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QED3 on a space-time lattice: compact versus noncompact formulation
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Dipartimento di Fisica, Università della Calabria & Istituto Nazionale di Fisica Nucleare,

Gruppo collegato di Cosenza, I-87036 Arcavacata di Rende, Cosenza, Italy

P. Sodano∗∗

Dipartimento di Fisica,
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We study quantum electrodynamics in a (2+1)-dimensional space-time with two flavors of dy-
namical fermions by numerical simulations on the lattice. We discretize the theory using both the
compact and the noncompact formulations and analyze the behavior of the chiral condensate and of
the monopole density in the finite lattice regime as well as in the continuum limit. By comparing the
results obtained with the two approaches, we draw some conclusions about the possible equivalence
of the two lattice formulations in the continuum limit.
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I. INTRODUCTION

Quantum electrodynamics in 2+1 dimensions (QED3)
is interesting as a toy model for investigating the mech-
anism of confinement in gauge theories [1], and as an
effective description of low-dimensional, correlated, elec-
tronic condensed matter systems, like spin systems [2, 3],
or high-Tc superconductors [4]. While the compact for-
mulation of QED3 appears to be more suitable for study-
ing the mechanism of confinement, both compact [5] and
noncompact formulations arise in condensed matter sys-
tems. Our paper aims to elucidate some aspects of the
relationship between these two formulations of QED3 on
the lattice.

Polyakov showed that compact QED3 without fermion
degrees of freedom is always confining [1]. Any pair of
test electric charge and anti-charge is confined by a lin-
ear potential, as an effect of proliferation of instantons,
which are magnetic monopole solutions in three dimen-
sions. The plasma of such monopoles is what is respon-
sible for confinement of electrically charged particles. If
compact QED3 is coupled to matter fields it has been
argued [6] that the interaction between monopoles could
turn from 1/x to − ln (x) at large distances x, so that
the deconfined phase may become stable at low tem-
perature. The issue of the existence of a confinement-
deconfinement transition in QED3 at T = 0 is still con-
troversial, as it has also been proposed that compact
QED3 with massless fermions is always in the confined
phase [7, 8]; also, in the limit of large flavor number, it

∗Electronic address: fiore@cs.infn.it
†Electronic address: giudice@cs.infn.it
‡Electronic address: giuliano@cs.infn.it
§Electronic address: marmotti@cs.infn.it
¶Electronic address: papa@cs.infn.it
∗∗Electronic address: pasquale.sodano@pg.infn.it

has been argued that monopoles should not play any role
in the confinement mechanism [9]. At finite temperature,
parity invariant QED3 coupled with fermionic matter un-
dergoes a Berezinsky-Kosterlitz-Thouless transition to a
deconfined phase [10].

The issue of charge confinement in 2 + 1 dimensional
gauge models comes out to be relevant in the context
of quantum phase transitions, as well. Indeed, recently
it has been proposed that phenomena similar to decon-
finement in high energy physics might appear in planar
correlated systems, driven to a quantum (that is, zero-
temperature) phase transition between an antiferromag-
netically ordered (Neél) phase, and a phase with no order
by continuous symmetry breaking [2, 3]. The most suit-
able candidate for a theoretical description of the system
near the quantum critical point is a planar gauge the-
ory, either with Fermionic matter [2], or with Bosonic
matter [3].

At finite T noncompact QED3 comes about to be rel-
evant in the analysis of the pseudo gap phase [11] of
cuprates. This phase arises from the fact that, upon
doping the cuprate, a gap opens at some temperature T ⋆

which is quite larger than the critical temperature TC
for the onset of superconductivity. Both temperatures
T ⋆ and TC are doping dependent quantities and the gap
is strongly dependent upon the direction in momentum
space, since it exhibits d-wave symmetry [12].

In Fig. 1 we report the phase diagram of high-Tc
cuprates. For small-x phase is characterized [13] by an
insulating antiferromagnet (AF); by increasing x, this
phase evolves into a spin density wave (SDW), that is
a weak antiferromagnet. The pseudo gap phase is lo-
cated between this phase and the d-wave superconduct-
ing (dSC) one.

