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Abstract

We comment on the Lee-Yang zero analysis for the study of the phase struc-

ture of QCD at high temperature and baryon number density by Monte-Carlo

simulations. We find that the sign problem for non-zero density QCD induces

a serious problem in the finite volume scaling analysis of the Lee-Yang zeros

for the investigation of the order of the phase transition. If the sign problem

occurs at large volume, the Lee-Yang zeros will always approach the real axis

of the complex parameter plane in the thermodynamic limit. This implies

that a scaling behavior which would suggest a crossover transition will not

be obtained. To clarify this problem, we discuss the Lee-Yang zero analysis

for SU(3) pure gauge theory as a simple example without the sign problem,

and then consider the case of non-zero density QCD. It is suggested that the

distribution of the Lee-Yang zeros in the complex parameter space obtained

by each simulation could be more important information for the investigation

of the critical endpoint in the (T, µq) plane than the finite volume scaling

behavior.
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I. INTRODUCTION

In the last few years, remarkable progress in exploring the QCD phase structure in the
temperature (T ) and quark chemical potential (µq) plane have been made in numerical
studies of lattice QCD. The phase transition line, separating hadron phase and quark-gluon
plasma phase, was investigated from µq = 0 to finite µq [1–6], and the equation of state was
also analyzed quantitatively at low density [4,7–9].

Among others, study of the endpoint of the first order phase transition line in the (T, µq)
plane, whose existence is suggested by phenomenological studies [10,11], is particularly im-
portant both from the experimental and theoretical point of view. To locate the critical
endpoint, Fodor and Katz [2,3] investigated the positions of the Lee-Yang zeros (to be ex-
plained more below) in the complex β = 6/g2 plane using lattices with different spatial
volumes, and examined the finite-volume scaling behavior of a Lee-Yang zero closest to the
real axis. There are also studies in which the behavior of the critical endpoint as a function of
the quark masses is examined by using the property that a critical endpoint exists at µq = 0
in the very small quark mass region for QCD with three flavors having degenerate quark
masses. For extrapolating the result to the case with physical quark masses, an approach on
the basis of the Taylor expansion in terms of µq/T [12] and that of the imaginary chemical
potential [13,14] have been developed. Moreover, a study of phase-quenched finite density
QCD, i.e. simulations with an isospin chemical potential, has been discussed in Ref. [15].
The radius of convergence in the framework of the Taylor expansion of the grand canonical
potential can establish a lower bound of the location of the critical endpoint [7,9,16]. Also,
the Glasgow method [17] is an interesting approach for the study of QCD at non-zero baryon
density.

In this paper, we focus our attention on the method of the Lee-Yang zero [18] applied
to finite density QCD. The Lee-Yang zero analysis is a popular method that is used to
investigate the order of phase transitions. In order to study the existence of singularities
in the thermodynamic limit (infinite volume limit), Lee and Yang proposed the following
approach: Because there are no thermodynamic singularities as long as the volume is finite,
the partition function Z is always non-zero; it can develop zeros only in the infinite volume
limit. However, if a real parameter of the model is extended into the complex parameter
plane, a singularity, characterized by Z = 0, can appear in the complex parameter plane
even in a finite volume. These zeros are called the Lee-Yang zeros. Therefore, one can find
the position of a singularity by exploring the position of the Lee-Yang zero in the complex
parameter plane as a function of volume, and extrapolating the position of the Lee-Yang zero
in the thermodynamic limit. For a system with a first order phase transition, the position of
the nearest Lee-Yang zero approaches to the real axis in inverse proportion to the volume.
On the other hand, the Lee-Yang zeros do not reach the real axis for crossover transition,
i.e. rapid change without any thermodynamic singularities. For QCD at non-zero baryon
density, we expect a rapid crossover transition in the low density regime which changes into
a first order phase transition beyond a critical value of the density.

