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Static quark anti-quark interactions at zero and finite temperature QCD.

II. Quark anti-quark internal energy and entropy
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We analyze the change in free energy, internal energy and entropy due to the presence of a heavy
quark anti-quark pair in a QCD heat bath. The internal energies and entropies are introduced as
intensive observables calculated through thermal derivatives of the QCD partition function contain-
ing additional static color sources. The quark anti-quark internal energy and, in particular, the
entropy clearly signal the phase change from quark confinement below and deconfinement above the
transition and both observables are introduced such that they survive the continuum limit. The
intermediate and large distance behavior of the energies reflect string breaking and color screening
phenomena. This is used to characterize the energies which are needed to dissolve heavy quarkonium
states in a thermal medium. Our discussion supports recent findings which suggest that parts of
the quarkonium systems may survive the phase transition and dissolve only at higher temperatures.

PACS numbers: 11.15.Ha, 11.10.Wx, 12.38.Mh, 25.75.Nq

I. INTRODUCTION

This is the second part of our discussion of thermal
modifications of the strong forces in finite temperature
QCD [1] (for a detailed introduction to this subject and
further references see [1, 2]). At finite temperature,
T 6= 0, the free energy of a static quark anti-quark pair
[3, 4], separated by distance r, is an important tool to
analyze the in-medium modification of the QCD forces.
Similar to the free energies also the internal energies have
recently been introduced [5, 6] and are expected to play
an important role in the discussion of quarkonia binding
properties [7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17]. More-
over, the structure of these energies at large distances and
high temperatures is important for our understanding of
the bulk properties of the QCD plasma phase, e.g. the
screening property of the quark gluon plasma [18, 19], the
equation of state [20, 21]. They also provide important
input to the construction of effective models based on
properties of the Polyakov loop [1, 5, 22, 23, 24, 25]. Up
to quite recently [1, 21, 23, 26, 27, 28] most of these dis-
cussions concerned the quark anti-quark free energies in
quenched QCD. Several qualitative differences, however,
are to be expected when changing from free to internal
energies and/or when taking into account the influence
of dynamical fermions. The difference between free and
internal energy arises from non-trivial entropy contribu-
tions [5, 6]. Moreover, in QCD with light dynamic quarks
the large distance behavior of the strong interaction will
show a qualitative different behavior due to the possibil-
ity of string breaking.
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Properties of the finite temperature quark anti-quark
free energies and the heavy quark potential at T = 0,
V (r), have been discussed for 2-flavor QCD in Refs. [1,
21, 23, 27, 28]. Recently some results have also been re-
ported for 3-flavor QCD [26]. Here we will continue our
analysis of the fundamental forces of QCD at finite tem-
perature. We analyze the partition function of 2-flavor
QCD in the presence of heavy quarks and extract the
quark anti-quark internal energies and entropies. This
paper is organized as follows: In section II we introduce
the change in internal energy and entropy due to the
presence of static quarks and anti-quarks in a thermal
heat bath. We discuss their temperature dependence at
large distances, in particular, their behavior in the vicin-
ity of the transition, in section III. We finally discuss
the qualitative and quantitative differences between free
and internal energies in section IV and discuss their bind-
ing properties with respect to quarkonium binding in the
vicinity of the transition. Section V contains our conclu-
sions. Details on our simulation parameters, the lattice
actions used in our calculations as well as details on the
analysis of the quark anti-quark free energies are given
in Ref. [1].

II. PARTITION FUNCTION IN THE

PRESENCE OF HEAVY QUARKS

A. Free energy, internal energy and entropy

As we are interested in the lattice formulation of QCD
at finite temperature in thermal equilibrium, we consider
the (Euclidean) path integral, i.e. we consider the parti-
tion function of the QCD heat bath,

Z(T, V ) ≡

∫

dAdΨdΨ̄e−S[A,Ψ,Ψ̄] = e−F (T,V )/T ,(1)
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where T (V ) denotes the temperature (volume) and
S[A,Ψ, Ψ̄] the QCD action. We also investigate the corre-
sponding system containing additional heavy quarks [3],
i.e.

ZO(r, T, V ) ≡

∫

dAdΨdΨ̄ O(c)
r [W,W †] e−S[A,Ψ,Ψ̄]

= e−F̃O(r,T,V )/T , (2)

where O
(c)
r [W,W †] denotes an operator which introduces

static color sources representing quarks and anti-quarks
separated by distances r ≡ {ri} in a specific color
representation c. A static color source appearing in

O
(c)
r [W,W †] located at x is described by the thermal Wil-

son line,

W (x) = T exp

(

i

∫ 1/T

0

dx0 λ ·A0(x0,x)

)

. (3)

The expectation value of O
(c)
r [W,W †], i.e. the n-

point Polyakov loop correlation function 〈O
(c)
r [W,W †]〉,

is related to the change in free energy, FO(r, T ) ≡

F̃ (r, T, V )−F (T, V ), due to the presence of static quark
anti-quark sources in the heat bath,

FO(r, T ) = −T ln〈O(c)
r [W,W †]〉+ TCO (4)

= −T (lnZO(r, T, V )− lnZ(T, V )) + TCO ,

where CO can be fixed through renormalization [29]. For
instance, in the case of 2-point Polyakov loop correlation

functions the singlet (1), averaged (q̄q) and octet (8) color

representations of the operator O
(c)
r [W,W †] can be spec-

ified as [3, 30, 31]

O(1)
r [W,W †] =

1

3
TrW (0)W †(|r|) , (5)

O(q̄q)
r [W,W †] =

1

9
TrW (0) Tr W †(|r|) , (6)

O(8)
r [W,W †] =

1

8
TrW (0) Tr W †(|r|)

−
1

24
TrW (0)W †(|r|) . (7)

The color singlet, averaged and octet quark anti-quark
free energies, i.e. F1(r, T ), Fq̄q(r, T ) and F8(r, T ), re-
spectively, have already been discussed extensively in
quenched and full QCD [1, 5, 19, 23, 26, 27, 28, 32, 33,
34].

