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Abstract

Long-range order of a specific kind has recently been found directly in configurations
dominating the regularized QCD path integral. In particular, a low-dimensional global
structure was identified in typical space-time distributions of topological charge defined
via the overlap Dirac matrix. The presence of the order has been concluded from the
fact that the structure disappears after random permutation of position coordinates in
measured densities. Here we complete the argument for the reality of this structure
(namely the conjecture that its existence is a consequence of QCD dynamics and not
an artifact of the overlap-based definition of lattice topological field) by showing that
the structure ceases to exist after randomizing the space-time coordinates of the under-
lying gauge field. This implies that the long-range order present in the overlap-based
topological density is indeed a manifestation of QCD vacuum, and that the notion of
the fundamental structure (structure involving relevant features at all scales) is viable.

Numerical lattice gauge theory represents a powerful tool for obtaining quantitative pre-
dictions of QCD from first principles. However, apart from extracting physical quantities via
numerical simulation, lattice theory is also being used in attempts to decipher the nature of
the QCD vacuum. This is quite natural since the latter problem is frequently approached
via the hypothesis that there exist certain well-defined objects (“structure”) that dominate
the behavior of typical gauge configurations contributing to Euclidean QCD path integral.
Specific properties of such objects are then expected to encode the mechanism QCD uses to
induce confinement, spontaneous chiral symmetry breaking and other effects. If one accepts
this logic, then a straightforward approach to the problem of QCD vacuum is to search for a
well-defined structure in configurations dominating the evaluation of physical observables in
regularized theory, i.e. in equilibrium Monte Carlo configurations of finite lattice systems.
Unfortunately, for a long time, such a direct approach has not been fruitful since no obvious
structure has been observed neither in unmodified equilibrium configurations of the funda-
mental gauge field nor in the configurations of relevant composite fields derived from it. In
fact, the configurations in accessible ensembles appeared to be more or less structureless.

The usual explanation of this fact is rather vague and involves variations on the proposi-
tion that large entropy of fluctuations at the scale of the cutoff obscures any ordered structure
that might be present (the “entropy problem”). However, when making this argument, one
should (at least mentally) distinguish two possible origins of ultraviolet fluctuations in ques-
tion. (i) Given a lattice cutoff Λ = 1/a there are legitimate physical QCD fluctuations at this
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scale. There is no reason to expect that this part of fluctuations at the scale of the lattice
cutoff should be structureless. Indeed, it would be quite unnatural if the hypothesis of the
structure applied only at long distances in the theory with non-trivial ultraviolet behavior.
(ii) There are unphysical fluctuations that appear only as artifacts of a field-theoretic de-
scription of strong interactions. Such fluctuations are regularization–dependent and can be
entirely structureless. From this point of view, the entropy problem is not really the problem
of large entropy associated with ultraviolet fluctuations. It is rather the problem of large
contribution of artifacts relative to physically relevant fluctuations at the scale of the cutoff.
The severity of the issue can thus strongly depend on the lattice action used to define QCD,
as well as on the choice of lattice operators for composite fields of interest.

Adopting the above (heuristic) logic as a starting point, the issue of identifying the QCD
vacuum structure in unmodified equilibrium configurations has been revisited in Refs. [1,
2]. In particular, the configurations of lattice topological field defined via Dirac kernel of
exactly chiral lattice fermions [3, 4] have been computed on unmodified equilibrium gauge
backgrounds of pure-glue QCD. The underlying expectation was that the structure, not
apparent in the gauge field itself, could become visible in this particular composite field. This
was motivated by the fact that the corresponding topological charge density (TChD) operator
is constructed in a very different manner than the standard lattice operators, which translates
into beautiful continuum-like behavior of this composite field already at the regularized
level [5, 6, 7]. At the same time, and more importantly for our purposes, it is expected that
the lattice operators in this class are necessarily non-ultralocal (but still local), similarly to
non-ultralocality of the associated fermionic action [8]. This should soften the impact of
ultraviolet gauge fluctuations on the topological field. Moreover, such chiral smoothing [9]
is expected to be very efficient in eliminating the structureless artifacts-related ultraviolet
fluctuations, while still preserving the physical short-distance fluctuations [10], thus providing
the window of opportunity for avoiding the entropy problem.