As we mentioned, Fodor and Katz have investigated the finite volume dependence of the
Lee-Yang zeros in the complex β ≡ 6/g2 plane for various values of the chemical potential.
To carry out such analysis, the reweighting method [19] is adopted, in which one performs
simulations at µq = 0, and then corrects for the modified Boltzmann weight in the measure-
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ment of observables. In this case a famous problem arises for large µq/T and large volume,
which is called “sign problem”. The sign problem is caused by complex phase fluctuations
of the fermion determinant. In the region of small µq/T , the phase fluctuations are not large
and the sign problem is not serious. However, if the sign of the modification factor changes
frequently during subsequent Monte-Carlo steps for large µq/T , the statistical error becomes
larger than the expectation values in general.

We find that the sign problem induces a serious problem in the finite volume scaling
analysis of the Lee-Yang zero, which is used by Fodor and Katz. For any non-zero µq the
normalized partition function calculated on the real axis with necessarily limited statistics
will numerically always be consistent with zero once the volumes grow large. This means
that the scaling behavior suggesting a crossover transition will not be obtained for the case
with the sign problem, which is in contrast with the usual expectation.

Before discussing the case of non-zero density QCD, we study in Sec. II, as a simple
example, the Lee-Yang zeros in the complex β plane for SU(3) pure gauge theory by analyzing
data from Monte-Carlo simulations. This model has a first order phase transition [20] and
simulations are much easier than for QCD at non-zero baryon density. Moreover, the pure
gauge theory does, of course, not have a sign problem. Hence it is a good example to
demonstrate how the Lee-Yang analysis works in the complex β plane. In addition, it
will become clear during this exercise that the complex phase fluctuations arising from the
imaginary part of β near Lee-Yang zeros are quite similar to those coming from the quark
determinant where the sign problem exists for non-zero density QCD. The problem of the
complex measure is reviewed in Sec. III. There we also comment on the reweighting method
for the study at non-zero baryon density. In Sec. IV, we discuss a problem which arises
when we apply the Lee-Yang zero analysis for non-zero baryon density QCD by using the
reweighting technique, and consider possible other approaches in the framework of the Lee-
Yang zero analysis for the investigation of the critical endpoint. Conclusions and discussions
are given in Sec. V.

II. LEE-YANG ZERO FOR SU(3) PURE GAUGE THEORY

A. General remarks

In this section, we apply the method of Lee-Yang zeros to the SU(3) pure gauge theory
(quenched QCD).1 The phase transition of the SU(3) pure gauge theory is known to be of
first order [20], which is expected from the corresponding Z(3) spin models. The pure gauge
theory is controlled by only one parameter β = 6/g2 with the partition function,

Z =
∫

DUe6βNsiteP , (1)

where P is an averaged plaquette P = (
∑

x,µ<ν W
1×1
µν (x))/(6Nsite), and W 1×1

µν is 1×1 Wilson
loop operator for the lattice size Nsite = N3

σ ×Nτ . Here, Nσ and Nτ are spatial and temporal

1A pioneering study has been done for lattices with Nτ = 2 in Ref. [21].
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extension of the lattice. We extend the real parameter β into the complex plane (βRe, βIm),
and determine the position of Lee-Yang zeros, at which Z(βRe, βIm) = 0 is satisfied, by
numerical simulations. We use standard Monte-Carlo techniques; configurations {Uµ} are
generated with the probability of the Boltzmann weight. The expectation value of an oper-
ator O[Uµ], 〈O〉, is then calculated by taking an average over the configurations. We expect
that the position of the Lee-Yang zero (β0

Re, β
0
Im) approaches the real β axis in the infinite

volume limit; with β0
Im ∼ 1/V ≡ N−3

σ for a first order phase transition.
In carrying out the above calculation two problems arise: One is that the Monte Carlo

method is applicable only to the expectation values of physical quantities but not to the
partition function itself. Another problem is that the measure is complex for a complex cou-
pling β, and hence we cannot apply the Monte Carlo method directly, since the probabilities
(Boltzmann weights) must be real and positive. To avoid these problems, we introduce the
normalized partition function Znorm together with the reweighting technique,

Znorm(βRe, βIm) ≡

∣

∣

∣

∣

∣

Z(βRe, βIm)

Z(βRe, 0)

