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1 Introduction and summary

The masses of the ground state baryon octet are of fundamental importance in the investigation of three-quark
states in QCD. With the advent of improved techniques in lattice QCD and systematic studies within the
framework of chiral perturbation theory, one can hope to gain an understanding of these quantities from first
principles. Present day lattice calculations are done at unphysical quark masses above the physical values,
therefore chiral extrapolations are needed to connect lattice results with the physical world, provided that the
masses are not too high (for an early approach to this problem, see e.g. [1]). With the recent data from the
MILC collaboration [2, 3] it appears to be possible to apply chiral extrapolation functions derived from chiral
perturbation theory (CHPT) (for a review, see [4]). In this paper, we analyze the baryon masses as a function
of the pion and the kaon masses in CHPT based on the MILC data. Other pertinent lattice papers are e.g.
[5, 6, 7, 8, 9]. It should be said from the beginning that we ignore the effects of the a) the finite volume, b)
the finite lattice spacing and c) the staggered approximation in this study#5 since our aim is more modest - we
want to find out whether these chiral extrapolations can be used for the presently available lattice data. Once
this test is performed, one should then apply the full formalism including the abovementioned effects. Note
that the quark mass expansion of QCD is turned into an expansion in Goldstone boson (GB) masses in CHPT
- we thus use both terms synonymously.

The baryon masses have been analyzed in various versions of baryon CHPT to third and fourth order, for an
incomplete list of references see [13, 14, 15, 16, 17, 18, 19]. Our investigation extends the work in the two-flavor
sector presented in [20] and we heavily borrow from the earlier SU(3) calculations of [15, 17]. The pertinent
results of this investigation can be summarized as follows:

1) We have calculated the baryon masses to third and fourth order in the chiral expansion making use of
cut-off regularization as proposed in [20]. As in that paper, we have also considered an improvement term
at third order to cancel the leading cut-off dependence in the baryon masses, see Sect. 3.2.

2) The improvement term consists of three independent terms, whose cut-off independent coefficients have
been determined by considering the nucleon mass (to allow for a direct comparison with the SU(2) calcu-
lation of Ref. [20]). We have demanded that for the physical pion and the physical kaon mass the nucleon
mass passes through its physical value. This fixes two parameter combinations. The third parameter is
determined from a best fit to the trend of the earlier MILC data [2] for mN (Mπ), cf. Fig. 2, under the
condition that the deviation from the earlier determination of the corresponding low-energy constants in
[15] is of natural size. We find indeed a visible improvement in the description of the lattice data and also
much better stability under variations of the cut-off.

3) The full fourth-order calculation utilizing the low-energy constants as determined from the improvement
term leads to an accurate description of the MILC data for pion masses below 550 MeV, see again Fig. 2.
Note that the two lowest mass points of the more recent MILC data [3] can not be well described. Also,
the use of the low-energy constants (LECs) from [15] lead to a less satisfactory description. We have also
discussed the theoretical uncertainty of this procedure, cf. Fig. 3.

4) From the pion mass dependence of the nucleon mass, we can deduce the pion-nucleon sigma term. For
the best sets of low-energy constants, we find σπN (0) = 50.7 . . .53.7MeV.

5) The kaon mass dependence of the nucleon mass is less well determined. Still, the extrapolation functions
can be applied to kaon masses below ≃ 600MeV. We deduce that the baryon octet mass in the chiral limit
lies in the interval 710MeV . m0 . 1070MeV. This is consistent with earlier estimates, see e.g. [15].

6) We have also considered the pion and kaon mass dependences of the Λ, the Σ and the Ξ and compared
to the existing MILC data, cf. Figs. 5,6,7. Note that we have not fitted to these masses. Our chiral
extrapolations for the Σ and in particular for the Ξ as a function of the pion mass are flatter than the
MILC data. This is partly due to our strategy of fixing all parameters on the nucleon mass. We remark,
however, that one should expect a decreased pion mass dependence as the number of strange valence
quarks increases.

#5Some of these effects are studied in [10, 11, 12] (and references therein).
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The material in this paper is organized as follows. Section 2 contains the effective Lagrangian and a short
discussion about the various regularization methods employed in our calculations. In section 3, the ground
state baryon octet masses are given at third, third improved and fourth order in the chiral expansion. In
particular, we concentrate on the differences to the SU(2) case [20] (we refer to that paper for many details).
Our results for the various baryon masses as functions of the pion and the kaon masses and the stability of
these results under cut-off variations are given and discussed in section 4. Many technicalities are relegated to
the appendices.

2 Formalism I: Generalities

In this section, we display the effective Lagrangian underlying our calculations and discuss briefly the cut-off
regularization utilized and its relation to the more standard dimensional regularization (DR). We borrow heavily
from the work presented in Refs.[15, 20] and refer the reader for more details to these papers.

2.1 Effective Lagrangian

Our calculations are based on an effective chiral meson-baryon Lagrangian in the presence of external sources
(like e.g. photons) supplemented by a power counting in terms of quark (meson) masses and small external
momenta. Its generic form consists of a string of terms with increasing chiral dimension,

L = L(1)
φB + L(2)

φB + L(3)
φB + L(4)

φB + L(2)
φ + L(4)

φ . (2.1)

Here, B collects the baryon octet and φ stands for the Goldstone boson octet. The superscript denotes the
power in the genuine small parameter q (denoting Goldstone boson masses and/or external momenta). The
explicit representations of φ and B are:

φ(x) =







π0 + 1√
3
η

√
2π+

√
2K+

√
2π− −π0 + 1√

3
η

√
2K0

√
2K− √

2K̄0 − 2√
3
η






, B(x) =







1√
2
Σ0 + 1√

6
Λ Σ+ p

Σ− − 1√
2
Σ0 + 1√

6
Λ n

Ξ− Ξ0 − 2√
6
Λ






. (2.2)

A complete one–loop (fourth order) calculation must include all tree level graphs with insertions from all terms

given in Eq. (2.1) and loop graphs with at most one insertion from L(2)
φB or L(2)

φ . Throughout, we employ the
heavy baryon approach, which allows for a consistent power counting since the large mass scale (the baryon
mass mB) is transformed from the propagator into a string of 1/mB suppressed interaction vertices. The lowest
order (dimension one) effective Lagrangian takes the canonical form

L(1)
φB = iTr(B̄[v ·D,B]) + F Tr(B̄Sµ[u

µ, B]) +DTr(B̄Sµ{uµ, B}) , (2.3)

where vµ is the four-velocity of the baryon subject to the constraint v2 = 1, Tr denotes the trace in flavor space
and D and F are the leading axial-vector couplings, D ≃ 3/4 and F ≃ 1/2. Furthermore, Sµ is the spin-vector
and uµ = iu†∇µUu†, where U = u2 collects the Goldstone bosons (for more details, see [4]). For the calculation
of the self-energy (mass), it suffices to use the partial derivative ∂µ instead of the chiral covariant derivative
Dµ. The dimension two chiral Lagrangian can be decomposed as (for details see [15] and [17])

L(2)
φB = L(2,br)

φB +

19
∑

i=1

biO
(2)
i + L(2,rc)

φB (2.4)

with

L(2,br)
φB = bDTr[B̄{χ+, B}] + bFTr[B̄[χ+, B]] + b0Tr[B̄B]Tr[χ+], (2.5)

19
∑

i=1

biO
(2)
i = b1Tr[B̄[uµ, [u

µ, B]]] + b2Tr[B̄[uµ, {uµ, B}]] + b3Tr[B̄{uµ, {uµ, B}}]

+

(

(b4 −m0b15)m0 +
1

4
(b12 −m0b18)m0

)

Tr[B̄[v · u, [v · u,B]]]
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+ (b5 + b6 −m0b16)m0Tr[B̄[v · u, {v · u,B}]]