For the purpose of discussing internal energies
(UO(r, T )) and entropies (SO(r, T )), we follow the con-
ceptual approach suggested in Refs. [5, 6] and consider
thermal derivatives of the QCD partition functions intro-
duced above, i.e.

UO(r, T ) = −T 2∂FO(r, T )/T

∂T
, (8)

which leads to

UO(r, T ) = −T 2

(

1

〈O
(c)
r [W,W †]〉

〈O(c)
r [W,W †]

∂S[A,Ψ, Ψ̄]

∂T
〉 − 〈

∂S[A,Ψ, Ψ̄]

∂T
〉

)

≡ ŨO(r, T, V )− U(T, V ) . (9)

Note here that the derivative of the operator O
(c)
r with

respect to temperature, ∂O
(c)
r /∂T , vanishes due to (3). A

similar relation can be derived for the entropies starting
from

SO(r, T ) = −
∂FO(r, T )

∂T

≡ S̃O(r, T, V )− S(T, V ) −
∂TCO

∂T
, (10)

i.e. the observable TSO(r, T ) could be calculated from
the difference, TSO(r, T ) = UO(r, T ) − FO(r, T ), with
UO(r, T ) and FO(r, T ) given in (9) and (4). We have
also specified constant contributions, CO, which result
from divergent contributions to the free energies and will
control the internal energies and entropies at large quark
anti-quark separations. Once the free energies are fixed

through renormalization also the constant contributions
to the internal energies and entropies are properly deter-
mined.

We note that Eq. (9), and similar (10), open the pos-
sibility for a direct calculations of UO(r, T ) and SO(r, T )
and define properly the quantities we aim to discuss here,
i.e. the change in internal energies and entropies due to
the presence of static quarks and anti-quarks in the QCD
heat bath. Quite similar to the change in free energies,
FO(r, T ) = F̃O(r, T )−F (T ), also the changes in internal

energies and entropies, UO(r, T ) = ŨO(r, T, V )−U(T, V )

and SO(r, T ) = S̃O(r, T, V ) − S(T, V ), are expected
to behave like intensive observables and, in particular,
will show no volume dependence in the thermodynamic
limit. It, however, can no longer be assumed that the r-
dependence of the quark anti-quark free energies (4) are
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given by the r-dependences of the internal energies (9)
alone, i.e. we expect

FO(r, T ) = UO(r, T )− TSO(r, T ) . (11)

This indicates a quite complicated relation between free
energies, internal energies and entropies and stresses the
important role of the entropy contribution which is still
present in free energies. In the limit of vanishing tem-
perature, T → 0, however, TSO(r, T → 0) will vanish
and

FO(r, T ≡ 0) = UO(r, T ≡ 0) ≡ VO(r) , (12)

i.e. FO(r, T → 0) and UO(r, T → 0) could be used1 to
define the corresponding energies at T = 0.
Unfortunately, the non-perturbative formulation of en-

ergies given in (9) is still complicated and, in particular,
it is complicated to be given in a form suitable for lattice
simulations [21, 35, 36, 37]. In the thermodynamic limit,
however, the internal energy and entropy described above
can be calculated equally well from Eqs. (8, 10). We in-
deed have used these relations and performed the deriva-
tives with respect to temperature based on finite differ-
ence approximations using the non-perturbative free en-
ergies at neighboring temperature as input (see Tab. 1
of Ref. [1]). With this method no perturbative uncer-
tainties get introduced in our calculations and a test of
confinement and deconfinement could be given. In fact,
as we use in our calculations the renormalized free en-
ergy as input, both quantities, the internal energies and
entropies, survive the continuum limit. We stress here,
however, that we also provide non-perturbative renor-
malization prescriptions for the quark anti-quark inter-
nal energies and entropies which are independent from a
renormalization of the quark anti-quark free energies.

