadron matrix elements of the operators in Eqs. (1)–(3) through

1
2

∑
S〈p, S|QCDO(0,3)

µ0...µn
|p, S〉 = 2〈xn〉u±dpµ0

. . . pµn
,

〈p, S|QCDÕ(0,3)
µ0...µn

|p, S〉 = 2〈xn〉∆u±∆dS{µ0
pµ1

. . . pµn} , (5)

〈p, S|QCDÕT ;(0,3)
µ0...µn+1

|p, S〉 = 2
MH

〈xn〉δu±δdS[µ0
p{µ1] . . . pµn+1} ,

where p is the momentum of the hadron, MH is its mass and S is its spin. The plus or minus signs in Eq. (5)
correspond to choosing isospin index 0 or 3 respectively. The corresponding off-forward matrix elements are similarly
related to Bjorken-x moments of generalised parton distributions (GPDs) which shall be discussed briefly below (see
[10] for a comprehensive review).
The hadronic matrix elements of the twist-two operators in Eq. (5) can be calculated using standard lattice tech-

niques. Although a parametric form must be assumed in order to invert [11, 12] the Mellin transforms, Eqs. (4), such
calculations will then lead to information about the parton distributions directly from QCD1. However, all lattice
calculations are necessarily performed on finite volumes and at finite lattice spacings. Additionally, with current com-
putational resources, statistically meaningful simulations can only be performed at quark masses, mq, considerably
larger than those found in nature. These three restrictions have significant effects on calculations of twist-two matrix
elements which must be taken into account if realistic predictions are to be made.
Conveniently, the low energy QCD dynamics that these matrix elements characterize can be described using effective

field theory. Standard chiral perturbation theory (χPT) as formulated in the infinite volume continuum allows
systematic exploration of the quark mass dependence of low energy hadronic observables in the region wheremπ, |~p| <
Λχ where ~p is a typical momentum and Λχ ∼ 1 GeV is the chiral symmetry breaking scale. Extensions to include
finite volume (FV) and finite lattice spacing effects are also well developed (see Refs. [13] and [14] respectively for
recent reviews) as are the modifications necessary to treat valence and sea quark masses independently – quenched
and partially-quenched χPT (QχPT and PQχPT) [15, 16, 17, 18]. In our study, we shall ignore the effects of the
discretisation of space-time2 (whereby our results will only be strictly applicable to lattice calculations in which a
continuum extrapolation has been performed) and consider continuum partially-quenched chiral perturbation theory
in a finite spatial volume of dimension L3. If the size of the box is large compared to the inverse pion mass (the
lightest asymptotic state), MπL ≫ 1, the power counting of infinite volume χPT (p-counting) applies and the
necessary modifications are easily made, replacing momentum integrals by sums over allowed momentum modes (see
Refs. [20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32] for recent examples). On the other hand if MπL ∼ 1, one
needs to treat pion zero modes (components of the pion field with zero momentum) carefully since they correspond
to vacuum fluctuations of order unity. In such a regime, modified power countings are required [33, 34, 35]. In this
analysis, we will restrict ourselves to the region MπL≫ 1.
Using the low energy effective theory, it is possible to compute the quark mass and volume dependence of hadronic

observables such as the matrix elements of twist-two operators. For the most part, the quark mass dependence of the

1 The reduced symmetry of the hyper-cubic lattice leads to lower dimensional operator mixing for twist-two operators with n > 3, and
consequently calculations are only currently available for n = 1, 2, 3.

2 The additional, Lorentz non-invariant contributions to unpolarised twist-two operators that must be included when the lattice spacing
is non-zero have been considered in Ref. [19].
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various twist-two matrix elements has been studied extensively [36, 37, 38, 39, 40, 41, 42] and lattice data have been
analysed assuming an infinite volume [36, 43, 44]. However, the volume dependence of these observables has been
ignored (with the exception of the matrix element of the n = 0 helicity-dependent twist-two operator, the isovector
axial coupling gA [30, 34]) in such analyses. Nonetheless, finite volume effects have been found to be important in
many observables; here we investigate the effect they have on nucleon, and other octet baryon matrix elements of
twist-two operators.
In Section II, we introduce aspects of heavy baryon chiral perturbation theory relevant for the analysis of twist-two

matrix elements and define our notation. In Section III, we discuss the twist-two operators in QCD and their matching
in the low-energy effective theory and present examples of results for the quark-mass dependence of the nucleon matrix
elements using two degenerate flavours of quarks. Full results in the two flavour partially-quenched case and results
including the strange quark are relegated to Appendices B and C respectively. In Appendix D, the quenched theory
is discussed. In Section IV, we discuss the general form of finite volume corrections to these matrix elements and
make comparisons with available data. Section IVC discusses the complications that arise when non-forward matrix
elements are considered and Section V presents our conclusions.

II. HEAVY BARYON CHIRAL PERTURBATION THEORY

Heavy baryon chiral perturbation theory (HBχPT) was first constructed in Refs. [45, 46, 47, 48]. In current lattice
calculations, valence and sea quarks are often treated differently, with sea quarks either absent (quenched QCD) or
having different masses than the valence quarks (partially-quenched QCD)3. The extensions of HBχPT to quenched
HBχPT [49] and partially quenched HBχPT [41, 42] to accommodate these modifications are also well established
and have been used to calculate many baryon properties [40, 41, 42, 49, 50, 51, 52, 53]. In this and the next sections,
we will primarily focus on the two flavour partially-quenched theory; here we briefly introduce the relevant details
following the conventions set out in Ref. [41]. We leave the three flavour and quenched cases to Appendices C and D.

A. Pseudo-Goldstone mesons

We consider a partially-quenched theory of valence (u, d), sea (j, l) and ghost (ũ, d̃) quarks with masses corre-
sponding to the matrix

mQ = diag(mu,md,mj ,ml,mũ,md̃) , (6)

where mũ,d̃ = mu,d such that the QCD path-integral determinants corresponding to the valence and ghost sectors
exactly cancel.
The corresponding low-energy meson dynamics are described by the SU(4|2) PQχPT Lagrangian. At leading order

LΦ =
f2

8
str
[
∂µΣ†∂µΣ

]
+ λ

f2

4
str
[
mQΣ

† +mQΣ
]
+ αΦ∂

µΦ0∂µΦ0 −m2
0Φ

2
0 , (7)

where the pseudo-Goldstone mesons are embedded non-linearly in

Σ = ξ2 = exp

(
2 i Φ

f

)
, (8)

with the matrix Φ given by

Φ =

(
M χ†

χ M̃

)
, (9)

where

M =




ηu π+ J0 L+

π− ηd J− L0

J̄0 J+ ηj Y +
jl

L− L̄0 Y −jl ηl


 , M̃ =

(
η̃u π̃+

π̃− η̃d

)
, χ =

(
χηu

χπ+ χJ0 χL+

χπ− χηd
χJ− χL0

)
. (10)

3 At finite lattice spacing, different actions can even be used for the different quark sectors (e.g., staggered sea quarks and domain wall
(DW) valence quarks), but we do not consider this complication here.
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The upper left 2× 2 block of M corresponds to the usual valence–valence mesons, the lower right to sea–sea mesons
and the remaining entries of M to valence–sea mesons. Mesons in M̃ are composed of ghost quarks and anti-quarks
and those in χ of ghost–valence or ghost–sea quark–anti-quark pairs. Because of the graded symmetry of the partially-
quenched theory, the mesons in χ are fermionic. In terms of the quark masses, the tree-level meson mases are given
by

M2
Φij

=M2
QiQj

= λ
[
(mQ)ii + (mQ)jj

]
, (11)

where Q = (u, d, j, l, ũ, d̃).

The singlet field Φ0 = str (Φ) /
√
2 has mass m0 at tree level. The terms proportional to αΦ and m0 in Eq. (7) are

only relevant in the quenched theory (see Appendix D); in PQχPT and χPT the singlet mesons acquire large masses
and can be integrated out. Furthermore, αΦ is suppressed by 1/Nc and we set it to zero throughout.

B. Baryons

In SU(4|2) HBχPT, the physical nucleons (those composed of three valence quarks) enter as part of a 70-dimensional
representation. This is described by a three index flavour-tensor, B [41, 42, 49]. The embedding of the physical nucleon
fields into B and the symmetry properties of B are described in Ref. [41]. The ∆-isobar must also be included in
the theory since the mass-splitting, ∆, between the nucleon and ∆-isobar is ∼ 300 MeV, comparable to the physical
pion mass (and less than pion masses used in current lattice simulations). The parameter ∆ is assumed to be small
compared to the chiral symmetry breaking scale. These fields are represented in a three index flavour-tensor T µ (a
Rarita-Schwinger field) transforming in the 44-dimensional representation of SU(4|2).
The relevant part of leading-order Lagrangian describing these baryons and their interactions with Goldstone mesons

is

LB = i
(
Bv · DB

)
− i
(
T µ

v · DTµ
)
+∆

(
T µTµ

)

+2α
(
BSµBAµ

)
+ 2β

(
BSµAµB

)
+ 2H

(
T ν
SµAµTν

)
+

√
3

2
C
[(

T ν
AνB

)
+
(
BAνT ν

)]
, (12)

where vµ is the baryon velocity, Sµ is the covariant spin-vector [45, 47] and Dµ is the usual covariant derivative

DµB = ∂µB + [V µ,B] and DνTµ = ∂νTµ + [V ν , Tµ] . (13)

The vector and axial-vector currents appearing in the above expressions are given by

V µ =
1

2

(
ξ∂µξ† + ξ†∂µξ

)
, Aµ =

i

2

(
ξ∂µξ† − ξ†∂µξ

)
, (14)

where ξ is defined in Eq. (8). The various Lorentz and flavour contractions (indicated by the parentheses) are defined
in Ref. [41]. In order that T µ correctly describes the spin-3/2 sector, v · T = S · T = 0.
In what follows, we will substitute α = 4

3gA+ 1
3g1, β = 2

3g1− 1
3gA, C = −g∆N and H = g∆∆ since these correspond

to the usual χPT couplings when the QCD limit, where mj = mu and ml = md, of the theory is taken.

III. TWIST-TWO OPERATORS AND MATRIX ELEMENTS

A. Twist-two operators in (PQ)χPT

In the low energy effective theory, the twist-two quark bilinear operators in Eqs. (1)–(3) match onto hadronic
analogues constructed to obey the same symmetry transformation properties. In two flavour QCD, the unpolarised
and helicity operators transform as either (3,1) ⊕ (1,3) (isovector) or (1,1) (isoscalar) of SU(2)L×SU(2)R. When
one considers SU(4|2)L×SU(4|2)R partially quenched QCD, there is more than one way to extend these operators
[41, 42, 54]. Imposing super-tracelessness and the correct QCD limit in the valence sector, the most general extension
of τ3 (isovector) to the adjoint representation of SU(4|2)L,R is

τ̄3 = diag (1,−1, qj, ql, qk, qj + ql − qk) . (15)
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The freedom in choosing the values of the qi’s can be advantageous in lattice simulations; certain choices of the qi’s
eliminate disconnected contributions (diagrams in which the operator is on a quark line connected to the external
states only through gluons which are notoriously hard to compute [55]) even away from the isospin limit. The
non-uniqueness of the extension of Gell-Mann flavour matrices to PQQCD has additional consequences in that are
discussed in Appendix C.
For the isosinglet operator, the most convenient choice is

τ̄0 = diag (1, 1, 1, 1, 1, 1) , (16)

because it is purely in the singlet representation of SU(4|2). Any other choice, such as diag (1, 1, 0, 0, 1, 1) [which one
might choose as disconnected diagrams would be absent], will contain contributions from other representations, and
hence introduce additional low energy constants.
The transversity operators in QCD are chiral-odd and belong to the representation (2,2)⊕(2,2). The most general

choice for their extension to SU(4|2) PQQCD is

τ̄T = diag (1, yi, yj , yk, yl, ym) . (17)

For this operator disconnected contributions vanish as the matrix element involves helicity flip. Thus clean calculations
of 〈xn〉δu and 〈xn〉δd are possible.
Based on these symmetry properties, at leading order in PQχPT the hadronic operators that match onto those of

PQQCD are

O(A)
µ0...µn

≡ a(rA)
n

in+1

Λn
χ

f2

4
str
[
Σ†τ̄A∂

→

µ0
. . . ∂
→

µn
Σ+ Στ̄A∂

→

µ0
. . . ∂
→

µn
Σ†
]

(18)

+α(rA)
n vµ0

. . . vµn

(
BBτ̄ξ

+

A

)
+ β(rA)

n vµ0
. . . vµn

(
Bτ̄ξ

+

A B
)

+γ(rA)
n vµ0

. . . vµn

(
T ρ
τ̄ξ

+

A Tρ
)
+ σ(rA)

n v{µ0
. . . vµn−2

(
T µn−1

τ̄ξ
+

A Tµn}

)
− traces ,

Õ(A)
µ0...µn

≡ ∆α(rA)
n v{µ0

. . . vµn−1

(
BSµn}Bτ̄

ξ+

A

)
+∆β(rA)

n v{µ0
. . . vµn−1

(
BSµn}τ̄

ξ+

A B
)

(19)

+∆γ(rA)
n v{µ0

. . . vµn−1

(
T ρ
Sµn}τ̄

ξ+

A Tρ
)
+∆σ(rA)

n v{µ0
. . . vµn−3

(
T µn−2

Sµn−1
τ̄ξ

+

A Tµn}

)

+(1− δA0)∆c
(rA)
n v{µ0

. . . vµn−1

[(
T µn}τ̄

ξ+

A B
)
+
(
Bτ̄ξ

+

A Tµn}

)]
− traces ,

ÕT
µ0...µnα ≡ δαnv{µ0

. . . v[µn}

(
BSα]Bτ̄ξ

+

T

)
+ δβnv{µ0

. . . v[µn}

(
BSα]τ̄

ξ+
T B
)