+

(

(b7 −m0b17)m0 +
3

4
(b12 −m0b18)

)

m0Tr[B̄{v · u, {v · u,B}}]

+ b8Tr[B̄B]Tr[uµuµ] + b112iǫ
µναβTr[B̄uµ]vαSβTr[uνB]

+

(

(b9 −m0b19)m0 −
1

2
(b12 −m0b18)m0

)

Tr[B̄B]Tr[v · u v · u]

+ b132iǫ
µναβTr[B̄vαSβ [[uµ, uν ], B]] + b142iǫ

µναβTr[B̄vαSβ{[uµ, uν ], B}] , (2.6)

with m0 the octet baryon mass in the chiral limit. Explicit symmetry breaking embodied in the external

source χ+ ∼ M (with M the diagonal quark mass matrix) only starts at this order, collected in L(2,br)
φB . It is

parameterized in terms of the LECs b0, bD and bF . Throughout, we work in the isospin limit mu = md = m̂ and
thus consider four different baryon states, the nucleon doublet (N), the lambda (Λ), the sigma triplet (Σ) and the
cascade doublet (Ξ) (Isospin breaking corrections are discussed in [17] and [21]). The operators with the LECs
bi (i = 1, . . . , 19) only appear as insertions in fourth order tadpole graphs (see [17] for a detailed discussion).
Note that in [15] the contributions from various combinations of dimension two LECs were effectively subsumed
in one corresponding coupling since operators ∼ k2 and ∼ (v · k)2 lead to the same contribution to the baryon
masses. We can only do that at later stage in the calculation so as to be able to consistently work out the
renormalization of these dimension two operators. As will become clear later, while in DR the bi are finite
numbers, this is not the case if one employs cut-off regularization. Finally, we remark that the recoil terms

collected in L(2,rc)
φB are given in [15]. Similarly, there are further recoil corrections ∼ 1/m2

B collected in L(3,rc)
φB .

These involve no unknown parameters, their explicit form is also given in [15]. To end this section, we give the
fourth order terms relevant for our calculations,

L(4)
φB = d1Tr(B̄[χ+, [χ+, B]]) + d2Tr(B̄[χ+, {χ+, B}]) + d3Tr(B̄{χ+, {χ+, B}}) + d4Tr(B̄χ+)Tr(χ+B)

+ d5Tr(B̄[χ+, B])Tr(χ+) + d7Tr(B̄B)Tr(χ+)Tr(χ+) + d8Tr(B̄B)Tr(χ2
+) . (2.7)

We remark that we have employed the notation of [15] to facilitate the comparison with that work and also use
some of the LECs determined there.

2.2 Regularization schemes

We briefly recall the salient features of the various regularization schemes employed in calculating the baryon
masses. Heavy baryon CHPT together with DR was used e.g. in the early papers [13, 14, 15] and a fourth
order calculation using infrared regularization (which is also based on DR to deal with the UV divergences in
the loop graphs) was reported in [17] (for an earlier incomplete calculation, see [16] and a recent calculation in
the extended on-mass shell renormalization scheme was reported in [19]). To be definite, consider the leading
one-loop pion graph for the nucleon mass (the sunset diagram with insertions from the leading order Lagrangian
which is of third order). In the heavy baryon approach, it is given by

IπN =
c

4
J(0)M2

π , J(0) =
1

i

∫

ddk

(2π)d
1

(M2
π − k2 − iǫ)(v · k − iǫ)

, (2.8)

with c = (D + F )2/F 2
0 and F0 the pseudoscalar decay constant in the chiral limit. In DR, the loop function

J(0) is finite and can be expressed as

J(0) = Md−3
π (4π)−d/2 Γ

(

1

2

)

Γ

(

3− d

2

)

= −Mπ

8π
, (2.9)

with d the number of space-time dimensions and we have set d = 4 on the right-hand-side of Eq. (2.9). This
gives the time-honored leading non-analytic contribution

IπN = − c

32π
M3

π . (2.10)

Note that in DR no power-law divergences appear and therefore loop graphs can not renormalize the baryon
mass in the chiral limit and the dimension two LECs which leads to self-energy term ∼ M2

π . If we instead use
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a three-momentum cut-off as suggested in [20], the same diagram leads to the expression

IπN = − c

16π2

∫ ∞

0

dy

∫ Λ

0

d|k|
~k4

(~k2 +M2
π + y2)3/2

= − c

16π2

{

Λ3

3
−M2

πΛ−M3
π arctan

Mπ

Λ

}

− c

32π
M3

π . (2.11)

Note that besides the contribution ∼ M3
π that is free of the cut-off, we have additional divergent and finite

terms. The cubic divergence independent of the pion mass leads to a renormalization of the baryon mass in
the chiral limit whereas the term ∼ M2

πΛ renormalizes the dimension two LECs (the precise relations between
the bare and the renormalized parameters will be given in the following section). Also, the finite arctan term is
formally of higher order since it only starts to contribute at order M4

π. Chiral symmetry has been manifestly
maintained by this procedure since no structures besides the ones already appearing in the effective Lagrangian
are needed to absorb all divergences (see also [20] and the more systematic work reported in [22]). Also, the
DR result can be formally obtained when letting the cut-off tend to infinity. This will also be discussed in more
detail below.

3 Formalism II: Baryon masses

This section contains the basic formalism to calculate the baryon masses to fourth order in the chiral expansion.
We briefly discuss the third order result and the introduction of an improvement term as proposed in [20].
We then proceed to present the central new results, namely the baryon masses to fourth order utilizing cut-off
regularization. The calculation of the baryon self-energy and the corresponding mass shift at a given order in
the chiral expansion is briefly outlined in App. A.

3.1 Baryon masses at third order

The calculation of the baryon masses to third order in cut-off regularization is straightforward. Utilizing the
loop integrals collected in App. B, one obtains

mB = m
(r)
0 + γD

B b
(r)
D + γF

Bb
(r)
F − 2b

(r)
0 (M2

π + 2M2
K)− 1

24πF 2
0

[

απ
BM

3
π + αK

BM3
K + αη

BM
3
η

]

+
1

12π2F 2
0

[

απ
BM

3
π arctan

Mπ

Λ
+ αK

BM3
K arctan

MK

Λ
+ αη

BM
3
η arctan

Mη

Λ

]

+O(q4) , (3.1)

where the state-dependent coefficients γD,F
B and αP

B can be found e.g. in [4]. As announced, the baryon
mass and the the dimension two couplings are renormalized as symbolized by the superscript (r). The precise
renormalization takes the form

m
(r,3)
0 = m0 −

(

5D2

36π2F 2
0

+
F 2

4π2F 2
0

)

Λ3 , b
(r,3)
F = bF −

(

5DF

48F 2
0 π

2

)

Λ,

b
(r,3)
0 = b0 −

(

13D2 + 9F 2

144π2F 2
0

)

Λ , b
(r,3)
D = bD −

(−D2 + 3F 2

32π2F 2
0

)

Λ. (3.2)

It is instructive to expand the M3
P arctan(MP /Λ) (P = {π,K, η}) contributions

mB = m
(r)
0 + γD

B b
(r)
D + γF

Bb
(r)
F − 2b

(r)
0 (M2

π + 2M2
K)− 1

24πF 2
0

[

απ
BM

3
π + αK

BM3
K + αη

BM
3
η

]

+
1

12π2F 2
0

απ
BM

3
π

{

Mπ

Λ
− 1

3

(

Mπ

Λ

)3

+ . . .

}

+
1

12π2F 2
0

αK
BM3

K

{

MK

Λ
− 1

3

(

MK

Λ

)3

+ . . .