The effective theory of the pseudo gap phase [11] turns
out to be QED3 [4, 14, 15], with spatial anisotropies in
the covariant derivatives, that is with different values for
the Fermi and the Gap velocities [13], and with Fermionic
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matter given by spin-1/2 chargeless excitations of the
superconducting state (spinons). These excitations are
minimally coupled to a massless gauge field, which arises
from the fluctuating topological defects in the supercon-
ducting phase. The SDW order parameter is identified
with the order parameter for chiral symmetry breaking
(CSB) in the gauge theory, that is, 〈ψ̄ψ〉 [15]. There can
be two possibilities; if 〈ψ̄ψ〉 is different from zero, then
the d-wave superconducting phase is connected to the
spin density wave one (see Fig. 1 case b); otherwise the
two phases are separated at T = 0 by the pseudo gap
phase (see Fig. 1 case a).

Confinement and chiral symmetry breaking go essen-
tially together as strong coupling phenomena in gauge
theories; while confinement is an observed property of
the strong interactions and it is an unproven, but widely
believed feature of non-abelian gauge theories in four
space-time dimensions, chiral symmetry is only an ap-
proximate symmetry of particle physics, since the up and
down quarks are light but not massless. Central to our
understanding of CSB is the existence of a critical cou-
pling: when fermions have a sufficiently strong attrac-
tive interaction there is a pairing instability and the en-
suing condensate breaks some of the flavor symmetries,
generate quark masses, and represents chiral symmetry
in the Nambu-Goldstone mode [16, 17]. The issue of
a critical coupling has been widely investigated in 2+1
dimensional gauge theories [18, 19, 20]. Typically, the
dimensionless expansion parameter is 1/Nf . Using the
Schwinger-Dyson equations [18] or a current algebra ap-
proach [21] for QED3 and QCD3 one finds that there is
a critical number of flavors, Nf,c, such that only for Nf

lesser than Nf,c chiral symmetry is broken; for Nf bigger
than Nf,c chirality is unbroken and quarks remain mass-
less. For QED3 this result has been the subject of some
debate [18, 19, 22, 23, 24, 25, 26]; there are, however, nu-
merical simulations [27, 28, 29] of QED3, which find an
Nf,c remarkably close to the results reported in Ref. [18].

Even if far from the scaling regime, strong coupling
gauge theories on the lattice provide interesting clues on
the issue of CSB. In fact, one can show that, in the strong
coupling limit, a Hamiltonian with Nc colors of fermions
and Nf/2 lattice flavors of staggered fermions is effec-
tively a U(Nf/2) quantum antiferromagnet with repre-
sentations determined by Nc and Nf [30]. CSB is then
associated [30] either to the formation of a U(1) commen-
surate charge density wave or of a SU(Nf/2) spin den-
sity wave, i.e. to the formation of Neél order. Quantum
antiferromagnets with the representations considered in
Ref. [30] have been analyzed in Ref. [31] where it was
found that, for small enough Nf , the ground state is or-
dered. Also, when Nf is increased there is a phase transi-
tion, for Nf ∼ Nc, to a disordered state. In this picture,
the large Nc limit is the classical limit where Neél order
is favored and the small Nc and large Nf limit are where
fluctuations are large and disordered ground states are
favored.

We shall not try to ascertain in this paper the critical
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FIG. 1: Phase diagram in the (x, T ) plane [14]; here x repre-
sents the doping and T the temperature.

number of flavours Nf,c. Here, we shall analyze the re-
lationship between monopole density and fermion mass
and compare the results obtained for the compact and
noncompact lattice formulation of this gauge model. In
particular, we revisit the analysis of Fiebig and Woloshyn
of Refs. [32, 33], where the dynamic equivalence between
the two formulations of (isotropic) QED3 is claimed to
be valid in the finite lattice regime. In this paper we shall
extend the comparison to the continuum limit, following
the same approach as in Refs. [32, 33]: namely we shall
analyze the behavior of the chiral condensate and of the
monopole density as the continuum limit is reached.
In Section II we describe the model and its properties

both in the continuum and on the lattice. Moreover, the
method for detecting monopoles on the lattice is illus-
trated.
In Section III a description of both compact and non-

compact formulations of QED3 is given.
In Section IV we present our numerical result for the

chiral condensate and the monopole density in the region
in which the continuum limit is reached. Then, we com-
pare our results with those of Fiebig and Woloshyn [32,
33].
Section V is devoted to conclusions.