(20)

+δγnv{µ0
. . . v[µn}

(
T ρ
Sα]τ̄

ξ+
T Tρ

)
+ δσnv{µ0

. . . vµn−2

(
T µn−1

S[ατ̄
ξ+
T Tµn]}

)

+δcnv{µ0
. . . v[µn}

[(
T α]τ̄

ξ+T B
)
+
(
Bτ̄ξ+T Tα]

)]
− traces ,

where τ̄ξ
±

A = 1
2

(
ξ†τ̄Aξ ± ξτ̄Aξ

†
)
and τ̄ξ

±

T = 1
2

(
ξ†τ̄T ξ

† ± ξτ̄T ξ
)
, and the different Lorentz and flavour contractions

(indicated by the parentheses) are given in Ref. [41]. The super-script on the low energy constants (LECs; α(rA),
∆σ(rA), etc.) in the unpolarised and helicity operators labels the chiral representation to which they belong; for
A = 0, r0 = s (singlet) otherwise rA = a (adjoint). In what follows, we take A to be either 0 or 3. In QCD, the two

different flavour contractions of the operators proportional to α
(rA)
n and β

(rA)
n (and their spin dependent analogues)

are identical.
There are additional classes of operators that formally enter these expressions at the same order but do not

contribute to the next-to-leading order (NLO) matrix elements, i.e., their contributions to one-loop diagrams vanish;
for example,

v{µ0
. . . vµn−2

(
T µn−1

Sµn}τ̄
ξ+

A B
)
, and v{µ0

. . . vµn−1

(
BSµn}τ

ξ−

A B
)
. (21)

Such operators are omitted in Eqs. (18)–(20). Also, NLO counter terms, such as

(
B
{
τξ

+

A ,M+

}
B
)
, where M+ =

1

2

(
ξ†mQξ

† + ξmQξ
)
, (22)
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(a) (b)

(c) (d) (e)

(f) (g) (h)

(i) (j)

FIG. 1: Diagrams contributing to nucleon matrix elements of the twist-two operators. The black square corresponds to an
interaction from the strong Lagrangian and the gray circle represents an insertion of the twist-two operators in Eqs. (18)–
(20). The thin, thick and dashed lines are 70–plet baryons, 44–plet baryons and mesons respectively. The first two diagrams
represent the wave-function renormalisation and the remainder are operator renormalisations. Diagrams (e) and (f) are absent
for the unpolarised, and isoscalar operator matrix elements, and diagrams in which the twist-two operator is inserted on a
meson line are only present in the unpolarised case.

are neglected in this work, since we are focusing on finite volume effects arising from one-loop diagrams at NLO. For
the unpolarised isovector operators, these counterterms are explicitly displayed in Ref. [41]; for the other operators,
they are simple generalisations.
Additional, higher-order operators arise when powers of the baryon velocity are replaced by derivatives, such

as v{µ0
. . . ( i

M ∂)µn−1

(
BSµn}τ

ξ−

A B
)
. In the forward limit, these operators only appear in loop diagrams, so their

contributions to matrix elements start at next-to-next-to-leading order (NNLO), therefore we do not include them in
this work.

B. Nucleon matrix elements

The one-loop diagrams that contribute to nucleon twist-two matrix elements at NLO are shown in Fig. 1. The
first two diagrams, (a) and (b), represent the wave-function renormalisation whilst the other diagrams are operator
renormalisations. Diagrams (e) and (f) are absent for the unpolarised or isoscalar operator matrix elements as the
transition between 70–plet and 44–plet baryon states changes spin and isospin. Finally, diagrams in which the
twist-two operator is inserted on a meson line [(g), (h) and (j)] are only present in the spin-averaged cases.
In Appendices B, C and D, we give the results for the independent matrix elements in SU(4|2) PQχPT, for SU(6|3)

PQχPT and for SU(2|2) quenched χPT in the isospin limit. As an example, here we present the SU(4|2) isospin limit
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(mu = md, mj = ml), qj = ql result for the nucleon matrix element of the isovector, unpolarised operators O(3)
µ0...µn :

〈N |O(3)
µ0...µn

|N〉 =
1

3
Upvµ0

. . . vµn
Up(2α

(a)
n − β(a)

n )× (1 + (1− δn0)WSU(4|2))

+
i(1− δn0)

6f2
vµ0

. . . vµn

{
8

3
g2∆N

(
γ(a)n − σ

(a)
n

3

)[
3H(Mπ,∆) + 2H(Muj ,∆)

]

+α(a)
n

[
8 i I(Muj) − 3H(Muj , 0)

[
2 g1 gA + 3 g21

]
+ 3H(Mπ, 0)

[
2 g2A + 2 g1 gA + 3 g21

]

+12 δ2 (g1 + gA)
2 Hη′(Mπ, 0)

]

−β(a)
n

[
4 i I(Muj) − 12H(Muj, 0) g1gA + 3H(Mπ, 0)

[
4 g1 gA + g2A

]

+6 δ2 (g1 + gA)
2 Hη′(Mπ, 0)

]}
, (23)

where WSU(4|2) is the nucleon wave-function renormalisation given in Eq. (B1) and

δ2 =M2
π −M2

uj = λ(mu −mj), (24)

is proportional to the difference between sea and valence quark masses. The functions I(M), H(M,∆) and Hη′(M,∆)
are defined in Eqs. (A1), (33) and (34), below. Finally, UB corresponds to the type B baryon spinor. To take the QCD
limit, we would set δ → 0 and j → u. For equivalent choices of the τ̄A our results reproduce those found previously
for the unpolarised isovector operator [41, 42]. One can also calculate the matrix elements of these operators in the
∆-isobar (and the N–∆ transition in the spin dependent cases). However since these are not stable particles in much
of the region where χPT converges, we do not present the expressions.
In these results, the only effect of the diagrams in which the twist-two operator couples to a meson (diagrams (g),

(h) and (j) in Fig. 1) is to satisfy the number sum rule for the n = 0 matrix elements, producing the δn0 factors in
the above expression. For n > 0, these diagrams give sub-leading contributions, entering at O(pn+2). The number
sum-rule also fixes

2α
(a)
0 − β

(a)
0 = 3, γ

(a)
0 = 3, σ

(a)
0 = 0 ,

α
(s)
0 + β

(s)
0 = 3, γ

(s)
0 = 3, σ

(s)
0 = 0 , (25)

and the n = 0 low energy constants of the spin-dependent operators can be fixed in terms of the usual axial couplings

2∆α
(a)
0 −∆β

(a)
0 = 6gA, ∆γ

(a)
0 = 2g∆∆, ∆σ

(a)
0 = 0, ∆c

(a)
0 = −

√
3
2g∆N ,

∆α
(s)
0 +∆β

(s)
0 = 2 (gA + g1) , ∆γ

(s)
0 = 0, ∆σ

(s)
0 = 0 . (26)

IV. FINITE VOLUME CORRECTIONS

A. General discussion

In momentum space, the finite volume of a lattice simulation restricts the available momentum modes. Here we shall
consider a hyper-cubic box of dimensions L3×T with T ≫ L. Imposing periodic boundary conditions on mesonic fields

leads to quantised momenta k = (k0, ~k), ~k = 2π
L
~j = 2π

L (j1, j2, j3) with ji ∈ Z, but k0 treated as continuous. On such
a finite volume, spatial momentum integrals are replaced by sums over the available momentum modes. This leads to
modifications of the infinite volume results presented in the previous section; the various functions arising from loop
integrals are replaced by their FV counterparts. In a system where MπL≫ 1, finite volume effects are predominantly
from Goldstone mesons propagating to large distances where they are sensitive to boundary conditions and can even
“wrap around the world”. Since the lowest momentum mode of the Goldstone propagator is ∼ exp(−MπL) in position
space, finite volume effects will behave as a polynomial in 1/L times this exponential if no multi-particle thresholds
are reached in the loop.
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To investigate this behaviour, we consider the various finite volume sums occurring in the twist-two matrix elements.
We first define

1

L3

∑

~k

∫
dk0

kµkν
(k2 −m2 + iǫ)(k · v −∆+ iǫ)

− igµν
16π2

λ̄

(
2∆2

3
−m2

)
∆

= gµνF(m,∆) + vµvνG(m,∆) , (27)

where the ultra-violet divergence has been subtracted in dimensional regularisation4 with λ̄ = 2
4−d − γE + log(4π)+ 1

(d is the number of dimensions). All finite volume sums that occur in the baryon wave function and operator
renormalisations involving baryon propagators (diagrams (a)–(h) in Fig. 1, sunset-type diagrams) can be expressed
in terms of F(m,∆) and its derivatives. The tadpole diagrams in Fig. 1 are discussed in Appendix A. In the baryon
rest frame where v = (1, 0, 0, 0), Poisson’s summation formula allows us to decompose F into its infinite-volume limit
and a volume-dependent part,

F(m,∆) = F (m,∆) + FFV(m,∆) . (28)

It is straightforward to show that the infinite volume piece is

F (m,∆) =
i

16π2

{[
m2− 2∆2

3

]
∆ log

(
m2

µ2

)
+

[
10∆2

9
− 4m2

3

]
∆+

2

3
(∆2−m2)3/2 log

(
∆−

√
∆2 −m2 + iǫ

∆+
√
∆2 −m2 + iǫ

)}
(29)

(µ is the renormalisation scale), and the finite volume corrections are given by

FFV(m,∆) =
i

12π2

∑

~u6=~0

1

uL

∫ ∞

0

d|~k| |~k| sin(u|~k|L)√
|~k|2 +m2 +∆


∆+

m2

√
|~k|2 +m2




mL≫1−→ im2

24π

∑

~u6=~0

e−umL

uL
A , (30)

where ~u = (u1, u2, u3) with ui ∈ Z, u ≡ |~u| and

A = e(z
2)
[
1− Erf(z)

]
+

(
1

umL

)[
1√
π

(
9z

4
− z3

2

)
+

(
z4

2
− 2 z2

)
e(z

2)
[
1− Erf(z)

]]
(31)

−
(

1

umL

)2 [
1√
π

(
−39z

64
+

11z3

32
− 9z5

16
+
z7

8

)
−
(
−z

6

2
+
z8

8

)
e(z

2)
[
1− Erf(z)

]]
+O

(
1

(umL)3

)
,

with

z =

(
∆

m

)√
umL

2
. (32)

Higher order terms in the 1/(umL) expansion in Eq. (31) are easily calculated. For convenience, we also define the
functions

H(m,∆) ≡ ∂F(m,∆)

∂∆
and K(m,∆) ≡ F(m,∆)−F(m, 0)

∆
, (33)

and their finite volume counterparts which we denote by the corresponding roman letter with the superscript FV as
in Eq. (28), e.g. K → KFV.

4 It is important to note that because of the separation of scales, FV effects (infrared) are essentially independent of method chosen to
regulate the divergent integrals (ultraviolet). Also, the results presented in this work are derived in Minkowski space. We are free to
work in Minkowski space since the sicknesses of quenched and partially quenched theories discussed in Refs. [20, 56] do not occur in our
calculations.
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FIG. 2: Dependence of finite volume effects on the mass-splitting ∆ in individual integrals/sums corresponding to diagrams
(a)—(f) in Fig. 1. The point m = 0.3 GeV corresponds to mL = 3.8.

FIG. 3: Dependence of finite volume effects in double-pole contributions on the mass-splitting ∆. Note that the scale here is
ten times that in Fig. 2. The point m = 0.3 GeV corresponds to mL = 3.8.

The function A represents the modification of the FV effects due to the mass-splitting ∆; in the limit ∆ → 0,
A → 1. Figure 2 shows the dependence of FV effects on the scale ∆ for the functions HFV(m,∆) and KFV(m,∆)
that arise from diagrams (a)—(f) in Fig. 1. It is clear that finite volume effects in individual diagrams involving
a 44-plet are suppressed relative to those involving only meson and 70-plet baryon propagators, though this can
be compensated for by large coefficients. A very similar result was found in the heavy meson sector [23] where the
contributions involving B∗ mesons are suppressed compared to those involving the B meson by the mass difference
∆B = mB∗ −mB. However, the origin and behaviour of the mass difference in the current context is distinct. In
contrast to the heavy meson case where ∆B ∼ 1/mB arises from the breaking of heavy-quark spin symmetry and
vanishes in the heavy quark limit, the mass difference ∆ is generated by strong-interaction dynamics and remains
finite in the chiral limit. Empirically, ∆ is almost constant over the range of quark masses considered here.
When one considers quenched or partially quenched theories rather than standard χPT, one expects somewhat

larger finite volume effects because of the enhanced long-distance behaviour of double-pole structures in the singlet
meson propagators of these theories [20]. These double pole contributions are given by terms proportional to the
functions

Hη′ (m,∆) ≡ ∂H(m,∆)

∂m2
, Kη′(m,∆) ≡ ∂K(m,∆)

∂m2
, (34)

and the double-pole tadpole function Iη′(m) given in Appendix A [and their finite volume analogues constructed as
in Eq. (28)]. From Figures 2 and 3 it is clear that HFV

η′ (m,∆) is about an order of magnitude larger than HFV(m,∆)
in accordance with expectations.
In considering the magnitude of finite volume effects, the standard chiral power counting can be misleading; the

FV effects of a diagram of a given order in the power counting may be larger than those of lower orders. For some
generic observable, one may consider two contributions, C1 and C2, that enter at different orders, m1 < m2, in infinite
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volume χPT. As discussed above, the dominant finite volume effects in these contributions will typically be of the
form δCi ∼ (MπL)

ℓi exp(−MπL) when MπL ≫ 1 and no multi-particle on-shell intermediate states can contribute.
In some situations, the presence of additional meson propagators or other infrared enhancement in the higher order
contribution (C2) can amplify its finite volume shift relative to that of the lower order contribution (C1). For some
(contemporarily relevant) choices of masses and volumes, the quantity

(MπL)
ℓ2−ℓ1

(
Mπ

Λχ

)m2−m1

> 1 , (35)

and the formally higher-order contribution will provide the dominant finite volume effect. In the current calculation,
diagram (g) in Fig. 1, in which the twist-two operator is attached to mesonic propagators, may indeed fall into such
a category. The finite volume corrections to these diagrams will be given by

δI(n)π ∼ a(a)n

1

Λn
χ

Mn+1
π

4f2

∂

∂M2
π

FFV(Mπ, 0) , (36)

compared with those of the corresponding baryon operator diagrams (diagram (c) in Fig. 1)

δI
(n)
N ∼ α

(a)
n

f2
HFV(Mπ, 0) . (37)

From this we see that the ratio

δI
(n)
π

δI
(n)
N

∼
(
Mπ

Λχ

)n
1

4
√
MπL

(
1− Mπ L

2

)
, (38)

where there is an undetermined coefficient involving a
(a)
n , α

(a)
n and other numerical factors that we assume to be O(1).