}

+
1

12π2F 2
0

αη
BM

3
η

{

Mη

Λ
− 1

3

(

Mη

Λ

)3

+ . . .

}

= m
(r)
0 + γD

B b
(r)
D + γF

Bb
(r)
F − 2b

(r)
0 (M2

π + 2M2
K)− 1

24πF 2
0

[

απ
BM

3
π + αK

BM3
K + αη

BM
3
η

]

+O(q4) ,(3.3)
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where the last line corresponds to the DR result. As stated earlier, the additional contributions scale with inverse
powers of the cut-off and thus vanish when Λ → ∞ (which formally corresponds to DR). As already stressed in
[20] (and noted by others), this third order representation is not sufficiently accurate to make connection with
lattice results if one is not very close to the physical value of the GB masses. Therefore, one should perform
a fourth order calculation or at least add an improvement term that is formally of fourth order but should be
elevated to third order. We first discuss briefly this latter possibility before turning to the full-fledged fourth
order calculation.

3.2 Improvement term

As noticed in [20], the third order result for the baryon masses shows a very strong cut-off dependence when
the pion mass is increased above its physical value, see the left panel in Fig. 1. Only when one has a plateau
below the chiral symmetry breaking scale Λχ = 4πFπ ≃ 1.2GeV, one has the required cut-off independence.
For pion masses above 300 MeV, this plateau vanishes. To obtain a better stability against cut-off variations, it
was therefore proposed in [20] to promote the fourth order operator e1M

4
πN̄N to the third order and to cancel

the leading cut-off dependence in Eq. (3.3) by a proper adjustment of the LEC e1, e1 = efin1 − coeff/Λ, where
the coefficient can be read off from the leading term of the expansion of the arctan function. For the SU(3)
calculation performed here, the situation is a bit more complicated. In fact, the corresponding improvement
term for the baryon B consists of three contributions (we use the notation of [15])

ǫππ1,BM
4
π + ǫπK1,BM

2
πM

2
K + ǫKK

1,B M4
K , (3.4)

where the coefficients ǫPQ
1,B (P,Q = {π,K}) are linear combinations of the fourth order LECs di defined in

Eq. (2.7) (the precise relation can be found again in [15]). Throughout, we use the Gell-Mann–Okubo relation
to express the Mη-term by the pion and the kaon masses, 3M2

η = 4M2
K −M2

π . To eliminate the leading 1/Λ
dependences, the LECs di have to take the form

d1 = dfin1 − D2 − 3F 2

576π2F 2
0Λ

, d2 = dfin2 − DF

64π2F 2
0Λ

, d3 = dfin3 − D2 − 3F 2

128π2F 2
0Λ

, d4 = dfin4 − −D2 + 3F 2

64π2F 2
0Λ

,

d5 = dfin5 +
13DF

288π2F 2
0Λ

, d7 = dfin7 +
35D2 + 27F 2

3456π2F 2
0Λ

, d8 = dfin8 +
17D2 + 9F 2

1152π2F 2
0Λ

. (3.5)

3.3 Baryon masses at fourth order

To fourth order in the chiral expansion, the octet baryon masses can be written as (when employing CR)

mB = m
(r)
0 + δm

(2)
B + δm

(3)
B + δm

(4)
B

= m
(r)
0 + δm

(2)
B +∆m

(3)
B + fB,3(Λ) + ∆m

(4)
B + fB,4(Λ) , (3.6)

where in the second line we have split the mass shift δm
(i)
B (i = 3, 4) into cut-off independent and an explicitly

cut-off dependent piece. This is done to facilitate the comparison with the results obtained in DR. The various
pieces take the form

δm
(2)
B = γD

B b
(r)
D + γF

Bb
(r)
F − 2b

(r)
0 (M2

0,π + 2M2
0,K) ,

∆m
(3)
B = − 1

24πF 2
0

[

απ
BM

3
π + αK

BM3
K + αη

BM
3
η

]

,

fB,3(Λ) =
1

12π2F 2
0

[

απ
BM

3
π arctan

Mπ

Λ
+ αK

BM3
K arctan

MK

Λ
+ αη

BM
3
η arctan

Mη

Λ

]

,

∆m
(4)
B = ǫP,Q

1,BM2
PM

2
Q + ǫP,Q

2,B,TM
2
PM

2
Q ln

MT

m0
,

fB,4(Λ) = −ǫP,Q
2,B,TM

2
PM

2
Q ln (1 +RT ) +

1

RT

{

β1,B,TΛ
4

(

1−RT +
1

2

(

MT

Λ

)2
)

+βP
2,B,TM

2
PΛ

2 (1−RT ) + βP,Q
3,B,TM

2
PM

2
Q

}

, (3.7)
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with RT = (1+M2
T /Λ

2)1/2. Here, we have P,Q, T = {π,K, η} and the summation convention for these indices
is understood. To arrive at these results, we made use of the loop integrals collected in App. B. The resulting
Λ–dependent terms are separated into a contribution that contains all the power and logarithmic divergences
and another one that is finite in the limit that Λ → ∞. Only these latter terms are displayed here. For the
nucleon, the ǫ–coefficients and the β–coefficients are collected in App. A. Note also that the fourth order LECs
di have the form displayed in Eq. (3.5) so that the leading cut-off dependence is canceled. In the second order
term, we have used the leading terms in the quark mass expansion of the pion and the kaon mass, denoted
M0,P , because the difference to the physical masses appears in the fourth order of the baryon mass expansions.
For consistency, we have recalculated the Goldstone boson masses in cut-off regularization (this was not done
e.g. in [20]), the explicit formulae are given in App. C. All appearing polynomial and logarithmic divergences
are absorbed in a consistent redefinition of the bare parameters. The renormalization of the chiral limit mass
and of the LECs takes the form

m
(r,4)
0 = m

(r,3)
0 +

m0

π2F 2
0

(

− b12
8

− 3b4
4

− 7b7
12

− b9 +
3b15m0

4
+

7b17m0

12
+

b18m0

8
+ b19m0

)

Λ4,

b
(r,4)
F = b

(r,3)
F − 1

96π2F 2
0

(

− 10b2 + 14bF + 10bFD
2 + 20bDDF + 18bFF

2

−5b5m0 − 5b6m0 + 5b16m
2
0

)

Λ2,

b
(r,4)
0 = b

(r,3)
0 − 1

144π2F 2
0

(

− 18b1 − 26b3 − 48b8 + 18bD + 48b0 − 26bDD
2 − 36bFDF − 18bDF

2

−9b4m0 − 13b7m0 − 24b9m0 + 9b15m
2
0 + 13b17m

2
0 + 24b19m

2
0

)

Λ2,

b
(r,4)
D = b

(r,3)
D − 1

96π2F 2
0

(

− 18b1 − 2b3 + 14bD + 26bDD
2 + 36bFDF

+18bDF
2 − 3b12m0 − 9b4m0 − b7m0 + 9b15m

2
0 + b17m

2
0 + 3b18m

2
0

)