II. THE MODEL AND ITS PROPERTIES

The continuum Lagrangian density describing QED3

is given in Minkowski metric [34] by

L = −
1

4
F 2
µν + ψiiDµγ

µψi −m0ψiψi , (1)

where Dµ = ∂µ − ieAµ, Fµν is the field strength and
the fermions ψi (i = 1, . . . , Nf) are 4-component spinors.
Since QED3 is a super-renormalizable theory, dim[e] =
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+1/2, the coupling does not display any energy depen-
dence. One may define three 4× 4 Dirac matrices

γ0 =

(

σ3 0
0 −σ3

)

, γ1 =

(

iσ1 0
0 −iσ1

)

,

γ2 =

(

iσ2 0
0 −iσ2

)

, (2)

and two more matrices anticommuting with them:
namely

γ3 = i

(

0 1
1 0

)

, γ5 = i

(

0 1
−1 0

)

. (3)

The massless theory will therefore be invariant under the
chiral transformations

ψ → eiαγ
3

ψ , ψ → eiβγ
5

ψ . (4)

If one writes a 4-component spinor as ψ =

(

ψ1

ψ2

)

, the

mass term becomes

mψψ = mψ†
1σ3ψ1 −mψ†

2σ3ψ2 .

Since in three dimensions the parity transformation reads

ψ1(x0, x1, x2) → σ1ψ2(x0,−x1, x2) ,

ψ2(x0, x1, x2) → σ1ψ1(x0,−x1, x2) , (5)

then mψψ is parity conserving.
The lattice Euclidean action [28, 35] using staggered

fermion fields χ, χ, is given by

S = SG +

N
∑

i=1

∑

n,m

χi(n)Mn,mχi(m) , (6)

where SG is the gauge field action and the fermion matrix
is given by

Mn,m[U ] (7)

=
∑

ν=1,2,3
ην(n)

2

{

[Uν(n)]δm,n+ν̂ − [U †
ν (m)]δm,n−ν̂

}

.

The action (6) allows to simulate N = 1, 2 flavours of
staggered fermions corresponding to Nf = 2, 4 flavours
of 4-component fermions ψ [36]. SG is different for the
compact and noncompact formulation of QED3.
For the compact formulation one has

SG[U ] = β
∑

n,µ<ν

[

1−
1

2

(

Uµν(n) + U †
µν(n)

)

]

, (8)

where Uµν(n) is the “plaquette variable” and β =
1/(e2a), a being the lattice spacing. Instead, in the non-
compact formulation one has

SG[α] =
β

2

∑

n,µ<ν

Fµν(n)Fµν(n) , (9)

where

Fµν(n) = {αν(n+µ̂)−αν(n)}−{αµ(n+ν̂)−αµ(n)} (10)

and αµ(n) is the phase of the “link variable” Uµ(n) =

eiαµ(n), related to gauge field by αµ(n) = aeAµ(n).

Monopoles are detected in the lattice using the method
given by DeGrand and Toussaint [37]: due to the Gauss’s
law, the total magnetic flux emanating from a closed
surface allows to determine if the surface encloses a
monopole. The monopole density is defined by half of the
total number of monopoles and antimonopoles divided by
the number of elementary cubes in the lattice. We apply
this definition for both the compact and the noncompact
formulations of the theory, although some caution should
be used in this respect. Indeed, monopoles are classical
solutions of the theory with finite action only for compact
QED3, where they are known to play a relevant role. In
the noncompact formulation of QED3 they are not clas-
sical solutions, but they could give a contribution to the
Feynman path integral owing to the periodic structure of
the fermionic sector [38].