Whilst formally the magnitude of this ratio is indeed greater than unity for any n in the limit Mπ L→ ∞, both δI
(n)
π

and δI
(n)
N are exponentially suppressed. For realistic pion masses and volumes used in current lattice simulations this

ratio is consistently smaller than one and the FV effects of diagrams (g), (h) and (j) in Fig. 1 can be neglected. The
only exception to this is in the n = 0 unpolarised matrix elements, the isoscalar and isovector quark numbers. Here,
the volume dependence of diagrams in Fig. 1 with mesonic operators exactly cancels that of those involving baryonic
operators and wave-function renormalisations to give an overall result that is independent of the volume.

B. Relevance to lattice data

Lattice calculations of twist-two matrix elements have a long history, with the first calculations occurring in the
1980s [57]. Over the last decade, a considerable effort has been made to study them in detail with major contributions
from the QCDSF, LHP, RBCK and ZeRo collaborations. In Table I, recent simulation parameters are shown. State-
of-the-art lattice simulations are beginning to enter the region of quark masses and lattice volumes in which the use
of NLO chiral perturbation theory is justified (naively, this requires mπ/Λχ

<∼ 1/3 and mπL >∼ 4). At the moment
however, there is little data in this region and a realistic fit of the combined mass and volume dependence in our
PQχPT formulae (and thereby a determination of the LECs) is not possible; only general trends can be extracted.
In order to address the expected size of finite volume corrections arising from our calculation, we first define the

finite volume correction

〈N |O|N〉FV =
〈N |O|N〉one−loopL − 〈N |O|N〉one−loopL=∞

〈N |O|N〉tree−level , (39)

for each of the operator matrix elements we calculate. These corrections depend on a number of low-energy constants
and couplings, some of which involve the ∆ resonance. In principle, all of these parameters can be extracted from fits
of the χPT forms to lattice data on nucleon matrix elements (thereby bypassing issues of the structure of unstable
particles and transition matrix elements), however this is not practical at the present stage. Therefore, to fix the

twist-two low energy constants (α
(a)
n , δγn etc) we assume that large-Nc relations [39] amongst the parton distributions

in the nucleon, ∆-isobar and N–∆ transition are valid, leading to

γ(a)n = 2α
(a)
n − β

(a)
n , ∆γ

(a)
n =

1

5

(
2∆α(a)

n −∆β(a)
n

)
, ∆c(a)n =

1

2

(
2∆α(a)

n −∆β(a)
n

)
, (40)
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Group mπ [MeV] Volume [fm3] Notes

Dynamical simulations (Nf = 2)

QCDSF [58] 560–940 1.13, 1.53, 2.23 Clover, a∼0.08–0.12 fm

LHP [59] 340 3.53 Staggered sea, DW valence, a∼0.13 fm

LHP [59] 340–730 2.63 Staggered sea, DW valence, a∼0.13 fm

LHP-SESAM [60] 730–900 1.63 Wilson, a∼0.1 fm

LHP-SCRI [60] 480–670 1.53 Wilson, a∼0.1 fm

RBCK [61] 560–700 1.93 DW, a∼0.13 fm

Quenched simulations

QCDSF [62] 580–1200 1.63 Clover, a∼0.05, 0.07, 0.09 fm

QCDSF [63] 310–1000 1.53 Wilson, a∼0.09 fm

QCDSF [64] 440–950 1.53, 2.33 Overlap, a∼0.095 fm

LHP [60] 580–820 1.63 Wilson,a∼0.1 fm

RBCK [65] 390–850 1.23,1.63,2.43 DW, a∼0.15 fm

ZeRo [66] 750–910 1.13,1.53 ,2.23,3.03 Clover, a∼0.093 fm

TABLE I: Summary of recent lattice calculations of nucleon twist two matrix elements. Not all calculations involve the full set
of twist-two operators.

γ(s)n = α
(s)
n + β

(s)
n , ∆γ

(s)
n = ∆α(s)

n +∆β(s)
n , δαn = −4δβn =

4

5
δγn =

8

9
δcn .

The remaining LECs are not constrained by large-Nc relations in QCD, and for want of accurate lattice data with

which to fit them, we set β
(a,s)
n = α

(a,s)
n , ∆β

(a,s)
n = ∆α

(a,s)
n and σ

(a,s)
n = ∆σ

(a,s)
n = δσn = 0. Throughout, we use

f = 0.132 GeV, and keep ∆ = 0.3 GeV fixed independent of the quark mass. For the parameters appearing in the
the flavour matrices τ̄3 and τ̄T , we set qj = ql = qk = 0 and yj = yk = yl = ym = 0, and set yi to be either ±1.
As discussed above, if one is using lattice data to determine the LECs, the q’s and y’s are fixed by the details of the
lattice calculation. After making all of the above substitutions, the isospin limit results become proportional to the
corresponding bare matrix elements and the finite volume effects given by Eq. (39) are easily studied.
The axial couplings gA, g1, and g∆N occurring in our results are the chiral limit couplings and there is some

uncertainty in their values. We will fix gA = 1.3 (though even the chiral limit value of this is not well known [67]),
|g∆N | = 1.5 and vary g1 = ±gA. In the QCD limit, results are independent of g1 since in this case it only involves
couplings to the η′ meson which remains massive in the chiral limit and can be integrated out.
Using these parameters, Figures 4 and 5 illustrate the typical size of finite volume effects in the various matrix

elements. In Fig. 4, we consider a (2.5 fm)3 box with a sea quark mass set such that the corresponding sea–sea
Goldstone boson has a mass Mjj = 0.35 GeV and take g1 = gA. Fig. 5 is similar except here we take g1 = −gA to
show the effect of this undetermined parameter. Variation of gA and g∆N within reasonable bounds leads to similar
modifications as those for varying g1. At the smallest pion mass in these plots, MπL ∼ 3 and one must start to worry
that infinite volume p-counting is no longer appropriate; at the largest pion mass in the plots, Mπ/Λχ ∼ 1/2 and one
must worry that the convergence of the chiral expansion becomes questionable. From these figures, it is nevertheless
apparent that NLO PQχPT predicts finite volume effects in twist-two matrix elements that are generically <∼ 5–10%
for the range of masses and volumes studied here. However, there is some evidence that finite volume effects from
higher orders of the standard chiral power-counting can be significant [68, 69].
Recently, staggered-sea, domain-wall-valence results have become available from the LHP collaboration [59] for

very large volume (L = 3.5 fm) calculations of gA at a pion mass of 337 MeV. Also available are results on a
somewhat smaller lattice (L = 2.6 fm) at the same pion mass. Although these two data points are consistent within
their statistical errors (which will be reduced by ongoing calculations), their central values differ by ∼ 15%. If we
ignore the issues of non-locality due to the “fourth-root” trick used in calculating the staggered quark configurations
and possible unitarity violations arising from the different valence and sea quark actions (which must vanish in the
a→ 0 limit that we have assumed), one can ask whether the NLO PQχPT formulae presented here can describe this
dependence. To address this question, we consider the isospin symmetric QCD limit (mu = md = mj = ml) and
define

δgA =
〈N |Õ(3)

µ |N〉one−loopL − 〈N |Õ(3)
µ |N〉one−loopL=∞

〈N |Õ(3)
µ |N〉tree−level

. (41)
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FIG. 4: Indicative finite volume effects in SU(4|2) matrix elements. The results in the first row are for the isovector unpolarised
(left) and helicity (right) operators and those in the second row are similarly for the isoscalar unpolarised (left) and helicity
(right) operators. The third row corresponds to the transversity “isovector” yi = −1 (left) and “isoscalar” yi = 1 (right) matrix
elements. In each plot, the solid curve shows the total result, whilst the short-, medium- and long-dashed curves correspond to
the individual FV effects arising from diagrams (c)–(f), diagrams (a) and (b), and diagram (i) in Fig. 1. In all of these results,
we have considered a (2.5 fm)3 box and set gA = g1 = 1.3 and |g∆N | = 1.5. Mπ = 0.25 GeV corresponds to MπL = 3.2.

For this case, the LECs can be expressed in terms of the axial couplings through Eq. (26) and the FV shift, δgA,
depends only on the pion mass, the volume and the chiral limit couplings gA, g∆N and g∆∆. In Fig. 6, we show
the FV shift in gA that NLO χPT predicts at the LHP pion mass, Mπ = 337 MeV. To illustrate uncertainties in
the results, we vary the different axial couplings. In the central fits (indicated by the curves in the plot), we set
gA = 1.3, g∆N = −1 and g∆∆ = −3 whilst the shaded band corresponds to δgA for 1.0 ≤ gA ≤ 1.5, 0 ≤ |g∆N | ≤ 2
and g∆∆ = −3. Whilst, a shift of 15% between L = 2.6 and 3.5 fm is not predicted, the FV effects are substantial.
However, without accurate knowledge of the chiral limit couplings, even the sign of the finite volume correction to gA
is not well determined.
As discussed in the previous subsection, in quenched lattice calculations, FV effects will be enhanced because

of the double-pole contributions to singlet meson propagators. In Fig. 7, we plot the volume dependence of the
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FIG. 5: As in Fig. 4 except with g1 = −gA. Mπ = 0.25 GeV corresponds to MπL = 3.2.

polarised, isovector twist-two matrix elements in SU(2|2) quenched χPT (the analytic forms of these results are
presented in Appendix D). In contrast to partially-quenched χPT, in the quenched theory the LECs occurring in
the Lagrangian and the twist-two operators are unrelated to those in standard χPT(though we denote them by the
same symbols for convenience). To be definite, we choose m0 = 0.7 GeV and the quenched operator LECs to satisfy

∆α
(a)
n = ∆β

(a)
n = 5∆γ

(a)
n = 2∆c

(a)
n (as in the partially-quenched case), set the quenched axial couplings to gA = 1.3,

|g∆N | = 1.5 and let g1 and γ vary between ±gA as indicated by the shaded region. The curves in the figure correspond
to g1 = gA/2 and γ = 0. As expected, the volume dependence here is enhanced over that in the PQχPT and χPT
cases.

C. Off-forward matrix-elements

The off-forward matrix elements (in which the incoming and outgoing hadrons carry different momenta) of the
twist-two operators correspond to moments of generalised parton distributions. Very little is known from experiment
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FIG. 6: Finite volume effects in QCD calculations of gA at Mπ = 337 MeV (as appropriate for the recent LHP simulations
[59]). L = 2 fm corresponds to MπL = 3.4. The shaded region corresponds to varying 1.0 ≤ gA ≤ 1.5, 0 ≤ |g∆N | ≤ 2.

FIG. 7: Finite volume effects in the isovector, helicity matrix elements in the proton in SU(2|2) quenched χPT. The shaded
region corresponds to variation of the axial couplings g1 and γ between ±gA with gA = 1.3, g∆N = 1.5 and assuming large Nc

relations for the operator LECs. The point Mπ = 0.25 GeV corresponds to MπL = 3.2.

about GPDs though major programs are underway at HERMES, Jefferson Lab and COMPASS to investigate them.
As such, moments of GPDs are important quantities to extract from lattice calculations and much progress is being
made in this direction [70]. It is therefore important to investigate the quark mass dependence5 and size of finite
volume effects in these calculations. Here we shall only discuss the novel features that appear in regard to finite
volume effects when off-forward matrix elements are considered. A full analysis of the low-energy behaviour of these
matrix elements will be given elsewhere [73].