B. Theoretic expectations and renormalization

Following [1] we consider mainly the quark anti-quark
internal energies and entropies in the color singlet chan-
nel. At large distances and high temperatures, i.e.

rT ≫ 1, T sufficiently above Tc, as well as at small
distances and zero temperature, i.e. rΛQCD ≪ 1, the
singlet free energies, F1(r, T ), are indeed dominated by
one gluon exchange [1]. Using the perturbative small dis-
tance relation for the singlet free energy [3, 30, 38, 39],

F1(r, T ) ≃ −
4

3

α(r)

r
, rΛQCD ≪ 1 , (13)

standard thermodynamic relations (Eqs. (8) and (10))
lead to

U1(r ≪ 1/ΛQCD, T ) ≃ −
4

3

α(r)

r
, (14)

1 We assume here the existence of an energy, VO(r), at T = 0

which corresponds to the expectation value of limT→0〈O
(c)
r 〉.

and

S1(r ≪ 1/ΛQCD, T ) ≃ 0 . (15)

We thus expect that at small distances the singlet free
and internal energies are controlled to a large extent by
energy, i.e. in the limit of small distances both will
smoothly approach the zero temperature heavy quark
potential, V (r). At larger distances, however, the quark
anti-quark free energies are strongly temperature depen-
dent [1, 27, 28] and thus non-vanishing entropy contri-
butions arise. In this case differences between free and
internal energies are expected to become important and
the quark anti-quark free energy will be to a large extent
controlled by TS1(r, T ).
To clarify the role of the entropy we compare2 in

Fig. 1(a) the short and large distance parts of the sin-
glet free and internal energies at T ≃ 1.3Tc and show
in Fig. 1(b) the corresponding entropy contribution,
TS1(r, T ≃ 1.3Tc). We also indicate in both figures
the small distance behavior expected from Eqs. (14) and
(15) as solid lines, i.e. the line in Fig. 1(a) indicates
the heavy quark potential from Refs. [1, 27], and in
Fig. 1(b) it indicates the zero level. As both, the in-
ternal energy and entropy, have been calculated using
renormalized free energies proper renormalization of both
observables is already incorporated by construction. It
can clearly be deduced from Fig. 1(a) that the singlet
free and internal energies smoothly approach V (r) at
small distances and the free energy thus indeed is dom-
inated by the energy contribution. In fact, the entropy
contribution shown in Fig. 1(b) is quite small at small
distances and indicates a vanishing entropy contribution
in the limit r → 0. Unfortunately we could not go to
smaller distances to clearly demonstrate this behavior.
Moreover, at small distances U1(r, T ) and TS1(r, T ) suf-
fer from lattice artifacts which result from small distance
lattice artifacts in the free energies. At intermediate
and large distances, however, the free and internal en-
ergies shown in Fig. 1(a) deviate from each other and
TS1(r, T ) indeed plays an important role for the behav-
ior of F1(r, T ). At asymptotic large distances the inter-
nal energies and entropies approach temperature depen-
dent constant values, i.e. U∞(T ) ≡ limr→∞ U1(r, T ) and
S∞(T ) ≡ limr→∞ S1(r, T ) are finite for finite tempera-
tures. These values are indicated by the arrows in Fig. 1
and, in particular, at finite temperature

U∞(T ) >∼ F∞(T ) (16)

is evident.
A similar behavior of U∞(T ) and S∞(T ) can be de-

duced from high temperature perturbation theory. To

2 Details on our lattice simulations, in particular, on the calcula-
tion of F1(r, T ), are given in Ref. [1]. Details on the computation
of U1(r, T ) and S1(r, T ) will be given in Sec. III and IV.
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FIG. 1: (a) The singlet internal energy, U1(r, T ) (filled
circles), calculated from renormalized singlet free energy,
F1(r, T ) (open squares), at fixed T ≃ 1.3Tc calculated in 2-
flavor lattice QCD and compared them to V (r) (line) [1, 27].
(b) The corresponding color singlet quark anti-quark entropy,
TS1(r, T ≃ 1.3Tc), as function of distance calculated from
renormalized free energies. The arrows point in both figures
at the temperature dependent values of the free and inter-
nal energy and entropy at asymptotic large distances, i.e.

F∞(T ) ≡ limr→∞ F1(r, T ), U∞(T ) ≡ limr→∞ U1(r, T ) and
TS∞(T ) ≡ T limr→∞ S1(r, T ).

be more precise, high temperature perturbation theory
suggests a cubic leading order dependence3 of the free
energy on the coupling [40], i.e.

F∞(T ) ≃ −
4

3
mD(T )α(T ) ≃ −O(g3T ) . (17)

Here α(T ) = g2(T )/4π and mD(T ) denotes the Debye

3 Here and in what follows we already have anticipated the running
of the coupling with the expected dominant scale T . Of course,
the running of the coupling appears only beyond leading order.

mass which in re-summed leading order is given by

mD(T ) =

(

1 +
Nf
6

)1/2

g(T )T . (18)

We note that this leading order result is gauge invari-
ant. In the following we use the renormalization group
β-function to evaluate the derivatives of the coupling, i.e.
for an arbitrary function F ≡ F(g, T ) we use

T
dF(g, T )

dT
= T

∂F(g, T )

∂T
+ β(g)

dF(g, T )

dg
, (19)

where β(g) = −β0g
3+O(g5) in perturbation theory. As-

suming this behavior the internal energy, U∞(T ), and
entropy, S∞(T ), are expected to behave like

U∞(T ) ≃ 4mD(T )α(T )
β(g)

g(T )
≃ −O(Tg5) , (20)

and

S∞(T ) ≃ +
4

3

mD(T )

T
α(T ) + 4

mD(T )

T
α(T )

β(g)

g(T )

≃ +O(g3) . (21)

The leading contribution to TS∞(T ) is similar to the free
energy in Eq. (17) and thus at high temperatures and
large distances the free energy is indeed expected to be
to large extent dominated by the entropy contribution,
i.e. at leading order S∞(T ) ≃ −F∞(T )/T . Although the
entropy itself will vanish logarithmically in the high tem-
perature limit, i.e. S∞(T → ∞) = 0, the contribution
TS∞(T ) will clearly dominate the differences between
free and internal energy at high temperatures,