Λ2,

d
(r,4)
1 = d1 −

1

1152π2F 2
0m0

(

−D2 + 3F 2 + 12b1m0 − 4b3m0 − 14bDm0

−69bDD
2m0 − 162bFDFm0 − 81bDF

2m0 + 3b4m
2
0 − b7m

2
0 − 3b15m

3
0 + b17m

3
0

)

ln
Λ

m0
,

d
(r,4)
2 = d2 −

1

768π2F 2
0m0

(

− 6DF − 12b2m0 − 4bFm0 − 60bFD
2m0

−120bDDFm0 − 108bFF
2m0 − 3b5m

2
0 − 3b6m

2
0 + 3b16m

3
0

)

ln
Λ

m0
,

d
(r,4)
3 = d3 −

1

768π2F 2
0m0

(−3D2 + 9F 2 + 36b1m0 + 4b3m0 − 24bDm0 − 78bDD
2m0

−108bFDFm0 − 54bDF
2m0 + 3b12m

2
0 + 9b4m

2
0 + b7m

2
0 − 9b15m

3
0 − b17m

3
0 − 3b18m

3
0

)

ln
Λ

m0
,

d
(r,4)
4 = d4 −

1

1152π2F 2
0m0

(

9D2 − 27F 2 − 108b1m0 + 4b3m0 + 44bDm0

+288bDD
2m0 − 6b12m

2
0 − 27b4m

2
0 + b7m

2
0 + 27b15m

3
0 − b17m

3
0 + 6b18m

3
0

)

ln
Λ

m0
,

d
(r,4)
5 = d5 −

1

1152π2F 2
0m0

(

26DF + 52b2m0 − 44bFm0 + 13b5m
2
0 + 13b6m

2
0 − 13b16m

3
0

)

ln
Λ

m0
,

d
(r,4)
7 = d7 −

1

6912π2F 2
0m0

(

35D2 + 27F 2 + 108b1m0 + 140b3m0 + 264b8m0

−132bDm0 − 264b0m0 + 144bDD
2m0 + 27b4m

2
0 + 35b7m

2
0 + 66b9m

2
0

−27b15m
3
0 − 35b17m

3
0 − 66b19m

3
0

)

ln
Λ

m0
,

d
(r,4)
8 = d8 −

1

2304π2F 2
0m0

(

17D2 + 9F 2 + 36b1m0 + 68b3m0 + 120b8m0
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−28bDm0 − 120b0m0 + 168bDD
2m0 + 432bFDFm0 + 216bDF

2m0

+9b4m
2
0 + 17b7m

2
0 + 30b9m

2
0 − 9b15m

3
0 − 17b17m

3
0 − 30b19m

3
0

)

ln
Λ

m0
. (3.8)

Clearly, higher order powers in the cut-off Λ appear as compared to the third order calculation. Note also the
appearance of a new scale in the logarithmically divergent terms. As can be seen from App. B, the integrals
I1 − I6 and α1 − α3 contain terms proportional to ln(MP /Λ). To properly absorbs these divergences, one uses
ln(MP /Λ) = ln(MP /ν) − ln(Λ/ν), with ν the new scale. From here on, we set ν = m0. As a check, it can be
shown that for Λ → ∞ our fourth order results agree with the ones obtained in DR in [15] if one sets µ = m0,
with µ the scale of DR. For this comparison to work, one also has to account for the fact that in [15] some terms
∼ M2

PM
2
Q were absorbed in a redefinition of the di. This concludes the necessary formalism, we now turn to

the numerical analysis.

4 Results and discussion

Before presenting results, we must fix parameters. In the meson sector, we use standard values of the LECs Li

at the scale Mρ: L4 = −0.3, L5 = 1.4, L6 = −0.2, L7 = −0.4 and L8 = 0.9 (all in units of 10−3). These are run
to the scale λ = m0 using the standard one-loop β–functions. Throughout, we set F0 = 100 MeV, which is an
average value of the physical values of Fπ , FK and Fη. For the leading baryon axial couplings we use D = 0.75
and F = 0.5. We have checked that varying these parameters within phenomenological bounds does not alter
our conclusions.

4.1 Fixing the low-energy constants

For the dimension two LECs from the meson-baryon Lagrangian we use the central values of [15], these are
collected in Tab. 1. We have not varied these LECs since such modifications can effectively be done by changing
the fourth order LECs di within reasonable bounds. Next we consider the determination of the fourth order

b0 bD bF b1 b2 b3 b8

-0.606 0.079 -0.316 -0.004 -0.187 0.018 -0.109

Table 1: Values of the LECs bi in GeV−1 taken from [15].

LECs di. As noted before, the improvement term for each baryon consists of three pieces. To determine these,
we have only considered the nucleon, for two reason. First, there are more lattice results for this particle than
for the others and second, it also facilitates the direct comparison with the SU(2) results of [20]. For the nucleon,
the coefficients appearing in Eq. (3.4) are related to the LECs di via

ǫππ1,N = −4(4d1+2d5+d7+3d8) , ǫπK1,N = 8(4d1−2d2−d5−2d7+2d8) , ǫKK
1,N = −16(d1−d2+d3−d5+d7+d8) .

(4.1)
We have now varied the values of the di under the following constraints: We require thatmN (Mπ) passes through
the physical value mN = 940MeV for the physical pion mass Mπ = 140MeV and similarly for mN (MK) at
MK = 494MeV. Furthermore, we only allow for variations of δdi = ±0.1GeV−3 from the central values of
[15] (this is in fact the largest magnitude of any of these LECs). Under these restrictions, we have tried to
describe the trend of the earlier MILC data with the third order improved formula (note that the more recent
data [3] were not used in the fit for reasons discussed below). Note that we have reconstructed these data from
table IX (VII) of Ref. [2]([3]) using the scale parameter r1 = 0.35(0.317) fm. The resulting set of values for the
LECs di is denoted as the “optimal set” from here on. In Tab. 2 we have collected the values of the di from
[15] and for the optimal set. In fact, the values of the di given in that table refer to the basis used in [15] as
indicated by the superscript “BM”. These differ by some small finite shifts from the one used in CR (we refrain
from giving the explicit formulae here). Note that one can not exactly reproduce these lattice data as shown by
the solid line in Fig. 2, but the nucleon mass now increases with growing pion mass as demanded by all existing
lattice results. Also, at fourth order there are other contributions which are not captured by the improvement
term, see the discussion below. We also note that we have not restricted the di such that the GMO relation
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3mΛ+mΣ = 2(mN +mΞ) is fulfilled so as to have a better handle on the theoretical uncertainty. Including the
improvement term with these values of the LECs leads indeed to a very reduced cut-off dependence as shown
in the right panel of Fig. 1. Note that the treatment of the improvement term is more tricky in SU(3) than in
the SU(2) calculation since one has to balance three different terms as opposed to fixing one in the two-flavor
case.

dBM
1 dBM

2 dBM
3 dBM

4 dBM
5 dBM

7 dBM
8

BM [15] 0.008 0.035 0.069 −0.077 −0.05 −0.018 −0.103

opt. −0.043 −0.066 −0.031 −0.077 −0.15 −0.118 −0.2

Table 2: Values of the LECs di in GeV−3 in the basis used in [15] as indicated by the superscript “BM”. “Opt.”
denotes the optimal set as described in the text.