III. COMPACT VERSUS NONCOMPACT

FORMULATION

In order to investigate the onset of the continuum
physics, it is convenient to consider a dimensionless ob-
servable and to evaluate it from the lattice for increasing
β until it reaches a plateau. Such an observable can be
taken to be β2〈χχ〉, which is expected to become con-
stant in the continuum (β → ∞) limit [27, 39]. Numer-
ical simulations show two regimes: for β larger than a
certain value, the theory is in the continuum limit (flat
dependence of a dimensionless observable from β), other-
wise the system is in a phase with finite lattice spacing.
In the former regime, the theory describes continuum
physics, in the latter one it is appropriate to describe a
lattice condensed-matter-like system.

There are a couple of papers by Fiebig and Woloshyn
in which the two formulations are compared in the finite
lattice regime [32, 33]. In these papers the β-dependence
of the chiral condensate and of the monopole density for
lattice QED3 with Nf = 0 and Nf = 2 are analyzed for
both compact and noncompact formulations in the finite
lattice regime.

It is shown there that, when 〈χχ〉 is plotted versus the
monopole density ρm, data points for both theories fall
on the same curve to a good approximation (see Fig. 2).
This led the authors of Refs. [32, 33] to the conclusion
that the physics of the chiral symmetry breaking is the
same in the two theories.

Our program is to study if the conclusion reached by
Fiebig and Woloshyn can be extended to the continuum
limit, by looking at the same observables they considered:
namely the chiral condensate and the monopole density.
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FIG. 2: Correlation between 〈χχ〉 and ρm for the compact
(circles) and the noncompact (boxes) theories for Nf = 2 and
83 lattice according to Ref. [33].

IV. NUMERICAL RESULTS

Since QED3 is a super-renormalizable theory, the cou-
pling constant does not display any lattice space depen-
dence. The continuum limit is approached by merely
sending β = 1/(e2a) to infinity. In this limit all physical
quantities can be expressed in units of the scale set by
the coupling e. Therefore, it is natural to work in terms
of dimensionless variables such as βm, L/β or β2〈χχ〉,
which depend on e (L is the lattice size).
The signature that the continuum limit is approached

is that data taken at different β should overlap on a single
curve when plotted in dimensionless units [28].
In practice, numerical results will not describe the cor-

rect physics of the system even in the continuum limit
because of finite volume effects which are particularly
significant in our case, due to the presence of a massless
particle, the photon. In principle one should get rid of
these effects by taking L/β → ∞. In practice, this ratio
is taken to be large, but finite. In Ref. [40] the authors
conclude that in order to find chiral symmetry breaking
for Nf = 2 at least a ratio L/β ≈ 5× 103 is required. In
our simulations the largest value for the L/β ratio has
been 20.
Our Monte Carlo simulation code was based on the

hybrid updating algorithm, with a microcanonical time

0.00 0.05 0.10 0.15 0.20 0.25
ρm

0.0

0.1

0.2

0.3

0.4

0.5

<χ
χ>

lattice 8
3

stat. 10
5

Nf=2

noncompact
compact

FIG. 3: As in Fig. 2, according to our results.

step set to dt = 0.02. We simulated one flavour of
staggered fermions corresponding to two flavours of 4-
component fermions. Most simulations were performed
on a 123 lattice, for bare quark mass ranging in the in-
terval am = 0.01 ÷ 0.05. We made refreshments of the
gauge (pseudofermion) fields every 7 (13) steps of the
molecular dynamics. In order to reduce autocorrelation
effects, “measurements” were taken every 50 steps. Data
were analyzed by the jackknife method combined with
binning.

0.00 0.02 0.04 0.06 0.08 0.10 0.12
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β2 <χ
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FIG. 4: β2〈χχ〉 versus βm in the compact formulation.