U∞(T )− F∞(T ) = TS∞(T ) ≃ +O(g3T ) . (22)

Thus, the difference between free and internal energy is
expected to increase continuously with increasing tem-
perature when approaching the perturbative high tem-
perature regime. Only in the limit of zero temperature,
T → 0, the observable TS∞(T ) will vanish as S∞(T )
is a dimension less quantity which due to string break-
ing stays finite in QCD. Any qualitative change in the
observable TS∞(T ) as function of temperature between
both limits, i.e. T → 0 and T → ∞, is not quite obvious
and, if present, may signal the phase change from the chi-
ral symmetry broken phase at low to the deconfinement
phase at high temperatures.
We may finally note that although we discuss in the

following the internal energies and entropies calculated
from renormalized free energies, it is conceptually quite
satisfying that both observables could equally well be
renormalized by matching their short distance parts to
the heavy quark potential (14) and zero (15), respec-
tively. This is indeed evident from Figs. 1(a, b). As no
additional divergences get introduced at finite tempera-
ture also their large distance properties are properly fixed
in the continuum limit, in particular, also the manifestly
gauge invariant observables U∞(T ) and S∞(T ).
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T/Tc S∞ U∞/Tc

0.79 5.48 (259) 9.37 (207)

0.84 6.49 (119) 10.19 (101)

0.88 7.78 (168) 11.30 (148)

0.93 12.92 (138) 15.96 (129)

0.98 16.38 (113) 19.27 (112)

1.01 14.83 (172) 17.71 (173)

1.04 12.93 (825) 15.78 (88)

1.09 5.49 (42) 7.84 (46)

1.13 3.95 (41) 6.14 (46)

1.19 2.73 (25) 4.72 (29)

1.29 1.63 (16) 3.37 (21)

1.43 1.25 (11) 2.85 (16)

1.57 1.02 (8) 2.51 (12)

1.72 0.91 (10) 2.32 (17)

1.89 0.87 (7) 2.26 (14)

2.99 0.67 (1) 2.09 (2)

TABLE I: The change in internal energy and entropy due to
the presence of a quark anti-quark pair at infinite separation
in the QCD heat bath versus temperature.

III. THE CONFINEMENT DECONFINEMENT

TRANSITION

We begin our discussion of the finite temperature en-
ergies and entropies at asymptotic large distances, r →
∞. Actually, to avoid any fit we again [1] approxi-
mated the value of the free energy at infinite distance,
F1(r → ∞, T ), by the value of the quark anti-quark
free energy calculated at the largest possible separation
on the lattice, i.e. F∞(T ) ≡ Fq̄q(Nσ/2, T ), and calcu-
lated separately the internal energy, U∞(T ), and entropy,
S∞(T ). Both quantities are obtained from derivatives of
the color averaged free energy, Fq̄q(r, T ), which is a mani-
festly gauge invariant observable. Our results for U∞(T )
and S∞(T ) are summarized in Tab. I. It is quite sat-
isfying that the values obtained for U∞(T ) and S∞(T )
reproduce the free energy given in Tab. 2 of Ref. [1],
i.e. the quantity U∞ − TS∞ matches to the value for
F∞ = −2T ln |〈L〉| for all temperatures.

In parts of our analysis we are also interested in the
flavor and quark mass dependence of the finite temper-
ature energies and entropies. We thus again [1] com-
pare our results (Nf = 2) to results from quenched QCD
(Nf = 0) [5, 41] and also in parts to a recent study of
3-flavor QCD [26]. To convert the observables to phys-
ical units we use Tc = 270 MeV in quenched, Tc = 200
MeV in 2-flavor (mπ/mρ ≃ 0.7) and Tc = 193 MeV in
3-flavor (mπ/mρ ≃ 0.4) QCD. It should be obvious, how-
ever, that a comparison of free and internal energies cru-
cially depends on the relative normalization of the corre-
sponding zero temperature heavy quark potentials used
for renormalization and thus a comparison could be af-
fected by flavor and/or quark mass dependent (over-all)

constant contributions. Here, and in what follows, the
relative normalization of the heavy quark potentials in
quenched and full QCD is such that there is no constant
contribution in the Cornell Ansatz for V (r) at large dis-
tances. We also note that any undetermined constant
contribution to the heavy quark potential at zero tem-
perature will add a non-perturbative over-all constant to
the free and internal energies which would also affect the
comparison of these observables with perturbation theory
[42]. We stress again, however, that the quark anti-quark
entropy is unaffected by any undetermined finite renor-
malization of V (r) at zero temperature, i.e. S∞(T ) does
not dependent on any flavor and/or quark mass depen-
dent normalization terms that could contribute to V (r)
at T = 0.