4.2 Nucleon mass and pion-nucleon sigma term

We now consider the nucleon mass as function of the pion and the kaon mass in DR and CR. We have calculated
mN at third, improved third and fourth order, see Fig. 2 for DR. In what follows, we mostly focus on the results
obtained at fourth order. The trends when going from third to improved third to fourth order for the pion
mass dependence of the nucleon mass are very similar to the SU(2) case discussed in big detail in [20]. We see
that with the optimal set of the di as given in Tab. 2 one obtains a rather accurate description of the earlier
and most of the more recent MILC data [3] for pion masses below 600 MeV, cf. the dot-dashed line in Fig. 2.
Note, however, that the two lowest pion mass points of the recent MILC data [3] do not quite fit into the trend
of our extrapolation function if one insists that for the physical pion mass the curve runs through the physical
value of mN . More low mass pion data and/or a more sophisticated treatment of finite size/volume effects
are needed to resolve this problem. If one were to use the di determined in [15], one already deviates sizeably
from the trend of the MILC data for pion masses starting at about 500 MeV (dotted line in Fig. 2). The same
can be seen for the fourth order calculation based on CR utilizing Λ = 1GeV in Fig. 3 (left panel). To get a
better idea about the uncertainty when going to higher pion masses, we have also performed calculations with
three other sets, namely setting all di = 0.2/0/− 0.2GeV−3, corresponding to the long-/medium-/short-dashed
lines in that figure. This clearly overestimates the theoretical uncertainty since some of the di are correlated
parameters. Still it is safe to say that for pion masses below 550 MeV the theoretical error is moderately small.
These results for the pion mass dependence of mN as well as for its cut-off dependence at a given pion mass
are very similar to the results of two-flavor study reported in [20]. In the right panel of Fig. 3, we show the
kaon mass dependence for the same variety of choices for the di. Since we enforce that mN takes its physical
value for MK = 494MeV, the resulting kaon mass dependence is much flatter than the pion mass dependence
with decreasing meson masses. In the left (right) panel of Fig. 4 we show the cutoff dependence of mN for
various values of the pion (kaon) mass. For pion masses up to 450 MeV, one has a nice plateau below the
scale of chiral symmetry breaking but not any more for Mπ = 600 MeV. For the kaon mass dependence, the
situation is somewhat different due to the much larger meson mass. Here, we still have a reasonable plateau at
MK ≃ 600MeV. These observations are consistent with our earlier observations that chiral extrapolations in
Mπ based on the fourth order CHPT representation can be applied for masses up to 550 MeV, a result which
is consistent with the one found for the SU(2) calculation in [20]. For the kaon mass dependence, one can even
go to somewhat higher meson masses.

It is also interesting to study the range of values found for the octet chiral limit mass m0 at the various orders
and employing the different regularization schemes and values of the LECs di. One observes that m0 increases
with increasing cut-off, that means in DR its value is above the one in CR when one chooses Λ = 1GeV.
Insisting that mN takes its physical value at the physical value of Mπ and MK when studying the pion and the
kaon mass dependence, respectively, we find

710 MeV . m0 . 1070 MeV , (4.2)

which is consistent with expectations and also with the findings in [15] (note that in that paper a different
method was used to estimate the theoretical uncertainty, which we consider less reliable than the one used
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here). The range given in Eq. (4.2) of course includes the SU(2) value of about 880 MeV [20]. Also, we note
again that the MILC data are obtained using staggered fermions, so strictly speaking one should use “staggered
fermion CHPT”. However, we believe that this will not significantly alter the trends discussed here.

Another quantity of interest is the pion-nucleon sigma term,

σπN (0) = m̂〈N |ūu+ d̄d|N〉 = m̂
∂mN

∂m̂
= M2

π

∂mN

∂M2
π

. (4.3)

It can be extracted directly from the the slope of mN (Mπ) at Mπ = 0. For the optimal set and the LECs from
[15], we obtain the range (considering DR and CR with Λ = 1GeV)

σπN (0) = 50.7 . . .53.7 MeV . (4.4)

These numbers are consistent with the results of [15] (as they should) and the study of SU(2) lattice data in
[23], σπN = 49±3MeV. The resulting strangeness fraction can be obtained from σπN (0) = σ0/(1−y) and using
σ0 = 37MeV from [15] (which is consistent with the pioneering work in [24], σ0 = 35 ± 5MeV). This leads to
y = 0.27 . . .0.31, which is again consistent with [15] but somewhat on the large side.

4.3 Hyperon masses

We now consider the octet members with strangeness. As noted before, when fixing the coefficients in the
improvement term, we have not insisted to recover the Gell-Mann–Okubo relation, thus some of the masses are
somewhat off their empirical values. In Tab. 3 we collect the resulting values for the improved third and fourth
order. While the Σ mass is well reproduced, the Λ and Ξ masses come out by about 10 − 15% too high. To
get a handle on the theoretical accuracy, we also use the values for the di from [15], in that case all masses are
exactly reproduced.

order / imp. 3rd fourth fourth exp.

baryon CR CR DR

Λ 1115 1304 1243 1116

Σ 1101 1194 1167 1193

Ξ 1222 1532 1437 1315

Table 3: Baryon masses in MeV in DR and CR with Λ = 1GeV for different orders. For the experimental
numbers, we haven taken the masses of the neutral particles.

The corresponding pion and kaon mass dependences for the Λ, the Σ and the Ξ are shown in Figs. 5, 6 and
7, respectively. The solid/dashed lines refer to the optimal set of the LECs/to the LECs from [15]. We note
in particular that the pion mass dependence for the Ξ is much flatter as one would expect from the MILC
data. This is not unexpected – the Ξ only contains one valence light quark and should thus be less sensitive to
variations in the pion mass. Clearly, one could improve this description by fitting directly to these particles.
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A Baryon masses

Here, we collect some formalism to calculate the baryon masses from the baryon self-energies. Consider the
heavy baryon approach. The baryon four-momentum is pµ = m0vµ + rµ, with vµ the four-velocity subject to
the constraint v2 = 1 and rµ is the (small) residual four-momentum, ω = v · r ≪ m0. The baryon self-energy
Σ(ω, r) has the chiral expansion

Σ(ω, r) = Σ(2)(ω, r) + Σ(3)(ω, r) + Σ(4)(ω, r) + . . . , (A.1)

and the corresponding baryon mass shift is then given by (with δmB = δm
(2)
B + δm

(3)
B + δm

(4)
B + . . .):

δm
(2)
B = Σ(2)(ω = 0, r) +

r2

2m0
, (A.2)

δm
(3)
B = Σ(3)(ω = 0, r) +

∂

∂ω
Σ(2)(ω = 0, r)

(

δm
(2)
B − r2

2m0

)

, (A.3)

δm
(4)
B = − (δm

(2)
B )2

2m0
+Σ(4)(ω = 0, r) +

∂

∂ω
Σ(3)(ω = 0, r)

(

δm
(2)
B − r2

2m0

)

+
∂

∂ω
Σ(2)(ω = 0, r) δm

(3)
B +

1

2

∂2

∂ω2
Σ(2)(ω = 0, r)

(

(δm
(2)
B )2 − δm

(2)
B

r2

m0
+

r4

4m2
0

)

. (A.4)

From this, one obtains the pertinent representations of the baryon masses. In the following, we only discuss
the nucleon mass. More precisely, we now give the corresponding non-vanishing prefactors for the nucleon (we
refrain from giving the coefficients of the other octet members). At third order, cf. Eqs. (3.1,3.3), one has the
standard values

γD
N = −4M2

K , γF
N = 4M2

K − 4M2
π ,

απ
N =

9

4
(D + F )2 , αK

N =
1

2
(5D2 − 6DF + 9F 2) , αη

N =
1

4
(D − 3F )2 . (A.5)

At fourth order, see Eq. (3.7), we have a cut-off independent and a cut-off dependent contribution to the nucleon
mass shift. The coefficients of the Λ-independent term read

ǫππ1,N = −16d1 − 8d5 − 4d7 − 12d8,

ǫπK1,N = 32d1 − 16d2 − 8d5 − 16d7 + 16d8,

ǫKK
1,N = −16d1 + 16d2 − 16d3 + 16d5 − 16d7 − 16d8,

ǫππ2,N,π =
1

2(4πF0)2

(

− 12b1 − 12b2 − 12b3 − 24b8 + 12bD + 12bF + 24b0 −
3D2

m0
− 6DF

m0

−3F 2

m0
− 3b4m0 − 3b5m0 − 3b6m0 − 3b7m0 − 6b9m0 + 3b15m

2
0

+3b16m
2
0 + 3b17m

2
0 + 6b19m

2
0

)

,

ǫπK2,N,K =
1

3(4πF0)2

(

− 52bDD
2 + 60bFD

2 + 120bDDF − 72bFDF − 36bDF
2 + 108bFF

2

)