To be specific, we shall consider the proton matrix elements 〈p′|QCDO(A)
µ0...µn |p〉 in which four momentum qµ =

(p′ − p)µ (with |q2| ≪ Λ2
χ) is injected through the twist-two operator. The analysis of these matrix elements is

significantly more complicated than in the forward limit. This is primarily because the number of possible independent
tensor structures in the matrix element grows with n; for example,

〈p′|QCDO(A)
µ0...µn

|p〉 = Up(p
′)

[
n∑

i=0
even

{
γ{µ0qµ1 . . . qµi p̄µi+1 . . . p̄µn}A

(A)
n,i (q

2) (42)

5 Refs. [71, 72] address this issue for the infinite volume n = 1 matrix element relevant for the spin content of the proton in SU(2) HBχPT.
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−i qνσ
ν{µ0

2m
qµ1 . . . qµi−1 p̄µi . . . p̄µn}B

(A)
n,i (q

2)

}
+
qµ0 . . . qµn

m
C

(A)
n,0 (q

2)

∣∣∣∣
n even

]
Up(p) ,

where p̄ = 1
2 (p
′ + p). For each of the coefficient functions A

(A)
n,i (q

2), B
(A)
n,i (q

2) and C
(A)
n,0 (q

2), there is an independent
finite volume χPT expansion.
Another complication enters when one considers the operators that match onto the twist-two operators in the low

energy effective theory. The presence of the new scale q means that considerably more operators must be included in

Eqs. (18)–(20); for example, the term proportional to α
(rA)
n in Eq. (18) is replaced by

[
n∑

j=0

α
(rA)
n,j

[
v{µ0 . . . vµj (−i∂)µj+1 . . . (−i∂)µn} − tr

]
+ α

(rA)
n,−1 [(−i∂)µ0 . . . (−i∂)µn − tr]

]
(BτAξ+B) . (43)

Note that only terms with an even number of derivatives contribute here. Each LEC in the forward case is replaced
by O(n) LECs. Additionally, the vector q allows more tensor structures to enter and we must also include

n∑

j=0

α̂
(rA)
n,j

[
v{µ0 . . . vµj (−i∂)µj+1 . . . (−i∂)µn−1(B

[
Sµn}, S · (−i∂)

]

M
τAξ+B)− tr

]
, (44)

since S ·q 6= 0. When we also take into account the 44-plet fields T µ, many more structures are possible since q ·T 6= 0.
Even for the n < 3 matrix elements that have been calculated on the lattice, a large number of LECs need to be
determined. This makes a reliable extraction of the physical matrix elements from finite volume, unphysical mass,
lattice calculations a challenging proposition.
In terms of FV effects, the modifications for the off-forward case are relatively simple and it is worthwhile to

investigate them in some detail. There are essentially two classes of diagrams: ones where the twist-two operator
injects momentum into a (heavy) baryon field (e.g., (c) in Fig. 1); and ones where a meson receives the additional
momentum (e.g., (h) in Fig. 1). The former class is relatively uninteresting since for heavy fields, derivatives in the
twist-two operators pick out only the momentum transfer between the external states, q, and can therefore be factored
out of the integral. For this type of diagram, finite volume effects will be the same as those in the forward limit as
we are free to work in the Breit frame where q · v = 0.
For diagrams in which the twist-two operator is on a meson line, the situation is different since the derivatives in

the operator can result in powers of the integration momentum. The relevant integrals are of the form

1

L3

∑

~k

∫
dk0
2π

S · (−k)S · (k + q)
[
(−k){µ0 . . . (−k)µj (k + q)µj+1 . . . (k + q)µn} − tr

]

(k · v −∆+ iǫ) (k2 −m2 + iǫ)((k + q)2 −m2 + iǫ)
(45)

= 4

∫ 1

0

dx

∫ ∞

0

dλ
1

L3

∑

~ℓ

∫
d ℓ0
2π

S · (ℓ+ a)S · (ℓ+ b)

(ℓ2 −M2)3
(−1)j

[
(ℓ+ a){µ0 . . . (ℓ+ a)µj (ℓ+ b)µj+1 . . . (ℓ + b)µn} − tr

]

after introducing Feynman and Schwinger parameters and shifting the momentum integration k → ℓ = k + x q − λ v.
Here a = −x q + λ v, b = (1− x) q + λ v and

M2 ≡ M2(x, λ,m2, q2,∆) = m2 − x(1 − x)q2 + λ2 + 2λ∆ . (46)

The trace subtractions prevent any of the ℓµi ’s arising from the operator from contracting with one another, conse-
quently the non-vanishing scalar integrals/sums whose finite volume effects we are interested in will be of the form

∫ 1

0

dx

∫ ∞

0

dλ
1

L3

∑

~ℓ

∫
d ℓ0
2π

(
ℓ2
)r

(ℓ2 −M2)3
, (47)

where r = 0, 1 or 2.
Without going into further details of the tensor structure [73], it is already clear from Eq. (46) that the effect of

the momentum injection on overall finite volume shifts is very similar to the effect of the N–∆ mass splitting. Since
x(1−x) > 0, when space-like momentum (q2 = −|~q|2 < 0 in Minkowski space) is injected, FV effects are suppressed as
the meson receiving the momentum injection moves further away from its mass shell. However, if time-like momentum
is injected the situation is more complicated. Provided the virtual particle cannot reach its mass shell, finite volume
effects are enhanced over the forward case but will still remain formally exponentially suppressed. However, if the
injected energy-momentum is enough to put the intermediate particles on shell, it leads to a cut in Minkowski space
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in infinite volume. In this case, finite volume effects are only suppressed by powers of 1/L in QCD. In (partially)
quenched QCD, volume corrections for isoscalar twist-two matrix elements may be proportional to positive powers
of L whereby the infinite volume limit will be undefined. This suppression of finite volume effects with space-like
momentum injection and enhancement in the time-like case (which is relevant for twist-two matrix elements between
states of different masses, e.g. N → ∆ transitions) will occur in hadronic form-factors that are specific cases of
twist-two matrix elements.

V. CONCLUSIONS

We have studied the matrix elements of twist-two operators that determine the moments of the unpolarised, helicity
and transversity quark distributions to NLO in (partially) quenched chiral perturbation theory in both infinite and
finite volumes. We have performed our calculations in Nf = 2 and Nf = 2+1 partially quenched heavy baryon chiral
perturbation theory and also studied the SU(2|2) quenched theory. These results will be relevant for extrapolations
of lattice calculations of these matrix elements in the proton and other octet baryons (e.g., the Λ hyperon [74]).
We have focused primarily on the effects of the finite volumes used in lattice calculations. Without accurate data

in the chiral regime with which to fit the various low energy constants on which the results depend, it is difficult to
be specific, however it is clear that for most current simulations FV effects are not negligible. For typical full- or
partially-quenched- QCD calculations, they are <∼ 5–10% but may be significantly larger in quenched simulations.
In the case of the off-forward matrix elements relevant to generalised parton distributions, we have not presented

full results for arbitrary moments [73]. However, we have analysed the finite volume effects in these matrix elements.
We find that they should decrease with respect to the forward matrix elements if space-like momentum is injected.
On the other hand if time-like momentum is transferred, finite volume effects will be enhanced; in QCD they may
become only 1/L suppressed, and in (partially) quenched QCD finite volume isoscalar matrix elements may even be
proportional to powers of L.
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APPENDIX A: TADPOLE INTEGRALS AND FINITE VOLUME SUMS

The sums that appear in tadpole diagrams, after subtracting λ̄, are

I(m) =
1

L3

∑

~k

∫
dk0
2π

i

k2 −m2 + iǫ
+

m2

16π2
λ̄ , (A1)

and

Iη′ (m) =
1

L3

∑

~k

∫
dk0
2π

i

(k2 −m2 + iǫ)2
+

1

16π2
λ̄ =

∂I(m)

∂m2
. (A2)

Using Poisson’s summation formula, it is straightforward to show that

I(m) = I(m) + IFV(m), (A3)

where

I(m) = µ4−d

∫
ddk

(2π)d
i

k2 −m2 + iǫ
+

m2

16π2
λ̄ =

m2

16π2
log

(
m2

µ2

)
, (A4)
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is the infinite-volume limit of I(m), and

IFV(m) =
m

4π2

∑

~u6=~0

1

uL
K1(umL)

mL≫1−→ 1

4π2

∑

~u6=~0

√
mπ

2uL

(
1

uL

)
e−umL

{
1 +

3

8umL
− 15

128(umL)2
+O

(
1

(umL)3

)}
. (A5)

APPENDIX B: RESULTS FOR SU(4|2) PQχPT

In this section, we present the results for twist-two matrix elements in the isospin limit in SU(4|2) PQχPT. The
various masses and the mass-splitting δ are defined in Sections II and III.
The nucleon wave-function renormalisation is

WSU(4|2) =
i

2f2

{
H(Mπ, 0)

(
−5 g21 − 4 g1 gA + g2A

)
+H(Muj , 0)

(
5 g21 + 4 g1 gA + 8 g2A

)

+4 (H(Mπ,∆) +H(Muj ,∆)) g2∆N +
(
−6 g21 − 12 g1 gA − 6 g2A

)
δ2 Hη′(Mπ, 0)

}
. (B1)

The isovector, unpolarised nucleon matrix element is

〈N |O(3)
µ0...µn

|N〉 =
1

3
UNvµ0

. . . vµn
UN(2α(a)

n − β(a)
n )× (1 + (1 − δn0)WSU(4|2))

+
i(1− δn0)

12f2
UNvµ0

. . . vµn
UN

{
4

3
g2∆N

(
γ(a)n − σ

(a)
n

3

)
×

[
− 3H(Mπ,∆) (−4 + qj + ql) +H(Muj ,∆) (8 + 3 qj + 3 ql)

]

+α(a)
n

[
− 4 i I(Muj) (−4 + 3 qj + 3 ql) + 4 i I(Mπ) (qj + ql)

+3
(
− H(Muj , 0)

[
4 g2A (qj + ql) + 2 g1 gA (2 + qj + ql) + g21 (6 + qj + ql)

]

+H(Mπ, 0)
[
4 g2A (1 + qj + ql) + 2 g1 gA (2 + qj + ql) + g21 (6 + qj + ql)

]

+8 δ2 (g1 + gA)
2 Hη′(Mπ, 0)

)]

−β(a)
n

[
4 i I(Muj) (2 + 3 qj + 3 ql)− 4 i I(Mπ) (qj + ql)

+3
(
H(Muj , 0) g1 [−8 gA + 3 g1 (qj + ql)] +H(Mπ, 0)

[
8 g1 gA + 2 g2A − 3 g21 (qj + ql)

]

+4 δ2 (g1 + gA)
2 Hη′(Mπ, 0)

)]}
. (B2)

The isovector, helicity matrix element in the nucleon is

〈N |Õ(3)
µ0...µn

|N〉 =
1

3
UNv{µ0

. . . vµn−1
Sµn}UN(2∆α(a)

n −∆β(a)
n )× (1 +WSU(4|2))

+
i

12f2
UNv{µ0

. . . vµn−1
Sµn}UN

{
16

3

√
2

3
g∆N ∆c(a)n ×

[
K(Mπ,∆)

(
8 gA + g1 (2− 3 qj − 3 ql)

)
+K(Muj ,∆)

(
8 gA + g1 (−2 + 3 qj + 3 ql)

)]

−20

27
g2∆N

[
3H(Mπ,∆) (−4 + qj + ql)−H(Muj ,∆) (8 + 3 qj + 3 ql)

] (
∆γ(a)n − ∆σ

(a)
n

5

)
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+∆α(a)
n

[
12 i I(Mπ) (qj + ql)− 4 i I(Muj) (−4 + 3 qj + 3 ql)

+H(Muj , 0)
(
4 g2A (qj + ql) + 2 g1 gA (2 + qj + ql) + g21 (6 + qj + ql)

)

−H(Mπ, 0)
(
4 g2A (1 + qj + ql) + 2 g1 gA (2 + qj + ql) + g21 (6 + qj + ql)

)

−8 δ2 (g1 + gA)
2 Hη′(Mπ, 0)

]

+∆β(a)
n

[
12 i I(Mπ) (qj + ql)− 4 i I(Muj) (2 + 3 qj + 3 ql)

+H(Muj , 0) g1

(
− 8 gA + 3 g1 (qj + ql)

)

+H(Mπ, 0)
(
8 g1 gA + 2 g2A − 3 g21 (qj + ql)

)
+ 4 δ2 (g1 + gA)

2 Hη′(Mπ, 0)

]}
, (B3)

and the isoscalar, unpolarised matrix element is

〈N |O(0)
µ0...µn

|N〉 = UNvµ0
. . . vµn

UN (α(s)
n + β0(s)n )× (1 + (1− δn0)WSU(4|2))

+
i

2f2
UNvµ0

. . . vµn
UN(1 − δn0)

{
4
(
H(Mπ,∆) +H(Muj,∆)

)
g2∆N

(
γ(s)n − σ

(s)
n

3

)

+
(
α(s)
n + β(s)

n

) [
H(Mπ, 0)

(
5 g21 + 4 g1 gA − g2A

)

−H(Muj , 0)
(
5 g21 + 4 g1 gA + 8 g2A

)
+ 6 δ2 (g1 + gA)

2 Hη′(Mπ, 0)

]}
. (B4)

The isoscalar, helicity matrix element is

〈N |Õ(0)
µ0...µn

|N〉 = UNv{µ0
. . . vµn−1

Sµn}UN(∆α(s)
n +∆β(s)

n )× (1 +WSU(4|2))

+
i

12f2
UNv{µ0

. . . vµn−1
Sµn}UN

{
40

3

(
H(Mπ,∆) +H(Muj ,∆)

)
g2∆N

(
∆γ(s)n − ∆σ

(s)
n

5

)

+
(
∆α(s)

n +∆β(s)
n

) [
− 2H(Mπ, 0)

(
5 g21 + 4 g1 gA − g2A

)

+2H(Muj, 0)
(
5 g21 + 4 g1 gA + 8 g2A

)
− 12 δ2 (g1 + gA)

2 Hη′(Mπ, 0)

]}
. (B5)

Finally, the transversity matrix elements are

〈N |ÕT
µ0...µnα|N〉 =

1

6
UNv{µ0

. . . v[µn}Sµα]UN((5 + yi)δαn + 2(1 + 2yi)δβn)× (1 +WSU(4|2))

+
i

12f2
UNv{µ0

. . . v[µn}Sµα]UN

{
16

3

√
2

3
g∆N

[
K(Muj ,∆)

(
4gA (1− yi) + g1 (−4− 2 yi + 3 yj + 3 yk)

)

+K(Mπ,∆)
(
4gA (1− yi) + g1 (4 + 2 yi − 3 yl − 3 ym)

)]
δcn

+
20

27
g2∆N

[
H(Muj ,∆) (10 + 2 yi + 3 yj + 3 yk) + 3H(Mπ,∆) (6 + 2 yi − yl − ym)

] (
δγn − 3 δσn

5

)

+δαn

[
2 i [I(Muj) (10 + 2 yi + 6 yj + 6 yk) + I(Mπ) (1 + 5 yi − 6 yl − 6 ym)]− 4 (5 + yi) δ