A. The free energy

Our results for F∞(T ) are summarized in Fig. 2 as
function of T/Tc and compared to F∞(T ) obtained in
quenched and 3-flavor QCD. While F∞(T ) in quenched
QCD exhibits a singularity at Tc due to the first order
phase transition and is infinite below Tc, it is well-defined
and finite in full QCD at all temperatures due to string
breaking below and color screening above the transition.
In this case F∞(T ) is steadily decreasing with increasing
temperatures in the whole temperature range analyzed

0

500

1000

1500

0 1 2 3 4T/Tc

F∞ [MeV] Nf=0
Nf=2
Nf=3

FIG. 2: The value of the free energies F∞(T ) at asymp-
totic large distances as function of temperature in physi-
cal units. We compare here our results from 2-flavor QCD
(Tc = 200 MeV, mπ/mρ ≃ 0.7) to the results in pure gauge
theory (Tc = 270 MeV) [5] and 3-flavor QCD (Tc = 193
MeV, mπ/mρ ≃ 0.4) [26]. The dashed horizontal lines show
the expected energy V (rbreaking) ≃ 1000 ∼ 1200 fm using
rbreaking ≃ 1.2 − 1.4 fm from 2-flavor lattice studies at T = 0
and quark mass mπ/mρ ≃ 0.7 [43]. In 2-flavor lattice studies
at T = 0 and lower quark mass, mπ/mρ ≃ 0.4, the string is
expected to break at smaller (lower) distances (energies) [44].
The thick line around Tc is explained in Sec. III B.
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FIG. 3: The contribution TS∞(T ) appearing in the free en-
ergy, F∞(T ) = U∞(T )−TS∞(T ), calculated in 2-flavor QCD
as function of T/Tc. We compare our results from 2-flavor
QCD to the leading order part of Eq. (21) (or Eq. (22)) us-
ing the 2-loop formula for the coupling (23) with Tc/ΛMS =
0.77(15) [21, 45] and scales µ = π, ..., 4π (dashed lines). We
also show results from 3-flavor QCD for T >

∼
1.1Tc [26] and

quenched QCD [5, 41, 46].

by us. A discussion of F∞(T ), in particular for T <∼ Tc,
has already been given [1, 28]. We may add here that
the slope of F∞(T ) as function of temperature indeed
turns out to be maximal in the vicinity of the transition.
Although flavor and/or quark mass dependences of the
observable F∞(T ) can clearly be seen when comparing
the data for 2- and 3-flavor QCD, at temperatures about
1.2Tc <∼ T <∼ 2Tc no or only little differences between
quenched and full QCD could be identified. Flavor de-
pendences are, however, to be expected when reaching
temperatures in the perturbative regime.

B. The entropy

The entropy contribution, TS∞(T ), obtained in 2-
flavor QCD is shown in Fig. 3 as function of T/Tc and
is again compared to results from quenched and 3-flavor
QCD. We indeed find TS∞(T ) 0 at all temperatures
analyzed here. Moreover, the data for TS∞(T ) at low
temperatures also suggest a vanishing contribution in the
zero temperature limit, T → 0. Unfortunately we could
not go to smaller temperatures to clearly demonstrate
this behavior. On the other hand, in the high tempera-
ture phase, i.e. at T >∼ 2Tc, we indeed find a tendency
for an increase of TS∞(T ) with temperature as expected
from (22). Actually, this small increase is consistent with
the rise given in (21). To demonstrate this we also com-
pared TS∞(T ) in 2-flavor QCD to Eq. (21) using the

perturbative 2-loop coupling, i.e.

g−2
2−loop(T ) = 2β0 ln

(

µT

ΛMS

)

+
β1
β0

ln

(

2 ln

(

µT

ΛMS

))

,

(23)

with

β0 =
1

16π2

(

11−
2Nf
3

)

,

β1 =
1

(16π2)2

(

102−
38Nf
3

)

,

assuming vanishing quark masses. We used Tc/ΛMS =
0.77(15) [21, 45, 47] and the ambiguity in fixing the scale
in perturbation theory, µ = π, ..., 4π. This estimate is
shown within the dashed lines and qualitatively agrees
with the lattice data for T >∼ 2Tc. However, to clearly
establish the perturbative increase of TS∞(T ) with in-
creasing temperature will require the analysis of signif-
icantly higher temperatures. We also note that within
the statistical accuracy of the data we find for T >∼ 2Tc
the tendency,

S
Nf=0
∞ (T ) <∼ S

Nf=2
∞ (T ) <∼ S

Nf=3
∞ (T ) . (24)

It appears indeed quite reasonable that introducing ad-
ditional flavor degrees of freedom may enhance the finite
temperature quark anti-quark entropy in the deconfined
phase. It is, however, quite difficult to separate clearly
the different effects from flavor and quark mass depen-
dence in full QCD. In particular, at temperatures below
Tc the tendency given in (24) may change as can be seen
from the temperature dependence of F∞(T ) shown in
Fig. 2.
In contrast to the small temperature dependence of

TS∞(T ) at low and high temperatures, TS∞(T ) shows
qualitatively and quantitatively significant differences at
temperatures in the vicinity of the transition. In fact,
TS∞(T ) obtained in 2-flavor QCD exhibits a sharp peak
at Tc. This behavior signals the high temperature phase
transition/crossover in QCD. As the peak is so sharp we
may introduce Tl (Tu) defined as the lower (upper) tem-
perature at which S∞(T ) approaches about half of the
peak value, i.e. S∞(Tl,u) ≡ S∞(Tc)/2. We find for 2-
flavor QCD Tl about 0.89Tc and Tu about 1.07Tc using
S∞(Tc) ≃ 16.5. This temperature range is shown at the
bottom of Fig. 2 as thick line. A similar behavior is
also apparent in 3-flavor QCD. This indicates that the
crossover from the low to the high temperature phase in
QCD takes place in a small temperature range around Tc.
We stress, however, that the temperature dependence of
F∞(T ) also at temperatures above 1.07Tc is still to a
large extent dominated by non-perturbative effects.