,

ǫKK
2,N,K =

1

3(4πF0)2

(

− 36b1 + 12b2 − 36b3 − 48b8 + 36bD − 12bF + 48b0 + 52bDD
2

−60bFD
2 − 120bDDF + 72bFDF + 36bDF

2 − 108bFF
2 − 5D2

m0

+
6DF

m0
− 9F 2

m0
− 3b12m0 − 9b4m0 + 3b5m0 + 3b6m0 − 9b7m0

−12b9m0 + 9b15m
2
0 − 3b16m

2
0 + 9b17m

2
0 + 3b18m

2
0 + 12b19m

2
0

)

.
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ǫππ2,N,η =
1

54(4πF0)2

(

− 36b1 + 12b2 − 4b3 − 24b8 + 36bD − 60bF + 24b0 −
D2

m0
+

6DF

m0

−9F 2

m0
− 9b4m0 + 3b5m0 + 3b6m0 − b7m0 − 6b9m0 + 9b15m

2
0

−3b16m
2
0 + b17m

2
0 + 6b19m

2
0

)

,

ǫπK2,N,η =
1

54(4πF0)2

(

288b1 − 96b2 + 32b3 + 192b8 − 240bD + 336bF − 192b0 +
8D2

m0

−48DF

m0
+

72F 2

m0
+ 72b4m0 − 24b5m0 − 24b6m0 + 8b7m0

+48b9m0 − 72b15m
2
0 + 24b16m

2
0 − 8b17m

2
0 − 48b19m

2
0

)

,

ǫKK
2,N,η =

1

54(4πF0)2

(

− 576b1 + 192b2 − 64b3 − 384b8 + 384bD − 384bF + 384b0 −
16D2

m0

+
96DF

m0
− 144F 2

m0
− 144b4m0 + 48b5m0 + 48b6m0 − 16b7m0

−96b9m0 + 144b15m
2
0 − 48b16m

2
0 + 16b17m

2
0 + 96b19m

2
0

)

. (A.6)

The corresponding coefficients of the Λ-dependent term are

β1,N,π =
m0

(4πF0)2

(

− 3b4 − 3b5 − 3b6 − 3b7 − 6b9 +m0(3b15 + 3b16 + 3b17 + 6b19)

)

,

β1,N,K =
m0

8(πF0)2

(

− b12 − 3b4 + b5 + b6 − 3b7 − 4b9 +m0(3b15 − b16 + 3b17 + b18 + 4b19)

)

,

β1,N,η =
m0

3(4πF0)2

(

− 9b4 + 3b5 + 3b6 − b7 − 6b9 +m0(9b15 − 3b16 + b17 + 6b19)

)

,

βπ
2,N,π =

1

(4πF0)2

(

− 6b1 − 6b2 − 6b3 − 12b8 + 6bD + 6bF + 12b0 − 3b4m0 − 3b5m0

−3b6m0 − 3b7m0 − 6b9m0 + 3b15m
2
0 + 3b16m

2
0 + 3b17m

2
0 + 6b19m

2
0

)

,

βπ
2,N,K =

1

9(4πF0)2

(

− 52bDD
2 + 60bFD

2 + 120bDDF − 72bFDF − 36bDF
2 + 108bFF

2

)

,

βK
2,N,K =

1

9(4πF0)2

(

− 108b1 + 36b2 − 108b3 − 144b8 + 108bD − 36bF + 144b0 + 52bDD
2

−60bFD
2 − 120bDDF + 72bFDF + 36bDF

2 − 108bFF
2 − 18b12m0

−54b4m0 + 18b5m0 + 18b6m0 − 54b7m0 − 72b9m0 + 54b15m
2
0

−18b16m
2
0 + 54b17m

2
0 + 18b18m

2
0 + 72b19m

2
0

)

,

βπ
2,N,η =

1

9(4πF0)2

(

18b1 − 6b2 + 2b3 + 12b8 − 18bD + 30bF − 12b0 + 9b4m0 − 3b5m0

−3b6m0 + b7m0 + 6b9m0 − 9b15m
2
0 + 3b16m

2
0 − b17m

2
0 − 6b19m

2
0

)

,

βK
2,N,η =

1

9(4πF0)2

(

− 72b1 + 24b2 − 8b3 − 48b8 + 48bD − 48bF + 48b0 − 36b4m0

+12b5m0 + 12b6m0 − 4b7m0 − 24b9m0 + 36b15m
2
0 − 12b16m

2
0

+4b17m
2
0 + 24b19m

2
0

)

,
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βππ
3,N,π =

1

2(4πF0)2

(

− 12b1 − 12b2 − 12b3 − 24b8 + 12bD + 12bF + 24b0 −
3D2

m0

−6DF

m0
− 3F 2

mo
− 3b4m0 − 3b5m0 − 3b6m0 − 3b7m0

−6b9m0 + 3b15m
2
0 + 3b16m

2
0 + 3b17m

2
0 + 6b19m

2
0

)

,

βπK
3,N,K =

1

3(4πF0)2

(

− 52bDD
2 + 60bF D2 + 120bD DF − 72bFDF − 36bDF

2 + 108bFF
2

)

,

βKK
3,N,K =

1

3(4πF0)2

(

− 36b1 + 12b2 − 36b3 − 48b8 + 36bD − 12bF + 48b0 + 52bDD
2

−60bFD
2 − 120bDDF + 72bFDF + 36bDF

2 − 108bFF
2 − 5D2

m0

+
6DF

m0
− 9F 2

m0
− 3b12m0 − 9b4m0 + 3b5m0 + 3b6m0

−9b7m0 − 12b9m0 + 9b15m
2
0 − 3b16m

2
0 + 9b17m

2
0

+3b18m0
2 + 12b19m

2
0

)

,

βππ
3,N,η =

1

(4πF0)2

(

− 2b1
3

+
2b2
9

− 2b3
27

− 4b8
9

+
2bD
3

− 10bF
9

+
4b0
9

− D2

54m0

+
DF

9m0
− F 2

6m0
− b4m0

6
+

b5m0

18
+

b6m0

18
− b7m0

54

−b9m0

9
+

b15m
2
0

6
− b16m

2
0

18
+

b17m
2
0

54
+

b19m
2
0

9

)

,

βπK
3,N,η =

1

(4πF0)2

(

16b1
3

− 16b2
9

+
16b3
27

+
32b8
9

− 40bD
9

+
56bF
9

− 32b0
9

+
4D2

27m0

−8DF

9m0
+

4F 2

3m0
+

4b4m0

3
− 4b5m0

9
− 4b6m0

9
+

4b7m0

27

+
8b9m0

9
− 4b15m

2
0

3
+

4b16m
2
0

9
− 4b17m

2
0

27
− 8b19m

2
0

9

)

,

βKK
3,N,η =

1

(4πF0)2

(

− 32b1
3

+
32b2
9

− 32b3
27

− 64b8
9

+
64bD
9

− 64bF
9

+
64b0
9

− 8D2

27m0

+
16DF

9m0
− 8F 2

3m0
− 8b4m0

3
+

8b5m0

9
+

8b6m0

9
− 8b7m0

27

−16b9m0

9
+

8b15m
2
0

3
− 8b16m

2
0

9
+

8b17m
2
0

27
+

16b19m
2
0

9

)

. (A.7)

Finally, we note that we use the values of the bi as given in Table 1 and set all other dimension two LECs to
zero.