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∫

DUe6(βRe+iβIm)NsiteP

∫

DUe6βReNsiteP

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

〈

e6iβImNsiteP
〉

(βRe,0)

∣

∣

∣

∣

=

∣

∣

∣

∣

〈

e6iβImNsite∆P
〉

(βRe,0)

∣

∣

∣

∣

. (2)

Here ∆P = P − 〈P 〉 and |exp(6iβImNsite 〈P 〉)| = 1. Because the denominator Z(βRe, 0)
is always finite for any finite volume, the position of Z(βRe, βIm) = 0 can be identified by
analyzing Znorm. Although the partition function is not zero for βIm = 0, it can be zero at
some points in the (βRe, βIm) plane, when the complex phase factor in Eq.(2) changes sign
frequently on the generated configurations. For the determination of the critical point in
the original theory, i.e. on the real β axis, the position of the nearest Lee-Yang zero should
be investigated as a function of the volume V = N3

σ .
The mechanism that leads the occurrence of a Lee-Yang zero in Eq.(2) is quite similar to

that which limits the applicability of the reweighting method for QCD with finite chemical
potential [4,22]. We will discuss this in more detail in Sec. III. At a point for which
the width of the probability distribution of 6βImNsiteP is smaller than O(π/2), the sign of
the complex phase does not change. Therefore, the standard deviation of the plaquette
distribution is required to be larger than π/(12βImNsite) in the region where Lee-Yang zeros
exist. Moreover, because the square of standard deviation is in proportion to the value
of the plaquette susceptibility, the position of its maximum must agree with the position
where Znorm becomes minimal as function of βRe for fixed βIm. Hence, the real part, βRe, of
the position of the nearest Lee-Yang zero must be consistent with the peak position of the
plaquette susceptibility. The method to find a critical point from the location of Lee-Yang
zeros thus is essentially the same as the method which determines a critical point through
the location of the peak position of the susceptibility and its finite volume scaling.

Here, it is instructive to introduce a probability distribution function for the plaquette,
w(P ), which is defined by

w(P ′) =
1

Z

∫

DUδ(P ′ − P )e6βReNsiteP , (3)

where δ(x) is the delta function. Then, Eq.(2) can be rewritten as
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Znorm(β) =

∣

∣

∣

∣

∫

dPe6iβImNsite∆Pw(P )

∣

∣

∣

∣

. (4)

This means that the partition function Znorm as a function of 6βImNsite is obtained through
a Fourier transformation of w(P ).

Using this equation, the relation between the scaling behavior of the Lee-Yang zeros in
the infinite volume limit and the distribution function of the plaquette becomes clearer. In
Monte-Carlo simulations, configurations with probabilities proportional to their Boltzmann
weight are generated by a computer, and we obtain a distribution function of the plaquette
from the histogram of the plaquette. The histogram has usually a Gaussian shape at a
normal, non-critical point, but it deviates from the Gaussian form near a critical point, and
attains a double peak shape at a first order transition point, corresponding to the coexistence
of two phases.

For the case of a non-singular point of βRe or a crossover pseudo-critical point, where
the distribution is expected to be a Gaussian function, the point of Znorm = 0 does not exist
except in the limit of βImNsite → ∞ or −∞, because the function which is obtained through
a Fourier transformation of a Gaussian function again is a Gaussian function. Of course,
results of numerical simulations have statistical errors, hence Znorm can become zero “within
errors”, if the expectation value and the error become of the same order. However, in this
case, the point at which Znorm = 0 appears at random in terms of βIm × Nsite. Therefore,
the volume dependence of the position of the Lee-Yang zero (β0

Re, β
0
Im) does not necessary

to be β0
Im ∼ 1/V (≡ N−3

σ ) for fixed Nτ .
On the other hand, in the case of a first order phase transition, we expect that the

plaquette histogram has two peaks having the same peak height at the transition point.
Performing the Fourier transformation of such a double peaked function leads to a function
which has zeros periodically. For example, a distribution function w(P ) having two Gaussian
peaks at ∆P = ±A leads to a normalized partition function Znorm which has zeros at