As a first step, we have reproduced the results by
Fiebig and Woloshyn which are shown in Fig. 2. We find
that also in our case data points from the two formula-
tions nicely overlap (see Fig. 3). It should be noticed that
data of Fig. 2 were obtained using a linear fit with two
masses (am=0.025, 0.05) whilst those of Fig. 3 have been
obtained by a quadratic fit with four masses (am=0.02,
0.03, 0.04, 0.05), nevertheless the conclusion is the same
in both cases. We have verified that if we perform a linear
fit on the subset of our data with masses am=0.02 and
0.05 and on the subset with masses am=0.03 and 0.05,
our results nicely compare with those plotted in Fig. 2.
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Then, in Fig. 4 we plot data for β2〈χχ〉 obtained
in the compact formulation versus βm. We restrict
our attention to the subset of β values for which data
points fall approximately on the same curve, which in
the present case means β = 1.9, 2.0, 2.1, corresponding to
L/β = 6.31, 6.00, 5.71. A linear fit of these data points
gives χ2/d.o.f. ≃ 8.4 and the extrapolated value for
βm → 0 turns out to be β2〈χχ〉 = (1.54± 0.25)× 10−3.
Restricting the sample to the data at β = 2.1, the
χ2/d.o.f. lowers to ≃ 1.3 and the extrapolated value
becomes β2〈χχ〉 = (0.94 ± 0.28) × 10−3, thus showing
that there is a strong instability in the determination
of the chiral limit. If instead a quadratic fit is used
for the points obtained with β = 1.9, 2.0, 2.1, we get
β2〈χχ〉 = (0.91 ± 0.45) × 10−3 with χ2/d.o.f. ≃ 8.7.
Owing to the large uncertainty, this determination turns
out to be compatible with both the previous ones.

0.00 0.01 0.02 0.03 0.04 0.05
βm

0.00

0.01
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β2 <χ
χ>

β=0.6
β=0.7
β=0.75
β=0.8
β=0.9

lattice 12
3

Nf=2
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4
-1.0x10

5

noncompact form.

FIG. 5: β2〈χχ〉 versus βm in the noncompact formulation.

In Fig. 5 we plot data for β2〈χχ〉 obtained in the non-
compact formulation versus βm. Following the same
strategy outlined before, we restrict our analysis to the
data obtained with β = 0.7, 0.75, 0.8, which correspond
to L/β = 17.14, 16, 15.
If we consider a linear fit of these data and extrapolate

to βm → 0, we get β2〈χχ〉 = (0.45 ± 0.03)× 10−3 with
χ2/d.o.f. ≃ 17. Performing the fit only on the data
obtained with β = 0.8, for which a linear fit gives the
best χ2/d.o.f. value ≃ 16, we obtain the extrapolated
value β2〈χχ〉 = (0.66 ± 0.07) × 10−3. Therefore, also
in the noncompact formulation the chiral extrapolation
resulting from a linear fit is largely unstable. A quadratic
fit in this case gives instead a negative value for β2〈χχ〉.
The comparison of the extrapolated value for β2〈χχ〉

in the two formulations is difficult owing to the instabili-
ties of the fits and to the low reliability of the linear fits,
as suggested by the large values of the χ2/d.o.f. Tak-
ing an optimistic point of view, one could say that the
extrapolated β2〈χχ〉 for β = 2.1 in the compact formula-
tion is compatible with the extrapolated value obtained
in the noncompact formulation for β = 0.8.

It is worth mentioning that our results in the non-
compact formulation are consistent with known results:
indeed, if we carry out a linear fit of the data for
β = 0.6, 0.7, 0.8 and am=0.02, 0.03, 0.04, 0.05 and ex-
trapolate, we get β2〈χχ〉 = (1.30 ± 0.07) × 10−3 with
an admittedly large χ2/d.o.f. ≃ 20, but very much in
agreement with the value β2〈χχ〉 = (1.40± 0.16)× 10−3

obtained in Ref. [35].