2 Iη′(Mπ)



19

+H(Muj , 0)
(
g21 (7 + yi + yj + yk) + 2 g1 gA (2 + yj + yk) + 4 g2A (1 + yi + yj + yk)

)

+H(Mπ, 0)
(
g2A (3 + 7 yi − 4 yl − 4 ym)− 2 g1 gA (2 + yl + ym)− g21 (7 + yi + yl + ym)

)

−2 (g1 + gA)
2
(5 + yi) δ

2 Hη′(Mπ, 0)

]

+δβn

[
4 i [I(Muj) (2 + 4 yi + 3 yj + 3 yk) + I(Mπ) (2 + yi − 3 yl − 3 ym)]− 8 (1 + 2 yi) δ

2 Iη′(Mπ)

+H(Muj , 0)
(
8 g1 gA yi + 8 g2A (1 + yi) + g21 (2 + 2 yi + 3 yj + 3 yk)

)

+H(Mπ, 0)
(
2 g2A − 8 g1 gA yi − g21 (2 + 2 yi + 3 yl + 3 ym)

)

−4 (g1 + gA)
2
(1 + 2yi) δ

2 Hη′(Mπ, 0)

]}
. (B6)

APPENDIX C: RESULTS FOR SU(6|3) PQχPT WITH mu = md 6= ms

In three flavour QCD, one seeks to determine the up, down and strange quark, unpolarised, helicity, and transversity
distributions in the octet baryons. Consequently, the goal of lattice calculations is to determine the corresponding
twist-two operator matrix elements for each of these flavours in the octet baryons. The SU(6|3) results presented in
this appendix will be relevant for chiral and infinite volume extrapolations of lattice calculations of moments of the
the strange-quark distributions in the nucleon6 and the various parton distributions in, for example, the Λ hyperon
[74].
If we consider the extensions of three-flavour QCD to partially quenched theories, we are naturally led to SU(6|3)

HBχPT. The Lagrangian of this theory is very similar to that described in Sec. II with some simple modifications.
Obviously the meson field Φ is enlarged, becoming a 9×9 matrix encoding the 80-plet of pseudo-Goldstone mesons.
The octet baryons are now embedded in a 240 representation and the decuplet baryons in a 138 representation.
Additionally, the couplings α, β and C in Eq. (12) are replaced by α → 2

3D + 2F , β → − 5
3D + F and C → C

so that the nomenclature is the same as in SU(3) χPT. For definiteness, the quark masses we consider are mQ =

diag(mu,md,ms,mj ,ml,mr,mu,md,ms) and Q after Eq. (11) is replaced by Q = (u, d, s, j, l, r, ũ, d̃, s̃). Further
details are given in Ref. [42].
To calculate the independent moments of the PDFs in three flavour QCD, one constructs three independent flavour

combinations of operators. The standard choice is

inψΓ{µ0

↔
Dµ1

. . .
↔
Dµn} {1, λ3, λ8}ψ , (C1)

where Γ = γ, γγ5, σ represents the appropriate Dirac structure and the λi are the usual Gell-Mann basis for
SU(3). The unpolarised and helicity operators are in the singlet (1,1) or adjoint (8,1)⊕(1,8) representations of
SU(3)L×SU(3)R. From a lattice practitioner’s point of view, λ3 is somewhat special since in the limit mu = md there
are no disconnected contributions to matrix elements of such operators. On the other hand, both the singlet and λ8
operator require such contributions and no choice of flavour basis can ameliorate the situation. In partially quenched
QCD, there is again freedom in the extension of the above QCD operators; a natural choice with a smooth QCD limit
is

λ̄3 = diag(1,−1, 0, 1,−1, 0, 1,−1, 0) and λ̄8 = diag(1, 1,−2, 1, 1,−2, 1, 1,−2) . (C2)

In our results, only a single adjoint representation operator is presented, corresponding to

λ̄Adj = diag(1, q1,−1− q1, 1, q2,−1− q2, 1, q1,−1− q1) , (C3)

and to determine λ̄3 and λ̄8, we set q2 = q1 = ∓1. Keeping q2 6= q1, will allow SU(3) breaking effects to be analysed
in detail. However, the singlet operator is uniquely defined

λ̄0 = diag(1, 1, 1, 1, 1, 1, 1, 1, 1) (C4)

6 One can also study strangeness in the nucleon using two-flavour χPT [75] thereby sidestepping issues of the slow(er) convergence of the
chiral expansion around the physical strange-quark mass.
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and disconnected loops involving sea quarks are unavoidable.
The transversity operators in QCD belong to the (3,3) ⊕ (3,3) representation of SU(3)L×SU(3)R irrespective of

the choice of flavour structure in Eq. (C1). For the partially quenched QCD extension of these operators, we choose
the operators built from

λ̄T = diag(1, y1, y2, 0, 0, 0, 1, y1, y2) (C5)

and then setting {y1, y2} = {1, 1}, {−1, 0}, {1,−2} gives the required flavour combinations.
In this section, we give results for the matrix elements in the proton, Λ0, Σ+, Ξ− as well as the Σ0–Λ0 transition.

Other octet matrix elements are simply related to these by isospin symmetry. In the results of this section, the

low-energy coefficients (α
(a)
n , ∆γ

(s)
n , etc) occurring in the SU(6|3) versions of Eqs. (18)–(20) are different from those

in SU(4|2). With this caution, we use the same notation.
The SU(6|3) tree level meson masses,Mss,Msr,Mur andMsj , are defined through Eq. (11), δ is defined in Eq. (24),

δ̃2 =M2
ss −M2

sr = λ(ms −mr) , (C6)

and

M2
X =

1

3

[
M2

π + 2M2
ss − 2

(
δ2 + 2δ̃2

)]
. (C7)

The QCD limit is easily recovered, taking δ → 0, δ̃ → 0, j → u, l → d and r → s. To make the presentation succinct,
we define the following ratios,

A = −i
δ2
(
M2

π −M2
ss + 2δ̃2

)

M2
π −M2

ss + δ2 + 2δ̃2
, (C8)

B = −i

(
M2

π −M2
ss + 2δ̃2

)2
+ 2δ4

2(M2
π −M2

ss + δ2 + 2δ̃2)2
, (C9)

C = −i δ̃
2
(
M2

π −M2
ss − 2δ2

)

M2
π −M2

ss − 2δ2 − 4δ̃2
, (C10)

D = −i
(
M2

π −M2
ss − 2δ2

)2
+ 8δ̃4

M2
π −M2

ss − 2δ2 − 4δ̃2
, (C11)

E = −i
δ2
(
M2

π −M2
ss + 2δ̃2

)

(M2
π −M2

ss)
(
M2

π −M2
ss + δ2 + 2δ̃2

) , (C12)

F = 2i
δ̃2
(
M2

π −M2
ss − 2δ2

)

(M2
π −M2

ss)
(
M2

π −M2
ss − 2δ2 − 4δ̃2

) , (C13)

and the functions,

Quu = AIη′,uu +BIuu + (1 −B)IX ,
Qss = CIη′,ss +DIss + (1−D)IX , (C14)

Ruu = AHη′,uu +BHuu + (1 −B)HX ,

Rss = CHη′,ss +DHss + (1−D)HX ,
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Rus = EHuu + FHss + (1− E− F)HX , (C15)

Suu = AKη′,uu +BKuu + (1−B)KX ,

Sss = CKη′,ss +DKss + (1−D)KX ,

Sus = EKuu + FKss + (1 − E− F)KX , (C16)

and

Tuu = AH∆
η′,uu +BH∆

uu + (1−B)H∆
X ,

Tss = CH∆
η′,ss +DH∆

ss + (1 −D)H∆
X ,

Tus = EH∆
uu + FH∆

ss + (1− E− F)H∆
X . (C17)

where

Iij = I(Mij) , Iη′,ij = Iη′(Mij) ,

Hij = H(Mij , 0) , Hη′,ij = Hη′(Mij , 0) ,

H∆
ij = H(Mij ,∆) , H∆

η′,ij = Hη′(Mij ,∆) ,

Kij = K(Mij ,∆) , Kη′,ij = Kη′(Mij ,∆) , (C18)

IX = I(MX) , HX = H(MX , 0) ,

H∆
X = H(MX ,∆) , KX = K(MX ,∆) , (C19)

and

Habc = 2H(Mab, 0) +H(Mac, 0) , Ĥabc = H(Mab, 0)−H(Mac, 0) ,

H∆
abc = 2H(Mab,∆) +H(Mac,∆) , Ĥ∆

abc = H(Mab,∆)−H(Mac,∆) ,

Iabc = 2 I(Mab) + I(Mac) , Îabc = I(Mab)− I(Mac) ,

Kabc = 2K(Mab,∆) +K(Mac,∆) , K̂abc = K(Mab,∆)−K(Mac,∆) , (C20)

and finally

ỹ =
y2

1 + y1
and q̃ =

1 + q2
1 + q1

. (C21)

1. Wave-function renormalisation

The wave-function renormalisations for the different octet states are

W(p)
SU(6|3) =

i

f2

{[
2H∆

uu +H∆
ujr

]
C2 +Hujr (5D

2 − 6DF + 9F 2)− 4HuuD (D − 3F )− 3 i Ruu(D − 3F )2
}

(C22)

for the proton,

W(Λ)
SU(6|3) =

i

3f2

{
3

[
H∆

us +H∆
uu +H∆

ujr

]
C2 +Hsjr(D + 3F )2 + 2Hujr(7D

2 − 12DF + 9F 2)

−2Hus

(
5D2 − 6DF − 9F 2

)
− 2Huu

(
D2 − 12DF + 9F 2

)

+i

[
−Rss(3F +D)2 +Rus

(
8D2 + 12DF − 36F 2

)
− 4Ruu (2D − 3F )

2

]}
(C23)

for the Λ baryons,

W(Σ)
SU(6|3) =

i

3f2

{[
5H∆

us +H∆
uu + 2H∆

sjr +H∆
ujr − 2 i (Tss − 2Tus + Tuu)

]
C2 + 3

[
3Hsjr (D − F )

2
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+2Hujr

(
D2 + 3F 2

)
− 2Huu

(
D2 − 3F 2

)
− 2Hus

(
D2 − 6DF + 3F 2

) ]

−9 i

[
Rss (D − F )2 + 4Rus F (F −D) + 4Ruu F

2

]}
(C24)

for the Σ baryons, and

W(Ξ)
SU(6|3) =

i

3f2

{[
5H∆

us +H∆
sjr +H∆

ss + 2H∆
ujr − 2 i (Tss − 2Tus + Tuu)

]
C2

+3

[
3Hujr(D − F )2 + 2Hsjr(D

2 + 3F 2)− 2Hus(D
2 − 6DF + 3F 2)− 2Hss(D

2 − 3F 2)

]

−9 i

[
4Rss F

2 − 4Rus F (D − F ) +Ruu (D − F )2
]}

(C25)

for the Ξ baryons.

2. Isovector unpolarised matrix elements

〈p|O(3)
µ0···µn

|p〉 =
Upvµ0

. . . vµn
Up

(
(5 + q1)α

(a)
n + 2(1 + 2q1)β

(a)
n

)

6
×
(
1 +W(p)

SU(6|3)(1 − δn0)
)

(C26)

+
Upvµ0

. . . vµn
Up(1 − δn0)

f2

{
i

9

(
γ(a)n − σ

(a)
n

3

)[(
3H∆

uu +H∆
ujr

)
(5 + q1) + 3(1 + q2)Ĥ∆

ujr

]
C2

+α(a)
n

[
1

6
(−5− q1) Iujr + (1 + q2)Îujr − iHujr

(
3D2 − 6DF + 5F 2 +

(
D2 + F 2

)
q1

)

+4 iHuuD (D − 2F − Fq1)− i(1 + q2)(D
2 + 3F 2)Ĥujr −

1

2
Ruu(D − 3F )2(5 + q1)

]

+β(a)
n

[−1

3
(1 + 2q1) Iujr + (1 + q2)Îujr − 2 iHujr

(
D2 + F 2(1 + 2q1)

)

+4 iHuuD (D − 2F − Fq1)− 3i(1 + q2)(D − F )2Ĥujr −Ruu(D − 3F )2(1 + 2q1)

]}
.