The numerical experiments of Refs. [1, 2] indeed revealed the existence of a non-trivial
space-time structure in the overlap-based topological field, contrary to the absence of an
observable order when standard naive operators are used. 1 One particular manifestation of
the structure is that the topological charge in typical configurations organizes into two sign-
coherent locally low-dimensional “sheets”. 2 The sheets can be “tiled” with 3-d sign-coherent
elementary cubes connected via 2-d faces but not with 4-d coherent cubes. In fact, the
fraction of space-time occupied by connected sign-coherent regions built of 4-d hypercubes
scales to zero in the continuum limit, thus excluding the possibility of the coherence on
smooth 4-d manifolds. The double-sheet structure is global in the sense that each sheet
spreads over largest possible distances. It contains a global connected substructure – the
“skeleton” – consisting of approximately 1-d filaments of strong fields. Both the sheets
and the skeleton fill a macroscopic (non-zero and, in fact, large) fraction of space-time and
their geometric nature is analogous to that of the Peano’s curve, i.e. a structure with local
attributes of a low-dimensional object but still filling the underlying higher-dimensional
space. An important aspect of the order in topological field is that the two sheets, as well

1Similar results have subsequently been reported also in the case of 2-d CP(N-1) models [11].
2The notion of strictly low-dimensional structure has recently been invoked also in the work using pro-

jected gauge fields associated with gauge-fixing procedures [12]. It remains to be seen whether there exists
a connection to the topological structure on equilibrium backgrounds.
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as the oppositely charged parts of the skeleton, are embedded in space-time in a mutually
correlated manner so as to yield a negative two-point function of TChD [1, 13, 14].

The details of the vacuum structure described above, while expected to be relevant for
future understanding of the role of vacuum in strong-interaction physics, mainly serve here
as an unbiased evidence for the basic conceptual point put forward in Ref. [1]. In par-
ticular, they support the proposition that there exists a fundamental structure (structure
involving features at all scales) in gauge configurations dominating the QCD path integral.
This structure can be identified and studied directly in lattice-regularized ensembles, and
its existence is a direct consequence of QCD dynamics. The above conclusion, if established
beyond doubt, is quite far-reaching since, in both conceptual and practical sense, it forms a
basis for possible understanding of the QCD vacuum in the Euclidean path-integral formal-
ism. To demonstrate the existence of the fundamental structure one has to show that there
exists a measurable excess of order in any configuration typical of QCD ensemble relative
to a configuration constructed randomly. In Ref. [1] this has been addressed at the level of
the topological field itself. More specifically, it was shown that after randomly permuting
the space-time coordinates of topological densities measured in typical gauge backgrounds,
the ordered structure described in the previous paragraph ceases to exist. In particular, the
sheets built from 3-d coherent lattice hypercubes disappear after such random reshuffling of
TChD in a given configuration. While indirect, this represents a strong argument supporting
the reality of the fundamental structure in QCD vacuum.

The reason why the above argument is indirect is that it compares the degree of order
in the composite field evaluated on equilibrium gauge background relative to the situation
in a disordered composite field. A direct approach should compare the former relative to
the situation in composite field evaluated on a disordered gauge background. To see the
difference between the two procedures at the technical level more precisely, let us denote col-
lectively UQCD ≡ {U(x, µ) } an equilibrium QCD gauge configuration and qQCD ≡ { q(x) }
the associated configuration of TChD. If x −→ pS(x) represents a random permutation of
the (scalar) space-time coordinates then the operation of randomizing the configuration of
TChD corresponds to

qQCD ≡ { q(x) = q(x, UQCD) } −→ qR ≡ { qR(x) = q(pS(x), U
QCD) } (1)

At the same time, if (x, µ) −→ pV (x, µ) represents a random permutation of link (vector)
space-time coordinates, then the randomization of gauge configuration proceeds via

UQCD ≡ {U(x, µ) } −→ UR ≡ {UR(x, µ) = U(pV (x, µ)) } (2)

and the associated configuration of TChD is then

qQCD ≡ { q(x) = q(x, UQCD) } −→ qRU ≡ { qRU(x) = q(x, UR) } (3)

If there is an excess of structure in qQCD relative to qRU , then it can be directly ascribed to the
underlying order in the gauge field induced by QCD dynamics. On the other hand, if this is
not the case then the structure observed in TChD is mainly induced by non-ultralocal nature
of the overlap-based TChD operator. In other words, the structure in qQCD would arise due
to artificial amplification of random seeds of coherence, and would not be a manifestation of
QCD dynamics.
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In this work we perform a numerical experiment to address this issue. In particular, we
study the effect of qQCD −→ qRU on the double-sheet structure in the same manner as was
done for qQCD −→ qR in Ref. [1]. We computed both qQCD and qRU for five independent 84

equilibrium configurations of Iwasaki gauge action at lattice spacing a = 0.165 fm determined
from string tension. 3 Topological densities were computed using [3]

q(x) =
1

2ρ
tr γ5Dx,x ≡ −tr γ5 (1−

1

2ρ
Dx,x) (4)

where D is the overlap Dirac operator [15] based on the Wilson-Dirac kernel with mass −ρ.
Numerical results presented here were obtained at the value ρ = 1.368 (κ = 0.19). Details of
the numerical implementation for overlap matrix–vector operation needed to evaluate q(x)
can be found in Ref. [16]. We wish to point out that while the number of configurations used
in this study might seem small, it was found in Refs. [1, 2] that the qualitative (and even
quantitative) behavior of the observed structure is very robust and changes very little from
one configuration to another. This is in fact expected if typical configurations are indeed
dominated by a specific kind of space-time structure. Consequently, a qualitative conclusion
(such as one sought here) can be made from just a handful of configurations.