We stress again that our results are plagued by strong
finite volume effects, therefore our conclusions on the ex-
trapolated values of β2〈χχ〉 are significant only in the
compact versus noncompact comparison we are inter-
ested in. We do not even try to draw any conclusion
from our data on the critical number of the flavours. As
a matter of fact a recent paper [28] shows that, if effects
are carefully monitored and large lattices, up to 503, are
used, it is possible to establish that β2〈χχ〉 ≤ 5 × 10−5.
For the comparison between compact and noncompact
QED3 it is pertinent to carry out the numerical analysis
with an (approximately) constant value of the ratio L/β.
This condition is indeed verified even if we performed
simulations on lattices with fixed (L = 12) size, since the
range of allowed values for β corresponding to the contin-
uum limit is narrow (β = 1.8÷ 2.2 in the compact case,
β = 0.6 ÷ 0.9 in the noncompact case). Finite volume
effects play a “second order” role in our work, since they
probably only affect the extension of the continuum limit
window of β values.

0.000 0.001 0.002 0.003 0.004 0.005
ρm

0.0e+00

5.0e-04

1.0e-03

1.5e-03

2.0e-03

2.5e-03

3.0e-03

<χ
χ>
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3

Nf=2

compact
noncompact

FIG. 6: 〈χχ〉 versus ρm in both the compact and the non-
compact formulations on a 123 lattice.

In Fig. 6 we plot 〈χχ〉 versus the monopole density
ρm. Differently from Figs. 2-3, it is not evident with the
present results that the two formulations are equivalent
also in the continuum limit, although such an equivalence
cannot yet be excluded.

In Fig. 7 we plot again 〈χχ〉 versus the monopole den-
sity ρm, but now on a 323 lattice. In this case the chiral
condensate is extrapolated to zero mass by a quadratic
fit. In spite of the negative value taken by 〈χχ〉 for large
β, in this case data for both formulations seem to fall on
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FIG. 7: 〈χχ〉 versus ρm in both the compact and the non-
compact formulations on a 323 lattice.

the same curve.
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FIG. 8: β3ρm versus βm in the compact formulation.

In Fig. 8 and Fig. 9 we plot β3ρm versus βm for the
two formulations; the former quantity is dimensionless,
therefore, in analogy with the previous cases, we expect
that data at different β values should fall on a single
curve in the continuum limit. Our results show that this
is not the case, this suggesting that the continuum limit
has not been reached for the monopole density.
Simulations on the 323 lattice give practically the same

results for β3ρm, indicating that this observable, unlike
β2〈χχ〉, is volume independent.
It is important to observe, however, that the monopole

density is independent of the fermion mass. Since the
mechanism of confinement in the theory with infinitely
massive fermions, i.e. in the pure gauge theory, is
based on monopoles and since the monopole density is
not affected by the fermion mass, we may conjecture

that this same mechanism holds also in the chiral
limit. This supports the arguments by Herbut about
the confinement in the presence of massless fermion [7, 8].
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FIG. 9: β3ρm versus βm in the noncompact formulation.

V. CONCLUSIONS

In this paper we have compared the compact and the
noncompact formulations of QED3 by looking at the be-
havior of the chiral condensate and the monopole density.

Numerical results for β2〈χχ〉 are compatible with those
obtained by other groups, although it is still questionable
if the continuum limit has been reached and if the chiral
limit is stable. The biggest difficulty for this observable
is that the chiral extrapolation is rough when a linear fit
is performed, but gives a negative value when instead a
quadratic fit is considered. Massive calculations on larger
lattices are needed to further reduce the finite volume
effects and to stabilize the chiral limit.

As far as monopoles are concerned, they appear in
smaller and smaller numbers for large β, this making the
determination of the continuum limit for β3ρm rather
problematic. Our results show, however, a very weak
volume dependence.

We have analyzed also the relationship between the
monopole density and the fermion mass, both in compact
and noncompact QED3. The weak dependence observed
leads us to conclude that the Polyakov mechanism for
confinement holds not only in the pure gauge theory, but
also in presence of massless fermions.

Finally, we note that, although the chiral condensate
and monopole density approach the continuum limit in
two different ranges of β, the analysis à la “Fiebig and
Woloshin” does not allow to exclude the equivalence
of the compact and noncompact lattice formulations of
QED3.
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