C. The internal energy

The internal energy, U∞(T ), in 2-flavor QCD is shown
in Fig. 4 as function of temperature and is compared
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FIG. 4: The internal energy U∞(T ) versus T/Tc calculated
in 2-flavor QCD. The corresponding free energy, F∞(T ), cal-
culated in 2-flavor QCD is also shown as solid line. We again
indicate in this figure the energy at which string breaking is
expected to take place at T = 0, V (rbreaking) ≃ 1000 − 1200
MeV (dashed lines), using rbreaking = 1.2 − 1.4 fm [43].

to the corresponding free energy, F∞(T ) (solid line), al-
ready shown in Fig. 2. We indeed find U∞(T ) > F∞(T )
at all temperatures analyzed here. It can clearly be seen
that the temperature dependence of F∞(T ) and U∞(T ) is
qualitatively and quantitatively different. While the free
energy steadily decreases with increasing temperatures
the internal energy exhibits a pronounced peak. Again
this peak is sharply localized at the (pseudo-) critical
temperature. At the temperatures analyzed by us the
internal energy below Tc is rapidly increasing with in-
creasing temperatures. Again we indicate by dotted lines
the plateau value of the heavy quark potential at zero
temperature, V (rbreaking) ≃ 1000 − 1200 MeV, using
rbreaking ≃ 1.2 − 1.4 fm [43]. A comparison of U∞(T )
with this value shows again that most of the temperature
dependence of U∞(T ) is sharply localized at tempera-
tures in the vicinity of the transition. A qualitatively sim-
ilar behavior is also apparent in 3-flavor QCD [26]. Com-
paring the available data some flavor or quark mass de-

pendence, U
Nf=2
∞ (Tc) ≃ 4000 MeV >∼ U

Nf=3
∞ (Tc) ≃ 3000

MeV, can be observed and also the value U∞(T+
c ) in

quenched QCD [41] is of similar magnitude. As noted
in Sec. II B, however, the values for U∞(T ) may depend
on the relative normalization of V (r) at T = 0 used for
renormalization.

At temperatures above Tc, U∞(T ) rapidly drops while
at higher temperatures, i.e. T >∼ 1.3Tc, the tempera-
ture dependence of U∞(T ) turns out to be much weaker
than in the vicinity of phase transition. However, con-
tact with the perturbative relation, Eq. (20), is not ex-
pected at those temperatures as U∞(T ) is still positive.
In fact, when approaching the perturbative high temper-
ature regime also U∞(T ) is expected to exhibit a change
in sign and will slowly diverge with respect to (20).

IV. FINITE TEMPERATURE ENERGIES AND

POTENTIAL MODELS

The analysis of bound state problems has been quite
successful in terms of potential theory at T = 0 [48, 49,
50]. For the discussion of quarkonium suppression pat-
terns at finite temperature one also often resorts to po-
tential models [9, 11, 13, 14, 17]. Of course, the strong
interaction remains unaffected by temperature and the
modeling of thermal modifications of heavy quark bound
states requires the definition of an effective potential,
Veff(r, T ) [2], which can be given only phenomenologi-
cally, for instance, by using the modifications of the free
and internal energies. It is thus important to understand
the binding properties of the different finite temperature
energies. For this purpose we also calculated the quark
anti-quark internal energies for the temperatures given
in Tab. I at several finite distances. Parts of our results
for U1(r, T ) are summarized in Fig. 5 at temperatures
below (a) and above (b) the transition. Similar results
have been obtained for internal energies in the averaged
and octet channels.
To gain some insight into the consequences these en-

ergies have for quarkonium dissociation we compare the
asymptotic (r → ∞) energies with the potential energies
at a distance corresponding to the size of some quarko-
nium states,

∆Ei(T = 0) ≡ V (∞)− V (ri) , (25)

where the radii ri (i = J/ψ, χc, ...) are listed in the
first row of Tab. II. At zero temperature V (∞) is
taken to be twice the energy needed to create the low-
est heavy-light meson. For our purpose we consider
V (∞) ≡ V (rbreaking) ≃ 1000 MeV where rbreaking is
the distance at which the string is expected to break
at zero temperature, rbreaking >∼ 1.2 fm [43]. This en-
ergy is shown in Fig. 6 as horizontal line. The resulting
energy for J/ψ is also shown. The energies for some
charmonium and bottomonium states are summarized in
Tab. II and compared to the mass difference obtained
from 2MD,B − mi where MD,B denotes the D- and B-
meson masses and mi the masses of the different quarko-
nium states [51]. Of course, the wave functions for the
different quarkonium states will also reach out to larger
distances [50] and thus our estimate for the different en-
ergy levels Ei(T = 0) can only be taken as indicative for
the relevant energies. Potential model analysis, using for
instance the Schrödinger equation, will do better in this
respect.
Similarly we can estimate the temperature dependence