〈Λ0|O(3)
µ0···µn

|Λ0〉 = −UΛ0vµ0
. . . vµn

UΛ0(1 + q1)

4

(
α(a)
n − 2β(a)

n

)
×
(
1 +W(Λ)

SU(6|3)(1 − δn0)
)

+
UΛ0vµ0

. . . vµn
UΛ0(1 + q1)(1− δn0)

f2

{
− i

6

(
γ(a)n − σ

(a)
n

3

)(
3H∆

us +H∆
ujr − 2q̃Ĥ∆

ujr

)
C2

+α(a)
n

[
1

4

(
− Iujr + 2 Isjr

)
+
q̃

2

(
Îujr + Îsjr

)

+
i

12
Hujr (7D − 9F ) (D − 3F )− i

12
Hsjr (D + 3F )2

− i

6
Huu

(
7D2 − 12DF + 9F 2

)
− i

6
Hus(5D − 3F )(D + 3F )

− i

6
q̃(D + 3F )2Ĥsjr −

i

6
q̃(5D2 − 6DF + 9F 2)Ĥujr

+
1

12

(
Rss (D + 3F )2 − 4Rus (2D − 3F )(D + 3F ) + 4Ruu (2D − 3F )2

)]

+β(a)
n

[
− 1

2

(
2Iuj + Iur

)
+ q̃Îujr +

i

6
Hujr (7D

2 + 6DF − 9F 2)− i

6
Hsjr (D + 3F )2

− i

3
Huu

(
7D2 − 12DF + 9F 2

)
− i

3
Hus(13D

2 − 12DF + 9F 2)− 3iq̃(D − F )2Ĥujr
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−1

6

(
Rss (D + 3F )2 − 4Rus (2D − 3F )(D + 3F ) + 4Ruu (2D − 3F )2

)]}
. (C27)

〈Σ+|O(3)
µ0···µn

|Σ+〉 = −
UΣ+vµ0

. . . vµn
UΣ+

(
(−4 + q1)α

(a)
n + 2(1 + 2q1)β

(a)
n

)

6
×
(
1 +W(Σ)

SU(6|3)(1− δn0)
)

+
UΣ+vµ0

. . . vµn
UΣ+(1− δn0)

f2

{
i

9

(
γ(a)n − σ

(a)
n

3

)(
H∆

uu + 11H∆
us + 4H∆

sjr

−
[
H∆

uu + 2H∆
us +H∆

ujr

]
q1 + (1 + q2)

(
Ĥ∆

ujr + 2Ĥ∆
sjr

)

−2 i (Tss − 2Tus + Tuu) (1− q1)

)
C2

+α(a)
n

[
1

6

(
− 5 Iujr + Isjr(1 + q1) + (1 + q2)

(
5 Îujr + Îsjr

))

+
i

2
Hujr

(
(D − F )(D + 3F ) + 2 (D2 + F 2) q1

)

−5i

2
Hsjr (D − F )2 − iHuu

(
4F 2 + (D − F )(D + F ) q1

)

+iHus

(
4(D2 −DF + F 2) + (D2 + 4DF − F 2) q1

)

− i

2
(1 + q2)(D

2 + 2DF + 5F 2)Ĥujr −
i

2
(1 + q2)(D − F )2Ĥsjr

+
1

2

(
Rss (D − F )2 − 4Rus F (D − F ) + 4Ruu F

2

)
(q1 − 4)

]

+β(a)
n

[
1

3

(
− Iujr + 2 Isjr(1 + q1) + (1 + q2)

(
Îujr + 2 Îsjr

))

−iHujr

(
(D − F )(D + 3F )− 4F 2 q1

)

−iHsjr (D − F )2 + 2 iHuu

(
D2 + F 2 + 2F 2 q1

)

+2 iHus

(
D2 − 2DF − F 2 + 2(D − F )F q1

)

−i(1 + q2)(D − F )2
(
Ĥujr + 2 Ĥsjr

)

+

(
Rss (D − F )2 − 4Rus F (D − F ) + 4Ruu F

2

)
(1 + 2q1)

]}
. (C28)

〈Ξ−|O(3)
µ0···µn

|Ξ−〉 = −
UΞ−vµ0

. . . vµn
UΞ−

(
(5 + 4q1)α

(a)
n − 2(−1 + q1)β

(a)
n

)

6
×
(
1 +W(Ξ)

SU(6|3)(1− δn0)
)

+
UΞ−vµ0

. . . vµn
UΞ−(1− δn0)

f2

{
− i

9

(
γ(a)n − σ

(a)
n

3

)(
H∆

sjr +H∆
ss (2 + q1) +H∆

us (13 + 11 q1)

+4H∆
ujr (1 + q1)− (1 + q2)

(
2 Ĥ∆

ujr + Ĥ∆
sjr

)
− 2i (Tss − 2Tus + Tuu) (2 + q1)

)
C2

+α(a)
n

[
1

6

(
− Iujr q1 + 5 Isjr(1 + q1) + (1 + q2)

(
Îujr + 5 Îsjr

))

+
5i

2
Hujr (D − F )2 (1 + q1) +

i

2
Hsjr

(
D2 − 2DF + 5F 2 − (D − F )(D + 3F )q1

)

−iHss

(
D2 − 5F 2 − 4F 2 q1

)
− iHus

(
(3D − 5F )(D − F ) + 4

(
D2 −DF + F 2

)
q1

)
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− i

2
(1 + q2)(D − F )2Ĥujr −

i

2
(1 + q2)(D

2 + 2DF + 5F 2)Ĥsjr

+
1

2

(
4Rss F

2 − 4Rus F (D − F ) +Ruu (D − F )2
)
(5 + 4 q1)

]

+β(a)
n

[
1

3

(
− 2 Iujr q1 + Isjr(1 + q1) + (1 + q2)

(
2 Îujr + Îsjr

))

+ iHsjr

(
(D + F )2 + (D − F )(D + 3F )q1

)
− 2 iHss

(
D2 − F 2 + (D2 + F 2) q1

)

−2 iHus

(
D2 − 4DF + F 2 +

(
D2 − 2DF − F 2

)
q1

)

−i(1 + q2)(D − F )2
(
2 Ĥujr + Ĥsjr

)
+ iHujr

(
(D − F )2 (1 + q1)

)

+

(
4Rss F

2 − 4Rus F (D − F ) +Ruu (D − F )2
)
(1− q1)

]}
. (C29)

〈Σ0|O(3)
µ0···µn

|Λ0〉 = −UΣ0vµ0
. . . vµn

UΛ0 (−1 + q1)

4
√
3

(
α(a)
n − 2β(a)

n

)
×
[
1 +

1

2

(
W(Λ)

SU(6|3) +W(Σ)
SU(6|3)

)
(1− δn0)

]

+
UΣ0vµ0

. . . vµn
UΛ0(−1 + q1)(1 − δn0)√

3f2

{
− i

6

(
γ(a)n − σ

(a)
n

3

)(
2H∆

uu +H∆
us +H∆

ujr

)
C2

+α(a)
n

[
1

4
Iujr +

i

4
Hujr (D − 3F )(3D − F )− i

4
Hsjr (D − F )(D + 3F )

−iHuuD(D + F )− iHusD(D − F )

−1

4

(
Rss (D − F ) (D + 3F )− 4Rus (D

2 − 2DF + 3F 2)− 4Ruu F (−2D + 3F )

)]

+β(a)
n

[
− 1

2
Iujr +

i

2
Hujr (D − 3F )(D + F ) +

i

2
Hsjr (D − F )(D + 3F )

−2iHuuD(D − F )− 2iHusDF

+
1

2

(
Rss (D − F ) (D + 3F )− 4Rus (D

2 − 2DF + 3F 2)− 4Ruu F (−2D + 3F )

)]}
.

(C30)

3. Isovector helicity matrix elements

〈p|Õ(3)
µ0···µn

|p〉 =
Upv{µ0

. . . vµn−1
Sµn}Up

(
(5 + q1)∆α

(a)
n + 2(1 + 2q1)∆β

(a)
n

)

6
×
(
1 +W(p)

SU(6|3)

)
(C31)

+
Upv{µ0

. . . vµn−1
Sµn}Up

f2

{
5i

81

(
∆γ(a)n − ∆σ

(a)
n

5

)[(
3H∆

uu +H∆
ujr

)
(5 + q1) + 3(1 + q2)Ĥ∆

ujr

]
C2

+
8i

9

√
2

3

[
Kuu(D + 3F )(−1 + q1)−Kujr(3D − F − 2Fq1) + 3(1 + q2)(D − F )K̂ujr

]
C∆c(a)n

+∆α(a)
n

[
− 1

6
(5 + q1) Iujr + (1 + q2)Îujr +

i

3
Hujr

(
3D2 − 6DF + 5F 2 +

(
D2 + F 2

)
q1

)

−4i

3
HuuD (D − 2F − Fq1) +

i

3
(1 + q2)(D

2 + 3F 2)Ĥujr +
1

6
Ruu(D − 3F )2(5 + q1)

]

+∆β(a)
n

[
− 1

3
(1 + 2q1) Iujr + (1 + q2)Îujr +

2i

3
Hujr

(
D2 + F 2(1 + 2q1)

)

−4i

3
HuuD (D − 2F − Fq1) + i(1 + q2)(D − F )2Ĥujr +

1

3
Ruu(D − 3F )2(1 + 2q1)

]}
.
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〈Λ0|Õ(3)
µ0···µn

|Λ0〉 = −UΛ0v{µ0
. . . vµn−1

Sµn}UΛ0(1 + q1)

4

(
∆α(a)

n − 2∆β(a)
n

)
×
(
1 +W(Λ)

SU(6|3)

)

+
UΛ0v{µ0

. . . vµn−1
Sµn}UΛ0(1 + q1)

f2

{
− 5i

54

(
∆γ(a)n − ∆σ

(a)
n

5

)(
3H∆

us +H∆
ujr − 2q̃Ĥ∆

ujr

)
C2

+
4i

3

√
2

3

[
−Kus(D − 3F ) + 2KuuD +Kujr(D + F ) + 2q̃(D − F )K̂ujr

]
C∆c(a)n

+∆α(a)
n

[
1

4

(
− Iujr + 2 Isjr + 2q̃

(
Îujr + Îsjr

))
− i

36
Hujr (7D − 9F ) (D − 3F )

+
i

36
Hsjr (D + 3F )2 +

i

18
Huu

(
7D2 − 12DF + 9F 2

)
+

i

18
Hus(5D − 3F )(D + 3F )

+
i

18
q̃(5D2 − 6DF + 9F 2)Ĥujr +

i

18
q̃(D + 3F )2Ĥsjr

− 1

36

(
Rss (D + 3F )2 − 4Rus (2D − 3F )(D + 3F ) + 4Ruu (2D − 3F )2

)]

+∆β(a)
n

[
− 1

2
Iujr + q̃Îujr −

i

18
Hujr (7D

2 + 6DF − 9F 2) +
i

18
Hsjr (D + 3F )2

− i

9
Huu

(
7D2 − 12DF + 9F 2

)
+
i

9
Hus(13D

2 − 12DF + 9F 2) + iq̃(D − F )2Ĥujr

+
1

18

(
Rss (D + 3F )2 − 4Rus (2D − 3F )(D + 3F ) + 4Ruu (2D − 3F )2

)]}
.

(C32)

〈Σ+|Õ(3)
µ0···µn

|Σ+〉 = −
UΣ+v{µ0

. . . vµn−1
Sµn}UΣ+

(
(−4 + q1)∆α

(a)
n + 2(1 + 2q1)∆β

(a)
n

)

6
×
(
1 +W(Σ)

SU(6|3)

)

+
UΣ+v{µ0

. . . vµn−1
Sµn}UΣ+

f2

{
5i

81

(
∆γ(a)n − ∆σ

(a)
n

5

)(
H∆

uu + 11H∆
us + 4H∆

sjr

−
[
H∆

uu + 2H∆
us +H∆

ujr

]
q1 + (1 + q2)

(
Ĥ∆

ujr + 2 Ĥ∆
sjr

)

−2 i (Tss − 2Tus + Tuu) (1− q1)

)
C2

−8i

9

√
2

3

[
Kujr(D + 3F + 2Fq1) + 2Ksjr(D − F ) + 2Kuu F (2 + q1)

+Kus(D + F )(2 + q1) + (1 + q2)(F −D)
(
K̂ujr + 2 K̂sjr

)

−2 i

(
Sss (D − F ) + 2Suu F − Sus (D + F )

)
(2 + q1)

]
C∆c(a)n

+∆α(a)
n

[
1

6

(
− 5 Iujr + Isjr(1 + q1) + (1 + q2)

(
5 Îujr + Îsjr

))

− i

6
Hujr

(
(D − F )(D + 3F ) + 2 (D2 + F 2) q1

)

+
5i

6
Hsjr (D − F )2 +

i

3
Huu

(
4F 2 + (D − F )(D + F ) q1

)

− i

3
Hus

(
4(D2 −DF + F 2) + (D2 + 4DF − F 2) q1

)

+
i

6
(1 + q2)(D

2 + 2DF + 5F 2)Ĥujr +
i

6
(1 + q2)(D − F )2Ĥsjr

−1

6

(
Rss (D − F )2 − 4Rus F (D − F ) + 4Ruu F

2

)
(q1 − 4)

]
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+∆β(a)
n

[
1

3

(
− Iujr + 2 Isjr(1 + q1) + (1 + q2)

(
Îujr + 2 Îsjr

)))

+
i

3
Hujr

(
(D − F )(D + 3F )− 4F 2 q1

)

+
i

3
Hsjr (D − F )2 − 2i

3
Huu

(
D2 + F 2 + 2F 2 q1

)

−2i

3
Hus

(
D2 − 2DF − F 2 + 2(D − F )F q1

)
+
i

3
(1 + q2)(D − F )2

(
Ĥujr + 2 Ĥsjr

)

−1

3

(
Rss (D − F )2 − 4Rus F (D − F ) + 4Ruu F

2

)
(1 + 2q1)

]}
. (C33)

〈Ξ−|Õ(3)
µ0···µn |Ξ−〉 = −

UΞ−v{µ0
. . . vµn−1

Sµn}UΞ−

(
(5 + 4q1)∆α

(a)
n − 2(−1 + q1)∆β

(a)
n

)

6
×
(
1 +W(Ξ)

SU(6|3)

)

+
UΞ−v{µ0

. . . vµn−1
Sµn}UΞ−

f2

{
− 5i

81

(
∆γ(a)n − ∆σ

(a)
n

5

)(
H∆

sjr +H∆
ss (2 + q1) +H∆

us (13 + 11 q1)

+4H∆
ujr

]
(1 + q1)− (1 + q2)

(
2 Ĥ∆

ujr + Ĥ∆
sjr

)
− 2i (Tss − 2Tus + Tuu) (2 + q1)

)
C2

+
8i

9

√
2

3

[
2Kujr(D − F )(1 + q1) +Ksjr(D + F + (D + 3F )q1) + 2KssF (1 + 2q1)

+Kus(D + F )(1 + 2q1) + (1 + q2)(D − F )
(
2 K̂ujr + K̂sjr

)

−2i

(
Suu (D − F ) + 2Sss F − Sus (D + F )

)
(1 + 2 q1)

]
C∆c(a)n

+∆α(a)
n

[
1

6

(
− Iujrq1 + 5 Isjr(1 + q1) + (1 + q2)