B Loop integrals in cut-off regularization

In this appendix, we collect all integrals needed in the calculation of the baryon self-energy to fourth order
utilizing cut-off regularization. Here, M is a generic symbol for the propagating Goldstone boson and we give
the explicit representations only for the relevant case M > |ω|:

I1(M,ω)
.
=

∫

d4k

(2π)4
i

k2 −M2 + i0+
i

ω − v · k + i0+
(S · k)2

= −i
1

16π2

{

Λ3

3
− (M2 − ω2)Λ +

(

M2 − ω2

)
3
2

π −
(

M2 − ω2

)
3
2

arctan

(
√
M2 − ω2

Λ

)
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+
ωΛ2

2

√

1 +
M2

Λ2
+

(

ω3 − 3

2
ωM2

)

ln

(

Λ

M
+

√

1 +
Λ2

M2

)

−(M2 − ω2)
3
2 arctan

(

√

M2

ω2
− 1

√

1 +
M2

Λ2

)

}

,

I1(M, 0) = −i
1

16π2

{

Λ3

3
−M2Λ +M3π

2
−M3 arctan

(

M

Λ

)

}

, (B.1)

I2(M,ω)
.
=

∫

d4k

(2π)4
i

k2 −M2 + i0+
i

ω − v · k + i0+
(S · k)2(v · k)

= −i
1

16π2

{

1

4
Λ4

√

1 +
M2

Λ2
− 3

8
M2Λ2

√

1 +
M2

Λ2
+

3

8
M4 ln

(

Λ

M
+

√

1 +
Λ2

M2

)

}

+ ωI1(M,ω) ,

I2(M, 0) = −i
1

16π2

{

1

4
Λ4

√

1 +
M2

Λ2
− 3

8
M2Λ2

√

1 +
M2

Λ2

+
3

8
M4

[

ln

(

Λ

m0

)

− ln

(

M

m0

)

+ ln

(

1 +

√

1 +
M2

Λ2

)]}

,

I3(M,ω)
.
=

∫

d4k

(2π)4
i

k2 −M2 + i0+
i2

(ω − v · k + i0+)2
(S · k)2 = −i

d

dω
I1(M,ω)

= − 1

16π2

{

3

2
Λ2

√

1 +
M2

Λ2
+ 3ωΛ− Λ2

Λ2 +M2 − ω2

(

ωΛ + Λ2

√

1 +
M2

Λ2

)

−3ω
√

M2 − ω2π +

(

3ω2 − 3

2
M2

)

ln

(

Λ

M
+

√

1 +
Λ2

M2

)

+3ω
√

M2 − ω2 arctan

(
√
M2 − ω2

Λ

)

+3ω
√

M2 − ω2 arctan

(

√

M2

ω2
− 1

√

1 +
M2

Λ2

)

}

,

I3(M, 0) = − 1

16π2

{

Λ2

2

√

1 +
M2

Λ2
+M2 1

√

1 + M2

Λ2

−3

2
M2

[

ln

(

Λ

m0

)

− ln

(

M

m0

)

+ ln

(

1 +

√

1 +
M2

Λ2

)]

}

,

I4(M,ω)
.
=

∫

d4k

(2π)4
i

k2 −M2 + i0+
i2

(ω − v · k + i0+)2
(S · k)2(v · k) = −i

d

dω
I2(M,ω)

= −iI1(M,ω) + ωI3(M,ω) ,

I4(M, 0) = −iI1(M, 0) ,

I5(M,ω)
.
=

∫

d4k

(2π)4
i

k2 −M2 + i0+
i2

(ω − v · k + i0+)2
(S · k)2(v · k)2

= −iωI1(M,ω)− iI2(M,ω) + ω2I3(M,ω) ,

I5(M, 0) = −iI2(M, 0) ,

I6(M,ω)
.
=

∫

d4k

(2π)4
i

k2 −M2 + i0+
i2

(ω − v · k + i0+)2
(S · k)2k2 = M2I3(M,ω) ,

I6(M, 0) = M2I3(M, 0) . (B.2)
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Similarly, for the calculation of the baryon tadpole and the meson masses in CR we need the following integrals:

α1(M)
.
=

∫

d4k

(2π)4
i

k2 −M2 + i0+

=
1

2(2π)2

{

Λ2

√

1 +
M2

Λ2
−M2

[

ln

(

Λ

m0

)

− ln

(

M

m0

)

+ ln

(

1 +

√

1 +
M2

Λ2

)

]}

,

α2(M)
.
=

∫

d4k

(2π)4
i

k2 −M2 + i0+
k2 = M2α1(M) ,

α3(M)
.
=

∫

d4k

(2π)4
i

k2 −M2 + i0+
k20 =

1

(2π)2
1

4
Λ4

√

1 +
M2

Λ2
+

1

4
M2α1(M) .

C Meson masses in cut-off regularization

Here, we collect the formualae for the meson masses to fourth order in CR. The pertinent diagrams are tree

graphs with one insertion from L(2)
φ and L(4)

φ and tadpoles with exactly one insertion from L(2)
φ . We have

M2
π = M2

0,π + δM (4)
π

= M2
0,π +

M4
π

16F 2
0 π

2
ln

Mπ

m0
−

M2
πM

2
η

48F 2
0 π

2
ln

Mη

m0
− 16L

(r)
4 M2

KM2
π

F 2
0

+
32L

(r)
6 M2

KM2
π

F 2
0

− 8L
(r)
4 M4

π

F 2
0

− 8L
(r)
5 M4

π

F 2
0

+
16L

(r)
6 M4

π

F 2
0

+
16L

(r)
8 M4

π

F 2
0

− M4
π

16F 2
0 π

2
ln

(

1 +

√

1 +

(

Mπ

Λ

)2
)

+
M2

πM
2
η

48F 2
0 π

2
ln

(

1 +

√

1 +

(

Mη

Λ

)2
)

+
1

√

1 +
(

Mπ

Λ

)2

{

M2
π

16F 2
0 π

2
Λ2

(

1−
√

1 +

(

Mπ

Λ

)2)

+
M4

π

16F 2
0 π

2

}

+
1

√

1 +
(Mη

Λ

)2

{

− M2
π

48F 2
0 π

2
Λ2

(

1−

√

1 +

(

Mη

Λ

)2)

−
M2

πM
2
η

48F 2
0 π

2

}

, (C.1)

M2
K = M2

0,K + δM
(4)
K

= M2
0,K +

M2
KM2

η

24F 2
0 π

2
ln

Mη

m0
+

M2
KM2

π

F 2
0

(−8L
(r)
4 + 16L

(r)
6 ) +

M4
K

F 2
0

(−16L
(r)
4 − 8L

(r)
5 + 32L

(r)
6 + 16L

(r)
8 )

−
M2

KM2
η

24F 2
0 π

2
ln

(

1 +

√

1 +

(

Mη

Λ

)2
)

+
1

√

1 +
(Mη

Λ

)2

{

M2
K

24F 2
0 π

2
Λ2

(

1−

√

1 +

(

Mη

Λ

)2)

−
M2

KM2
η

24F 2
0 π

2

}

,

(C.2)

M2
η = M2

0,η + δM (4)
η

= M2
0,η −

M4
π

16F 2
0 π

2
ln

Mπ

m0
+

M4
K

6F 2
0 π

2
ln

MK

m0
+
(

− 7M4
π

432F 2
0π

2
+

11M2
KM2

π

108F 2
0 π

2
− 4M4

K

27F 2
0 π

2

)

ln
Mη

m0

+
M4

K

F 2
0

(−64L
(r)
4

3
− 128L

(r)
5

9
+

128L
(r)
6

3
+

128L
(r)
7

3
+

128L
(r)
8

3
)

+
M2

KM2
π

F 2
0

(−16L
(r)
4

3
+

64L
(r)
5

9
+

32L
(r)
6

3
− 256L

(r)
7

3
− 128L

(r)
8

3
)

+
M4

π

F 2
0

(
8L

(r)
4

3
− 8L

(r)
5

9
− 16L

(r)
6

3
+

128L
(r)
7

3
+ 16L

(r)
8 )