For a given configuration of TChD we follow the procedure of Ref. [1] and determine all
maximal connected sign-coherent regions R3

k, k = 1, . . . , K3 that can be built from elemen-
tary 3-d cubes. We emphasize that the cubes are connected via 2-d faces so that a consistent
lattice 3-d hypersurface (individual “structure”) is defined by any R3

k. Let N(Γ) denote the
number of points in arbitrary subset Γ of discretized space-time Ω. Then the fraction fk of
space-time occupied by R3

k is given by fk ≡ N(R3
k)/N(Ω). In what follows we order the

structures by decreasing fraction, i.e. we choose the enumeration such that fk ≥ fk+1 for
all k ≤ K3 − 1. The resulting sequences fk (for k ≤ 20) are plotted in Fig. 1 with each
row representing a situation in a given individual configuration. The first column shows fk
for qQCD with the double-sheet structure appearing in each configuration via dominance of
f1 and f2.

4 In the second column the corresponding fractions are shown for qRU , i.e. for
randomized gauge field defined in Eq. (3). The key point of this work is that, as clearly seen
from the plots, the double-sheet structure disappears when qQCD −→ qRU . Indeed, only
fragmented pieces of coherence survive the random reshuffling of space-time coordinates of
the gauge field. In fact, the situation is very similar to randomization of topological density
(qQCD −→ qR) as shown in the right column.

In Fig. 2 we plot the configuration averages from the data shown in Fig. 1. In addition,
we have included here (lower right plot) the result from the same structure analysis for five
configurations of 84 lattice generated at infinitely strong coupling (β = 0). This represents
another form of comparison between the structure in QCD and the situation for disordered
gauge field. Indeed, an equilibrium configuration from this ensemble can be generated by
independently choosing each link from a uniform distribution. As can be clearly seen from
the plots, the result is again completely analogous to that of qRU and qR. We thus conclude

3These are actually the first five configurations of ensemble E1 of Ref. [14].
4The results of Ref. [1] indicate that both f1 and f2 have a finite continuum limit with the combined

double-sheet occupying about 70–80% of space-time. On the other hand, the fractions fk for k ≥ 3 (the
“fragments”) scale to zero in the continuum limit.
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Figure 1: Fractions fk associated with maximal connected structures R3
k ordered by size

(decreasing fk) are plotted against k. Each row corresponds to an individual configuration
with columns representing qQCD, qRU and qR respectively.
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Figure 2: The average fractions fk are plotted against k for qQCD (top left), qRU (top right),
qR (bottom left) and for uniform (β = 0) ensemble (bottom right).

that the double-sheet structure exists due to the underlying order in gauge configurations
dominating the QCD path integral, and is indeed a manifestation of QCD vacuum.

To summarize, the goal of this work was to provide additional evidence for the proposition
that there exists a fundamental structure (space-time order involving all scales) in configu-
rations dominating the QCD path integral [1]. In particular, it was shown that a particular
manifestation of it, namely the global double-sheet structure observed in the configurations of
overlap-based TChD, only exists when appropriate local correlations (local QCD interaction)
governs the ensemble. This long-range structure disappears when the space-time correlation
among gauge variables is turned off. From this we conclude that the double-sheet structure
(as well as the underlying gauge structure inducing it) is real in the sense that it exists as a
consequence of QCD dynamics. We wish to emphasize two points that we associate with this
finding (see also [1]). (i) The observation of structure directly in equilibrium configurations
via a physically relevant composite field puts the hypothesis of the structure, and with it the
approach to QCD vacuum via Euclidean path integral formalism, on a firmer ground. It also
suggests that a direct systematic approach using ensembles of lattice QCD is a viable (and
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perhaps optimal) avenue to study the problem of QCD vacuum. (ii) Our approach leads us
to the conclusion that vacuum structure should not be viewed as a purely low-energy con-
cept. Indeed, the structure observed in Refs. [1, 2] involves space-time features at all scales
(upon taking the continuum limit), and should have manifestations relevant for physics at
arbitrary energy. The behavior of the structure at a given fixed scale can be studied in case
of TChD via effective densities [17] obtained by the means of Dirac eigenmode expansion.
We emphasize that the qualitative novelty here consists in the view that “understanding”
the vacuum structure crucially involves an insight into how the structure changes across all
scales.
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