(
Îujr + 5 Îsjr

))

−5i

6
Hujr (D − F )2 (1 + q1)−

i

6
Hsjr

(
D2 − 2DF + 5F 2 − (D − F )(D + 3F )q1

)

+
i

3
Hss

(
D2 − 5F 2 − 4F 2 q1

)
+
i

3
Hus

(
(3D − 5F )(D − F ) + 4

(
D2 −DF + F 2

)
q1

)

+
i

6
(1 + q2)(D − F )2Ĥujr +

i

6
(1 + q2)(D

2 + 2DF + 5F 2)Ĥsjr

−1

6

(
4Rss F

2 − 4Rus F (D − F ) +Ruu (D − F )2
)
(5 + 4 q1)

]

+∆β(a)
n

[
1

3

(
− 2Iujrq1 + Isjr(1 + q1) + (1 + q2)

(
2 Îujr + Îsjr

))

− i

3
Hujr (D − F )2 (1 + q1)−

i

3
Hsjr

(
(D + F )2 + (D − F )(D + 3F )q1

)

+
2i

3
Hss

(
D2 − F 2 + (D2 + F 2) q1

)
+
i

3
(1 + q2)(D − F )2

(
2 Ĥujr + Ĥsjr

)

+
2i

3
Hus

(
D2 − 4DF + F 2 +

(
D2 − 2DF − F 2

)
q1

)

−1

3

(
4Rss F

2 − 4Rus F (D − F ) +Ruu (D − F )2
)
(1− q1)

]}
. (C34)

〈Σ0|Õ(3)
µ0···µn

|Λ0〉 = −UΣ0v{µ0
. . . vµn−1

Sµn}UΛ0 (−1 + q1)

4
√
3

(
∆α(a)

n − 2∆β(a)
n

)
×
[
1 +

1

2

(
W(Λ)

SU(6|3) +W(Σ)
SU(6|3)

)]

+
UΣ0v{µ0

. . . vµn−1
Sµn}UΛ0(−1 + q1)√
3f2

{
− 5i

54

(
∆γ(a)n − ∆σ

(a)
n

5

)(
2H∆

uu +H∆
us +H∆

ujr

)
C2
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+
4i

9

√
2

3

[
2Kus(2D + 3F )−Kuu (D − 3F ) + 2KujrD +Ksjr (D + 3F )

−i
(
2Suu (2D− 3F ) + Sus (−5D + 3F ) + Sss (D + 3F )

)]
C∆c(a)n

+∆α(a)
n

[
1

4
Iujr −

i

12
Hujr (D − 3F )(3D − F ) +

i

12
Hsjr (D − F )(D + 3F )

+
i

3
HuuD(D + F ) +

i

3
HusD(D − F ) +

1

12

(
Rss (D − F ) (D + 3F )

−4Rus (D
2 − 2DF + 3F 2)− 4Ruu F (−2D + 3F )

)]

+∆β(a)
n

[
− 1

2
Iujr −

i

6
Hujr (D − 3F )(D + F )− i

6
Hsjr (D − F )(D + 3F )

+
2i

3
HuuD(D − F ) +

2i

3
HusDF − 1

6

(
Rss (D − F ) (D + 3F )

−4Rus (D
2 − 2DF + 3F 2)− 4Ruu F (−2D + 3F )

)]}
. (C35)

4. Isoscalar unpolarised matrix elements

〈p|O(0)
µ0···µn

|p〉 = Upvµ0
. . . vµn

Up

(
α(s)
n + β(s)

n

)
×
(
1 + (1− δn0)W(p)

SU(6|3)

)
(C36)

+
Upvµ0

. . . vµn
Up(1− δn0)

f2

{
i

(
γ(s)n − σ

(s)
n

3

)(
2H∆

uu +H∆
ujr

)
C2

+
(
α(s)
n + β(s)

n

)[
− iHujr(5D

2 − 6DF + 9F 2) + 4 iHuuD (D − 3F )− 3Ruu(D − 3F )2
]}

.

〈Λ0|O(0)
µ0···µn

|Λ0〉 = UΛ0vµ0
. . . vµn

UΛ0

(
α(s)
n + β(s)

n

)
×
(
1 + (1− δn0)W(Λ)

SU(6|3)

)

+
UΛ0vµ0

. . . vµn
UΛ0(1− δn0)

f2

{
i

(
γ(s)n − σ

(s)
n

3

)(
H∆

us +H∆
uu +H∆

ujr

)
C2

+
(
α(s)
n + β(s)

n

)[
− 2i

3
Hujr (7D

2 − 12DF + 9F 2)− i

3
Hsjr (D + 3F )2

+
2i

3
Huu

(
D2 − 12DF + 9F 2

)
+

2i

3
Hus(5D

2 − 6DF − 9F 2)

−1

3

(
Rss (D + 3F )2 − 4Rus (2D − 3F )(D + 3F ) + 4Ruu (2D − 3F )2

)]}
. (C37)

〈Σ+|O(0)
µ0···µn |Σ+〉 = UΣ+vµ0

. . . vµn
UΣ+

(
α(s)
n + β(s)

n

)
×
(
1 + (1− δn0)W(Σ)

SU(6|3)

)

+
UΣ+vµ0

. . . vµn
UΣ+(1− δn0)

f2

{
i

3

(
γ(s)n − σ

(s)
n

3

)(
H∆

uu + 5H∆
us + 2H∆

sjr +H∆
ujr

−2 i (Tss − 2Tus + Tuu)

)
C2

+
(
α(s)
n + β(s)

n

)[
− 2 iHujr (D

2 + 3F 2)− 3 iHsjr (D − F )2 + 2 iHuu(D
2 − 3F 2)

+2 iHus(D
2 − 6DF + 3F 2)− 3

(
Rss (D − F )2 − 4Rus F (D − F ) + 4Ruu F

2

)]}
.
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(C38)

〈Ξ−|O(0)
µ0···µn |Ξ−〉 = UΞ−vµ0

. . . vµn
UΞ−

(
α(s)
n + β(s)

n

)
×
(
1 + (1 − δn0)W(Ξ)

SU(6|3)

)

+
UΞ−vµ0

. . . vµn
UΞ−(1− δn0)

f2

{
i

3

(
γ(s)n − σ

(s)
n

3

)(
2H∆

ujr +H∆
sjr +H∆

ss + 5H∆
us

−2i (Tss − 2Tus + Tuu)

)
C2

+
(
α(s)
n + β(s)

n

) [
− 3 iHujr (D − F )2 − 2 iHsjr (D

2 + 3F 2) + 2 iHss(D
2 − 3F 2)

+2 iHus(D
2 − 6DF + 3F 2)− 3

(
4Rss F

2 − 4Rus F (D − F ) +Ruu (D − F )2
)]}

.

(C39)

〈Σ0|O(0)
µ0···µn

|Λ0〉 = 0 . (C40)

5. Isoscalar helicity matrix elements

〈p|Õ(0)
µ0···µn

|p〉 = Upv{µ0
. . . vµn−1

Sµn}Up

(
∆α(s)

n +∆β(s)
n

)
×
(
1 +W(p)

SU(6|3)

)

+
Upv{µ0

. . . vµn−1
Sµn}Up

f2

{
5i

9

(
∆γ(s)n − ∆σ

(s)
n

5

)(
2H∆

uu +H∆
ujr

)
C2

+
(
∆α(s)

n +∆β(s)
n

)[ i
3
Hujr(5D

2 − 6DF + 9F 2)− 4i

3
HuuD (D − 3F ) +Ruu(D − 3F )2

]}
.

(C41)

〈Λ0|Õ(0)
µ0···µn |Λ0〉 = UΛ0v{µ0

. . . vµn−1
Sµn}UΛ0

(
∆α(s)

n +∆β(s)
n

)
×
(
1 +W(Λ)

SU(6|3)

)

+
UΛ0v{µ0

. . . vµn−1
Sµn}UΛ0

f2

{
5i

9

(
∆γ(s)n − ∆σ

(s)
n

5

)(
H∆

us +H∆
uu +H∆

ujr

)
C2

+
(
∆α(s)

n +∆β(s)
n

)[2i
9
Hujr (7D

2 − 12DF + 9F 2) +
i

9
Hsjr (D + 3F )2

−2i

9
Huu

(
D2 − 12DF + 9F 2

)
− 2i

9
Hus(5D

2 − 6DF − 9F 2)

+
1

9

(
Rss (D + 3F )2 − 4Rus (2D − 3F )(D + 3F ) + 4Ruu (2D − 3F )2

)]}
.

(C42)

〈Σ+|Õ(0)
µ0···µn

|Σ+〉 = UΣ+v{µ0
. . . vµn−1

Sµn}UΣ+

(
∆α(s)

n +∆β(s)
n

)
×
(
1 +W(Σ)

SU(6|3)

)

+
UΣ+v{µ0

. . . vµn−1
Sµn}UΣ+

f2

{
5i

27

(
∆γ(s)n − ∆σ

(s)
n

5

)

×
(
H∆

uu + 5H∆
us + 2H∆

sjr +H∆
ujr − 2 i (Tss − 2Tus + Tuu)

)
C2

+
(
∆α(s)

n +∆β(s)
n

)[2i
3
Hujr (D

2 + 3F 2) + iHsjr (D − F )2 − 2i

3
Huu(D

2 − 3F 2)
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−2i

3
Hus(D

2 − 6DF + 3F 2) +

(
Rss (D − F )2 − 4Rus F (D − F ) + 4Ruu F

2

)]}
.

(C43)

〈Ξ−|Õ(0)
µ0···µn

|Ξ−〉 = UΞ−v{µ0
. . . vµn−1

Sµn}UΞ−

(
∆α(s)

n +∆β(s)
n

)
×
(
1 +W(Ξ)

SU(6|3)

)

+
UΞ−v{µ0

. . . vµn−1
Sµn}UΞ−

f2

{
5i

27

(
∆γ(s)n − ∆σ

(s)
n

5

)

×
(
2H∆

ujr +H∆
sjr +H∆

ss + 5H∆
us − 2i (Tss − 2Tus + Tuu)

)
C2

+
(
∆α(s)

n +∆β(s)
n

) [
iHujr (D − F )2 +

2i

3
Hsjr (D

2 + 3F 2)− 2i

3
Hss(D

2 − 3F 2)

−2i

3
Hus(D

2 − 6DF + 3F 2) +

(
4Rss F

2 − 4Rus F (D − F ) +Ruu (D − F )2
)]}

.

(C44)

〈Σ0|Õ(0)
µ0···µn

|Λ0〉 = 0 . (C45)

6. Transversity matrix elements

〈p|ÕT
µ0···µnα|p〉 =

Upv{µ0
. . . v[µn}Sα]Up

(
(5 + y1)δαn + 2(1 + 2y1)δβn

)

6
×
(
1 +W(p)

SU(6|3)

)

+
Upv{µ0

. . . v[µn}Sα]Up

f2

{
5i

81

(
δγn − 3 δσn

5

)(
3H∆

uu +H∆
ujr

)
(5 + y1)C

2

+
8i

9

√
2

3

[
Kuu(D + 3F )(−1 + y1)−Kujr(3D − F − 2Fy1)

]
Cδcn

+δαn

[
− 1

6
(5 + y1)

(
Iujr − 2 i Quu

)
+
i

3
Hujr

(
3D2 − 6DF + 5F 2 +

(
D2 + F 2

)
y1

)

−4i

3
HuuD (D − 2F − Fy1) +

1

6
Ruu(D − 3F )2(5 + y1)

]

+δβn

[
− 1

3
(1 + 2y1)

(
Iujr − 2 i Quu

)
+

2i

3
Hujr

(
D2 + F 2(1 + 2y1)

)

−4i

3
HuuD (D − 2F − Fy1) +

1

3
Ruu(D − 3F )2(1 + 2y1)

]}
. (C46)

〈Λ0|ÕT
µ0···µnα|Λ

0〉 =
UΛ0v{µ0

. . . v[µn}Sα]UΛ0(1 + y1)

4

(
(1 + 2ỹ)δαn + 2δβn

)
×
(
1 +W(Λ)

SU(6|3)

)

+
UΛ0v{µ0

. . . v[µn}Sα]UΛ0(1 + y1)

f2

{
5i

54

(
δγn − 3 δσn

5

)

×
(
2H∆

uu (1 + ỹ) +H∆
us (1 + 4ỹ) +H∆

ujr (1 + 2ỹ)

)
C2

+
4i

9

√
2

3

[(
−Kus (D − 3F ) + 2KuuD

)
(1− 2ỹ)−Kujr(D − 3F + 4Dỹ)

]
Cδcn

+δαn

[
− 1

4

(
Iujr + 2 Isjr ỹ − 2 i Quu − 4 i Qssỹ

)

+
i

36
Hujr

(
13D2 − 18DF + 9F 2 + 4(5D2 − 12DF + 9F 2)ỹ

)
+

i

36
Hsjr (D + 3F )2
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+
i

18
Huu

(
D2 + 12DF − 9F 2 − 6(D − 3F )(D − F )ỹ

)

− i

18
Hus

(
(D − 3F )(5D + 3F ) + 2(5D2 − 9F 2)ỹ

)

+
1

36

(
Rss (D + 3F )2 − 4Rus (2D − 3F )(D + 3F ) + 4Ruu (2D − 3F )2

)
(1 + 2ỹ)

]

+δβn

[
− 1

2

(
Iujr − 2 i Quu

)
+

i

18
Hujr

(
(D − 3F )2 + 8D2ỹ

)
+

i

18
Hsjr (D + 3F )2

− i

9
Huu

(
3(D − 3F )(D − F )− 4D2ỹ

)
+
i

9
Hus

(
D2 + 9F 2 − 12D(D − F )ỹ

)

+
1

18

(
Rss (D + 3F )2 − 4Rus (2D − 3F )(D + 3F ) + 4Ruu (2D − 3F )2

)]}
. (C47)