of the energy levels for the different quarkonium states
from Ei(T ) ≡ Veff(ri, T ). Again these energy levels will
only characterize the relevant energies and the sizes of
these states may also become temperature dependent.
At finite temperature, however, the values for these levels
are expected to depend crucially also on the specific mod-
eling of the effective potential, Veff(r, T ). This is obvious
from the different energy levels for the J/ψ shown in
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state J/ψ χc ψ′ Υ χb Υ′

ri [fm] 0.45 0.70 0.87 0.23 0.41 0.51

2MD,B −mi [MeV] 631 313 42 1098 698 535

∆Ei(T = 0) [MeV] 830 560 400 1140 870 750

∆Ei(Tc) [MeV] [using F1] 321 124 62 665 334 265

∆Ei(Tc) [MeV] [using U1] 3036 1618 1010 3721 3085 2615

∆Ei(Tc) [MeV] [using Fq̄q ] 97 27 12 607 87 55

∆Ei(Tc) [MeV] [using Uq̄q] 1355 747 504 3732 1392 1136

TPM
dis /Tc [potential model using F1] 1.1 0.74 0.1 - 0.2 2.31 1.13 1.1

TPM
dis /Tc [potential model using U1] ∼ 2 ∼ 1.1 ∼ 1.1 ∼ 4.5 ∼ 2 ∼ 2

T SF
dis from lattice spectral functions 1.5 − 3 <

∼
1.1

TABLE II: A summary of the different estimates for the relevant temperatures, Tdis, at which quarkonium dissociation is
expected to become important. In the first row we give the mean squared charge radii, ri, and the energies, ∆Ei(T = 0) ≡

V (∞) − V (ri) at zero temperature with V (∞) ≃ 1000 MeV. We also list the mass gap 2MD,B −mi using D- and B-meson
masses MD = 1864 MeV and MB = 5279 MeV, respectively [51]. The second row summarizes results for the break up energies
at Tc estimated from ∆Ei(Tc) ≡ Veff(ri, Tc)−Veff(∞, Tc) using different definitions for Veff(r, T ). The errors on these values are
typically about 20%. Note here that the thermal energy Eth(T ) = 3T is about 600 MeV at Tc. The 3rd and 4th row contain
different values for the relevant dissociation temperatures, i.e. estimates for the onset of temperature effects in quarkonium
states, Tonset [1, 2], the predicted dissociation temperatures from potential model calculations (TPMdis ) [9, 13, 14], and lattice
studies of charmonium spectral functions, T SF

dis [52, 53].

Fig. 6 which we obtained by using as Veff(r, T ) the singlet
free energy (lower dashed line) and singlet internal energy
(upper dashed line). Due to the steeper rise of the inter-
nal energy compared to free energy EJ/ψ(T ) is enhanced
compared to the energy level obtained from the inter-
nal energy. It is interesting to note here that EJ/ψ(T =
1.3Tc) deduced from the internal energy is even larger
than at zero temperature while in terms of the free energy
it is smaller than EJ/ψ(T = 0). For the characterization
of the relevant energies needed to dissociate the bound
state we again consider ∆Ei(T ) ≡ Veff(∞, T )−Veff(ri, T ),
which depends on the definition of Veff(r, T ). This is evi-
dent from Fig. 7 where we show the temperature depen-
dence of ∆EJ/ψ(T ) estimated from Veff(r, T ) ≡ U1(r, T )
(filled circles) and Veff(r, T ) ≡ F1(r, T ) (open circles).
While ∆EJ/ψ(T ) is continuously decreasing with increas-
ing temperatures when using F1(r, T ) as effective poten-
tial, its binding pattern appears quite different from what
one obtains by using Veff(r, T ) ≡ U1(r, T ). Actually, in
the latter case the binding pattern exhibits a maximum in
the vicinity of the transition while it rapidly drops above
Tc. Similar results have been obtained also for other char-
monium and bottomonium states and are summarized in
Tab. II.

Of course, the model dependences of the dissociation
energies at finite temperature also affect the analysis of
suppression patterns and corresponding dissociation tem-
peratures [9, 13, 14]. Actually, using Veff(r, T ) ≡ U1(r, T )
suggests that suppression of J/ψ may occur only at
temperatures close but above the transition while from
Veff(r, T ) ≡ F1(r, T ) one finds that J/ψ dissolves already
at temperatures below the crossover. Similar model de-
pendences enter also the analysis of excited quarkonium
states and the corresponding estimates for the dissocia-

tion temperatures are summarized in Tab. II using four
different definitions for Veff(r, T ), i.e. we used the sin-
glet free and internal energies (F1(r, T ), U1(r, T )) as well
as the finite temperature energies in the color averaged
channel (Fq̄q(r, T ), Uq̄q(r, T )).