15



+
M4

π

16F 2
0 π

2
ln

(

1 +

√

1 +

(

Mπ

Λ

)2
)

− M4
K

6F 2
0 π

2
ln

(

1 +

√

1 +

(

MK

Λ

)2
)

−
(

− 7M4
π

432F 2
0 π

2
+

11M2
KM2

π

108F 2
0π

2
− 4M4

K

27F 2
0 π

2

)

ln

(

1 +

√

1 +

(

Mη

Λ

)2
)

+
1

√

1 +
(

Mπ

Λ

)2

{

− M2
π

16F 2
0 π

2
Λ2

(

1−
√

1 +

(

Mπ

Λ

)2)

− M4
π

16F 2
0 π

2

}

+
1

√

1 +
(

MK

Λ

)2

{

M2
K

6F 2
0 π

2
Λ2

(

1−

√

1 +

(

MK

Λ

)2)

+
M4

K

6F 2
0 π

2

}

(C.3)

+
1

√

1 +
(Mη

Λ

)2

{

(

− M2
K

9F 2
0 π

2
+

7M2
π

144F 2
0 π

2
)Λ2

(

1−

√

1 +

(

Mη

Λ

)2)

− 4M2
K

27F 2
0 π

2
+

11M2
πM

2
K

108F 2
0 π

2
− 7M2

π

432F 2
0π

2

}

.

As required, in the limit Λ → ∞ we recover the standard DR result [25]. The polynomial and logarithmic
divergences in the cut-off are taken care of by the following renormalization (note again that e.g. B0 is not
renormalized in DR):

B
(r)
0 = B0 +

1

24π2F 2
0

B0Λ
2 , L

(r)
7 +

L
(r)
8

3
= L7 +

L8

3
+

5

2304π2
ln

Λ

m0
,

L
(r)
5 − 2L

(r)
8 = L5 − 2L8 +

1

96π2
ln

Λ

m0
, L

(r)
4 − 2L

(r)
6 = L4 − 2L6 −

1

576π2
ln

Λ

m0
. (C.4)

Here, B0 connects the leading terms in the chiral expansion of the Goldstone boson masses with the quark
masses,

M2
0,π = 2B

(r)
0 m̂ , M2

0,K = B
(r)
0 (m̂+ms) , M2

0,η =
2

3
B

(r)
0 (m̂+ 2ms) , (C.5)

with m̂ the average light quark mass.
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[7] R. Altmeyer, K. D. Born, M. Göckeler, R. Horsley, E. Laermann and G. Schierholz [MT(c) collaboration],
Nucl. Phys. B 389 (1993) 445.

[8] K. C. Bowler et al. [UKQCD Collaboration], Phys. Rev. D 62 (2000) 054506 [arXiv:hep-lat/9910022].

[9] A. Ali Khan et al. [CP-PACS Collaboration], Phys. Rev. D 65 (2002) 054505 [Erratum-ibid. D 67 (2003)
059901].

[10] A. Ali Khan et al. [QCDSF-UKQCD Collaboration], Nucl. Phys. B 689 (2004) 175 [arXiv:hep-lat/0312030].

[11] P. F. Bedaque, H. W. Grießhammer and G. Rupak, arXiv:hep-lat/0407009.

[12] B. C. Tiburzi, arXiv:hep-lat/0501020.

[13] E. Jenkins, Nucl. Phys. B 368 (1992) 190.

[14] V. Bernard, N. Kaiser and U.-G. Meißner, Z. Phys. C 60 (1993) 111 [arXiv:hep-ph/9303311].

[15] B. Borasoy and U.-G. Meißner, Annals Phys. 254 (1997) 192 [arXiv:hep-ph/9607432].

[16] P. J. Ellis and K. Torikoshi, Phys. Rev. C 61, 015205 (2000) [arXiv:nucl-th/9904017].

[17] M. Frink and U.-G. Meißner, JHEP 0407 (2004) 028 [arXiv:hep-lat/0404018].

[18] A. Walker-Loud, Nucl. Phys. A 747 (2005) 476 [arXiv:hep-lat/0405007].

[19] B. C. Lehnhart, J. Gegelia and S. Scherer, arXiv:hep-ph/0412092.

[20] V. Bernard, T. R. Hemmert and U.-G. Meißner, Nucl. Phys. A 732 (2004) 149 [arXiv:hep-ph/0307115].

[21] B. C. Tiburzi and A. Walker-Loud, arXiv:hep-lat/0501018.

[22] D. Djukanovic, M. R. Schindler, J. Gegelia and S. Scherer, arXiv:hep-ph/0407170.

[23] M. Procura, T. R. Hemmert and W. Weise, Phys. Rev. D 69 (2004) 034505 [arXiv:hep-lat/0309020].

[24] J. Gasser, Annals Phys. 136 (1981) 62.

[25] J. Gasser and H. Leutwyler, Nucl. Phys. B 250 (1985) 465.

17

http://arxiv.org/abs/hep-lat/9906027
http://arxiv.org/abs/hep-lat/0104002
http://arxiv.org/abs/hep-lat/0402030
http://arxiv.org/abs/hep-ph/9501384
http://arxiv.org/abs/hep-lat/9806027
http://arxiv.org/abs/hep-lat/9609008
http://arxiv.org/abs/hep-lat/9910022
http://arxiv.org/abs/hep-lat/0312030
http://arxiv.org/abs/hep-lat/0407009
http://arxiv.org/abs/hep-lat/0501020
http://arxiv.org/abs/hep-ph/9303311
http://arxiv.org/abs/hep-ph/9607432
http://arxiv.org/abs/nucl-th/9904017
http://arxiv.org/abs/hep-lat/0404018
http://arxiv.org/abs/hep-lat/0405007
http://arxiv.org/abs/hep-ph/0412092
http://arxiv.org/abs/hep-ph/0307115
http://arxiv.org/abs/hep-lat/0501018
http://arxiv.org/abs/hep-ph/0407170
http://arxiv.org/abs/hep-lat/0309020


Figures

0 1 2 3 4 5
Λ [GeV]

1

1.5

2

m
N

 [
G

eV
]

0 1 2 3 4 5
Λ [GeV]

-2

-1

0

1

2

m
N

 [
G

eV
]

Figure 1: Cut-off dependence of the nucleon mass for various pion masses with the kaon mass fixed.
Solid/dashed/dot-dashed/dotted line: Mπ = 140/300/450/600MeV. Left panel: Third order calculation. Right
panel: Third order calculation with the improvement term.
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Figure 2: Nucleon mass in DR at third (dashed), improved third (solid) and fourth (dot-dashed) order, respec-
tively. The dotted line represents the fourth order calculation from [15]. The three flavor data are from the
MILC collaboration (boxes from [2] and stars from [3]). The filled circle gives the value of the physical nucleon
mass at the physical value of Mπ.
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Figure 3: Left panel: Pion mass dependence of the nucleon mass for various sets of the LECs di as explained
in the text. Right panel: Kaon mass dependence.
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Figure 4: Left panel: Cut-off dependence of the nucleon mass for various pion masses with the kaon mass fixed.
Solid/dashed/dot-dashed/dotted line: Mπ = 140/300/450/600MeV. Right panel: Kaon mass dependence for
fixed pion mass. Solid/dashed/dot-dashed line: MK = 494/600/700 MeV.
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Figure 5: Left panel: Pion mass dependence of the Λ mass for various sets of the LECs di as explained in the
text. Right panel: Kaon mass dependence.
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Figure 6: Left panel: Pion mass dependence of the Σ mass for various sets of the LECs di as explained in the
text. Right panel: Kaon mass dependence.
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Figure 7: Left panel: Pion mass dependence of the Ξ mass for various sets of the LECs di as explained in the
text. Right panel: Kaon mass dependence.
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