〈Σ+|ÕT
µ0···µnα|Σ+〉 =

UΣ+v{µ0
. . . v[µn}Sα]UΣ+

(
(5 + y2)δαn + 2(1 + 2y2)δβn

)

6
×
(
1 +W(Σ)

SU(6|3)

)

+
UΣ+v{µ0

. . . v[µn}Sα]UΣ+

f2

{
5i

81

(
δγn − 3δσn

5

)(
H∆

uu (2 + y2) +H∆
us (13 + 2y2)

+4H∆
sjr +H∆

ujr (1 + y2)− 2 i (Tss − 2Tus + Tuu) (2 + y2)

)
C2

−8i

9

√
2

3

[
Kujr(D + F − 2Fy2) + 2Ksjr(D − F ) +

(
2Kuu F +Kus (D + F )

)
(1− y2)

−2 i

(
Sss (D − F ) + 2Suu F − Sus (D + F )

)
(1− y2)

]
Cδcn

+δαn

[
− 1

6

(
5 Iujr − 10 i Quu +

[
Isjr − 2 i Qss

]
y2

)

+
i

6
Hujr

(
D2 − 2DF + 5F 2 + 2(D2 + F 2)y2

)
+

5i

6
Hsjr (D − F )2

− i

3
Huu

(
D2 − 5F 2 + (D − F )(D + F )y2

)

− i

3
Hus

(
3D2 − 8DF + 5F 2 − (D2 + 4DF − F 2)y2

)

+
1

6

(
Rss (D − F )2 − 4Rus F (D − F ) + 4Ruu F

2

)
(5 + y2)

]

+δβn

[
− 1

3

(
Iujr − 2 i Quu + 2

[
Isjr − 2 i Qss

]
y2

)
+
i

3
Hujr

(
(D + F )2 + 4F 2y2

)

−2i

3
Huu

(
D2 − F 2 − 2F 2y2

)
− 2i

3
Hus

(
D2 − 4DF + F 2 − 2F (D − F )y2

)

+
i

3
Hsjr (D − F )2 +

1

3

(
Rss (D − F )2 − 4Rus F (D − F ) + 4Ruu F

2

)
(1 + 2y2)

]}
.

(C48)

〈Ξ−|ÕT
µ0···µnα|Ξ

−〉 = −UΞ−v{µ0
. . . v[µn}Sα]UΞ−

(
(y1 + 5y2)δαn + (4y1 + 2y2)δβn

)

6
×
(
1 +W(Ξ)

SU(6|3)

)

+
UΞ−v{µ0

. . . v[µn}Sα]UΞ−

f2

{
5i

81

(
δγn − 3δσn

5

)(
H∆

sjr(y1 + y2) + 4H∆
ujr y2 +H∆

ss (y1 + 2y2)

+H∆
us (2y1 + 13y2)− 2i (Tss − 2Tus + Tuu) (y1 + 2y2)

)]
C2

−8i

9

√
2

3

[
2Kujr(D − F )y2 −Ksjr

(
2Fy1 − (D + F )y2

)
−Kus(D + F )(y1 − y2)
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−2KssF (y1 − y2) + 2i

(
Suu (D − F ) + 2Sss F − Sus (D + F )

)
(y1 − y2)

]
Cδcn

+δαn

[
− 1

6

([
Iujr − 2 i Quu

]
y1 + 5

[
Isjr − 2 i Qss

]
y2

)

+
5i

6
Hujr (D − F )2 y2 +

i

6
Hsjr

(
2(D2 + F 2)y1 + (D2 − 2DF + 5F 2)y2

)

− i

3
Hss

(
(D − F )(D + F )y1 + (D2 − 5F 2)y2

)

+
i

3
Hus

(
(D2 + 4DF − F 2)y1 − (3D − 5F )(D − F )y2

)

+
1

6

(
4Rss F

2 − 4Rus F (D − F ) +Ruu (D − F )2
)
(y1 + 5y2)

]

+δβn

[
− 1

3

(
2
[
Iujr − 2 i Quu

]
y1 +

[
Isjr − 2 i Qss

]
y2

)
+
i

3
Hujr (D − F )2 y2

+
i

3
Hsjr

(
4F 2y1 + (D + F )2y2

)
+

2i

3
Hss

(
2F 2y1 − (D2 − F 2)y2

)

+
2i

3
Hus

(
2F (D − F )y1 − (D2 − 4DF + F 2)y2

)

+
1

3

(
4Rss F

2 − 4Rus F (D − F ) +Ruu (D − F )2
)
(2y1 + y2)

]}
. (C49)

〈Σ0|ÕT
µ0···µnα|Λ

0〉 = −UΣ0v{µ0
. . . v[µn}Sα]UΛ0 (−1 + y1)

4
√
3

(δαn − 2δβn)×
[
1 +

1

2

(
W(Λ)

SU(6|3) +W(Σ)
SU(6|3)

)]

+
UΣ0v{µ0

. . . v[µn}Sα]UΛ0(−1 + y1)√
3f2

{
− 5i

54

(
δγn − 3 δσn

5

)(
2H∆

uu +H∆
us +H∆

ujr

)
C2

+
4i

9

√
2

3

[
2Kus(2D + 3F )−Kuu (D − 3F ) + 2KujrD +Ksjr (D + 3F )

−i
(
2Suu (2D − 3F ) + Sus (−5D+ 3F ) + Sss (D + 3F )

)]
Cδcn

+δαn

[
1

4

(
Iujr − 2 i Quu

)
− i

12
Hujr (D − 3F )(3D − F ) +

i

12
Hsjr (D − F )(D + 3F )

+
i

3
HuuD(D + F ) +

i

3
HusD(D − F ) +

1

12

(
Rss (D − F ) (D + 3F )

−4Rus (D
2 − 2DF + 3F 2)− 4Ruu F (−2D + 3F )

)]

+δβn

[
− 1

2

(
Iujr − 2 i Quu

)
− i

6
Hujr (D − 3F )(D + F )− i

6
Hsjr (D − F )(D + 3F )

+
2i

3
HuuD(D − F ) +

2i

3
HusDF − 1

6

(
Rss (D − F ) (D + 3F )

−4Rus (D
2 − 2DF + 3F 2)− 4Ruu F (−2D + 3F )

)]}
. (C50)

APPENDIX D: RESULTS IN SU(2|2) QχPT

In SU(2|2) quenched χPT, the Lagrangian Eq. (12) receives additional contributions since the theory has no axial
anomaly and the singlet meson field remains light. Thus,

LQ
B = i

(
Bv · DB

)
− i
(
T µ

v · DTµ
)
+∆

(
T µTµ

)
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+2α
(
BSµBAµ

)
+ 2β

(
BSµAµB

)
+ 2H

(
T ν
SµAµTν

)
+

√
3

2
C
[(

T ν
AνB

)
+
(
BAνT ν

)]

+2γ
(
BSµB

)
str (Aµ) + 2γ′

(
T ν

SµTν
)
str (Aµ) , (D1)

with two additional couplings γ and γ′. There is no relation between the other couplings in Eq. (D1) and those in
(PQ)χPT (though we use the same notation for convenience).
Defining

τ̂3 = diag (1,−1, q̂,−q̂) , (D2)

τ̂0 = diag (1, 1, 1, 1) , (D3)

and

τ̂T = diag (1, ŷ1, ŷ2, ŷ3) , (D4)

the quenched χPT twist-two operators correspond (for the most part) to those given in Eqs. (18)–(20) with the

replacement τ → τ̂ everywhere. Again, the LECs (α
(a)
n etc) occurring in the quenched theory are different from

those in SU(4|2) but with this caution, we use the same notation. For the transversity operators one needs additional

operators proportional to str
(
τ̂ξ

+

T

)
:

[
δα′nv{µ0

. . . v[µn}

(
B̄Sα]B

)
+ δγ′nv{µ0

. . . v[µn}

(
T̄ νSα]Tν

)
+ δσ′nv{µ0

. . . vµn−2

(
T µn−1

S[αT̄µn]}

)]
str
(
τ̂ξ

+

T

)
. (D5)

With these definitions it is then easy to calculate the quenched matrix elements in the isospin limit. The wave-
function renormalisation is

WSU(2|2) =
i

f2

(
(g1 + gA) (6γ − g1 + 2gA)Huu + 2 g2∆N H∆

uu + (g1 + gA)
2m2

0 Hη′,uu

)
. (D6)

The isovector, unpolarised matrix element is

〈N |O(3)
µ0···µn

|N〉 =
1

3
UNvµ0

. . . vµn
UN

(
2α(a)

n − β(a)
n

)
×
(
1 + (1− δn0)WSU(2|2)

)
(D7)

+
1

3f2
UNvµ0

. . . vµn
UN (1− δn0)

{
4 i g2∆N

(
γ(a)n − σ

(a)
n

3

)
H∆

uu

−i
(
2α(a)

n − β(a)
n

)
×
[
6gAγHuu + (g1 + ga)

2m2
0Hη′,uu

]

+α(a)
n

[
3i

2
g1

(
g1 − 2(4γ + gA)

)
Huu

]
+ β(a)

n

[
3i

2
g1

(
g1 + 2(2γ − gA)

)
Huu

]}
,

and the isovector, helicity matrix element is

〈N |Õ(3)
µ0···µn

|N〉 =
1

3
UNv{µ0

. . . vµn−1
Sµn}UN

(
2∆α(a)

n −∆β(a)
n

)(
1 +WSU(2|2)

)
(D8)

+
1

3f2
UNv{µ0

. . . vµn−1
Sµn}UN

{
8i

3

√
2

3
(g1 + 4gA)Kuug∆N∆cn +

20

9
i g2∆N

(
∆γ(a)n − ∆σ

(a)
n

5

)
H∆

uu

+
i

3

(
2∆α(a)

n −∆β(a)
n

)
×
[
6gAγHuu + (g1 + gA)

2m2
0Hη′,uu

]

− i

2
∆α(a)

n g1

[
g1 − 2(4γ + gA)

]
Huu − i

2
∆β(a)

n g1

[
g1 + 2(2γ − gA)

]
Huu

}
. .

The isoscalar, unpolarised matrix element is

〈N |O(0)
µ0···µn

|N〉 = UNvµ0
. . . vµn

UN

(
α(s)
n + β(s)

n

)
×
(
1 + (1− δn0)WSU(2|2)

)
(D9)
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+
UNvµ0

. . . vµn
UN (1− δn0)

f2

{(
γ(s)n − σ

(s)
n

3

)
×
[
2 i g2∆NH∆

uu

]

− i

(
α(s)
n + β(a)

n

)
(g1 + gA)

(
(6γ − g1 + 2gA)Huu + (g1 + gA)m

2
0Hη′,uu

)}
.

The isoscalar, helicity matrix element is

〈N |Õ(0)
µ0···µn

|N〉 = UNv{µ0
. . . vµn−1

Sµn}UN

(
∆α(s)

n +∆β(s)
n

)
×
(
1 +WSU(2|2)

)
(D10)

+
UNv{µ0

. . . vµn−1
Sµn}UN

f2

{(
∆γ(s)n − ∆σ

(s)
n

5

)
×
[
10 i

9
g2∆NH∆

uu

]

+
i

3

(
∆α(s)

n +∆β(a)
n

)
(g1 + gA)

(
(6γ − g1 + 2gA)Huu + (g1 + gA)m

2
0Hη′,uu

)}
.

Finally, the transversity matrix elements are

〈N |ÕT
µ0···µnα|N〉 =

UNv{µ0
. . . v[µn}Sα]UN

6

(
(5 + ŷ1)δαn + (2 + 4ŷ1)δβn + 6(1 + ŷ1 − ŷ2 − ŷ3)δα

′
n

)(
1 +WSU(2|2)

)

+
UNv{µ0

. . . v[µn}Sα]UN

f2

{
i

27
H∆

uu

[
(6 + 2 ŷ1 − ŷ3 − ŷ2) (5 δγn − 3 δσn)

+6 (1 + ŷ1 − ŷ3 − ŷ2) (5 δγ
′
n − 3 δσ′n)

]
g2∆N

+
4i

9

√
2

3
Kuu

[
4gA(1− ŷ1) + g1(4 + 2ŷ1 − 3ŷ2 − 3ŷ3)

]
g∆N δcn

+δαn

[
(−1− ŷ1 + ŷ2 + ŷ3)Iuu − 1

9
m2

0(5 + ŷ1)Iη′,uu

+
i

12

(
− g21 (2 + ŷ3 + ŷ2) + 4 gA

[
gA (2 + 2 ŷ1 − ŷ3 − ŷ2) + (5 + ŷ1) γ

]

+2 g1
[
gA (3 + ŷ1 − ŷ3 − ŷ2) + 2 (5 + ŷ1) γ

])
Huu

+
i

18
(g1 + gA)

2m2
0(5 + ŷ1)Hη′,uu

]

+δβn

[
(−1− ŷ1 + ŷ2 + ŷ3)Iuu − 2

9
m2

0(1 + 2ŷ1)Iη′,uu

+
i

12

(
4g1(2γ + gA + 4γŷ1) + 4gA

[
2γ + gA + (4γ + gA)ŷ1

]

+g21
[
2ŷ1 − 3(ŷ2 + ŷ3)

])
Huu +

i

9
(g1 + gA)

2m2
0(1 + 2ŷ1)Hη′,uu

]

+δα′n

[
4(ŷ2 + ŷ3)Iuu − 2

3
m2

0(1 + ŷ1 − ŷ2 − ŷ3)Iη′,uu

− i

3
(g1 + gA)

(
g1 − 2(3γ + gA)

)
(1 + ŷ1 − ŷ2 − ŷ3)Huu

+
i

3
(g1 + gA)

2m2
0(1 + ŷ1 − ŷ2 − ŷ3)Hη′,uu

]}
. (D11)
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