V. SUMMARY AND CONCLUSIONS

Following [5, 6] we introduced and analyzed the change
in internal energy and entropy due to the presence of
a static quark anti-quark pair in a QCD heat bath.
Both observables are introduced as intensive observables
as appropriate derivatives of the renormalized free en-
ergy. Similar to the singlet quark anti-quark free ener-
gies [1, 5, 42, 54] also the singlet internal energies become
temperature independent in the limit of small distances
and are controlled by the zero temperature running cou-
pling.
We analyzed qualitative and quantitative differences

that appear when changing from free energies to inter-
nal energies as observable that defines an effective po-
tential that can be used in model calculations. We dis-
cussed the important role of the entropy contribution
at finite temperature. At short distances, at interme-
diate and at large distances the entropy contribution
is non-zero and shows non-trivial r-dependences. We
find positive entropy contributions, S1(r, T ) >∼ 0, and
thus U1(r, T ) >∼ F1(r, T ). Similar to the free energies,
also the large distance properties of the internal ener-
gies and entropies are controlled by string breaking be-
low and color screening above deconfinement and both
approach temperature dependent constant values, which
define U∞(T ) and S∞(T ), at asymptotic large distances.
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FIG. 5: The color singlet quark anti-quark internal energies,
U1(r, T ), at several temperatures below (a) and above (b) the
phase transition obtained in 2-flavor lattice QCD. In (a) we
also show as horizontal lines the asymptotic values given in
Tab. I which are approached at large distances and indicate
the flattening of U1(r, T ). The solid lines represent in each
figure the T = 0 heavy quark potential, V (r) [1, 27].

Actually, the difference between free and internal ener-
gies at high temperatures, TS∞(T ) ≃ 4mD(T )α(T )/3,
is supposed to increase with increasing temperatures. In
particular, U∞(T ) and S∞(T ), are, similar to F∞(T ) [5],
again introduced as manifest gauge invariant observables
and clearly signal the QCD plasma transition. In fact,
while the plateau values which are approached by the free
energies, F∞(T ), are rapidly decreasing in the vicinity of
the transition [1, 28], the values approached by the inter-
nal energies, U∞(T ), and entropies, S∞(T ), show both a
sharp peak at the (pseudo-) critical temperature. Similar
results are also obtained in quenched and 3-flavor QCD
[5, 6, 26, 41]. However, qualitative differences become
quite transparent in the vicinity and below the transition
when comparing these observables obtained in quenched
and full QCD. In quenched QCD the first order phase
transition is related to singularities in thermodynamic

observables which can indeed be seen after renormaliza-
tion in the temperature dependence of the finite temper-
ature energies, entropies and the renormalized Polyakov
loop (see also [1, 5, 46]). In contrast to quenched QCD,
in full QCD the phase change is a crossover and we con-
sequently do not see any singularities in the finite tem-
perature energies and entropies nor in the temperature
dependence of the renormalized Polyakov loop [1].

We also investigated the temperature dependence of
quarkonium binding in the vicinity of the transition. For
this purpose we used the finite temperature energies to
define appropriate effective potentials, Veff(r, T ), as one
would do in potential models. As effective potentials
we used the singlet and averaged free and internal ener-
gies, i.e. we defined Veff(r, T ) through F1(r, T ), Fq̄q(r, T ),
U1(r, T ) and Uq̄q(r, T ), and estimated the binding ener-
gies at temperatures below and above the transition. In
all cases the binding energies of the quarkonium states in-
deed become weaker with increasing temperatures above
the transition and this may lead to dissociation of parts
of these states at temperatures close but above Tc. Our
analysis, however, shows strong dependencies of the bind-
ing energies and dissociation temperatures on the spe-
cific modeling of Veff(r, T ). To some extent these model
dependencies enter from quite general grounds when ex-
changing the definition of Veff(r, T ) from free energies into
internal energies. When using free energies the binding
energies continuously and rapidly decrease when crossing
the transition and most of the quarkonium bound states

0

500

1000

0 0.5 1 1.5

Veff(r,T) [MeV]

r [fm]

V(∞)

∆EJ/ψ(T=0)

FIG. 6: Different effective potentials in the color singlet chan-
nel, Veff(r, T ) ≡ F1(r, T ) (open symbols) and Veff(r, T ) ≡

U1(r, T ) (filled symbols), at fixed T ≃ 1.3Tc as function of
distance and the heavy quark potential, V (r). We also com-
pare Veff(r, T ) to the J/ψ energy level at T = 0, EJ/ψ(T =
0) ≡ V (r = rJ/ψ) ≃ 270 MeV (horizontal solid line). The
horizontal dashed lines correspond to the J/ψ energy levels
defined on EJ/ψ(F1) ≡ F1(rJ/ψ, T ) (lower dashed line) and
EJ/ψ(U1) ≡ U1(rJ/ψ, T ) (upper dashed line). rJ/ψ ≃ 0.45 fm
is fixed through the mean squared charge radius expected at
T = 0 given in Tab. II.
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FIG. 7: The energy difference Veff(∞, T ) − Veff(rJ/ψ, T )
as function of temperature using the differ-
ent energies as effective potential, Veff(r, T ) ≡

U1(r, T ), F1(r, T ), Uq̄q(r, T ), Fq̄q(r, T ).

may thus indeed dissolve at temperatures in the vicinity
and below the transition [13, 14]. The temperature de-
pendence of the binding energies deduced from internal
energies, however, turns out to be more complicated in
the vicinity of the transition. An effective potential de-
fined through quark anti-quark internal energies suggests

increasing binding energies below the transition which
exhibit a peak at Tc. This may imply that all quarko-
nium states analyzed here are still bound at the transi-
tion. The binding energies of the different states rapidly
decrease above Tc leading again to quarkonium dissoci-
ation, however, the temperatures which are relevant for
dissociation are shifted to larger temperatures than those
deduced from free energies. The recent potential model
calculations [9, 10] using the properties of U1(r, T ) at
temperatures above the transition as well as the lattice
analysis of quarkonium bound states in quenched QCD
[52, 53] support our findings.
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