β0
Im =

π(2n+ 1)

12NsiteA
, (n = 0, 1, 2, 3, · · ·). (5)

This is mathematically the same as that for the interference experiment using a laser and
a double-slit. The Lee-Yang zeros correspond to dark lines (destructive interference) and
they appear periodically as given in Eq.(5). Moreover, for a first order phase transition the
difference of plaquette values in cold and hot phases, 2A, is related to the latent heat ∆ε,
i.e. the energy difference between the hot and cold phases,

∆ε

T 4
≈ −12AN4

τ a
dβ

da
, (6)

where a is the lattice spacing. Since ∆ε is non-zero, A does not vanish in the infinite volume
limit (N3

σ → ∞). Therefore, we find that in the infinite volume limit the nearest Lee-Yang
zero approaches the real β axis like β0

Im ∼ 1/V , which is consistent with the general argument
on the Lee-Yang zero for a first order phase transition. We also emphasize that the isolated
Lee-Yang zeros appear periodically. The distances to these points from the real axis are
1, 3, 5, · · · in units of the distance to the first Lee-Yang zero. This is also an important
property, which is not observed for a crossover transition.
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In addition, the discussion given for the plaquette distribution function can be extended
to the analysis of fourth order Binder cumulants,

B4 ≡
〈∆P 4〉

〈∆P 2〉2
, (7)

which is an alternative to the method of Lee-Yang zeros often used to identify the order
of a phase transition. The value of the Binder cumulant at the critical point depends on
the universality class. In the case of a first order phase transition, assuming the plaquette
distribution is a double peaked function, the Binder cumulants are estimated as

B4 =

∫

dP∆P 4w(P )

(
∫

dP∆P 2w(P ))2
≈

A4

(A2)2
≈ 1, (8)

where the distance between two peaks is 2A and is wider than the width of each peak. On
the other hand, when the distribution function can be modeled by a Gaussian function for
a crossover transition, the Binder cumulants are given by

B4 ≈

√

x/π
∫

dP∆P 4e−x∆P 2

(√

x/π
∫

dP∆P 2e−x∆P 2

)2 =





√

x

π

d2
√

π/x

dx2





/



−

√

x

π

d
√

π/x

dx





2

= 3. (9)

In a region where a first order phase transition changes to a crossover, the Binder cumulant
changes rapidly from one to three. We expect to find such a region for full QCD at high
temperature and density. The value of the Binder cumulant at the endpoint of the first order
transition line, which is of second order, is determined by the universality class. Hence, the
plaquette distribution function plays an important role for both methods to identify the
order of a phase transition.

B. Numerical results

We calculate the normalized partition function for SU(3) pure gauge theory to find Lee-
Yang zeros in the complex β plane, using data for plaquettes obtained by QCDPAX in
Ref. [23]. There are five data sets measured at the transition point for Nτ = 4 and 6. The
spatial lattice sizes are 242 × 36× 4, 122 × 24× 4, 362 × 48× 6, 243 × 6, and 203 × 6. O(106)
configurations are available for the analysis of each data set. The reweighting technique is
also used for the real β direction to analyze the Lee-Yang zeros in the complex β plane for a
data set obtained at only one β point (βRe, βIm) = (β0, 0). The normalized partition function
is given by

Znorm(βRe, βIm) =

∣

∣

∣

∣

∣

∣

∣

〈

e6iβImNsite∆Pe6βReNsite∆P
〉

(β0,0)

〈e6βReNsite∆P 〉(β0,0)

∣

∣

∣

∣

∣

∣

∣

. (10)

Figure 1 shows the contour plot of Znorm for the 242×36×4 lattice. The simulation point
is β0 = 3.6492. In this definition, Znorm is normalized to be one on the real β axis. Circles
at (β0

Re, β
0
Im) ≈ (5.6925, 0.0021) and (5.6931, 0.0056) are Lee-Yang zeros. Since the SU(3)
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pure gauge theory has a first order phase transition, Lee-Yang zeros appear periodically. For
this data, two clear peaks are visible in the plaquette histogram [23]. The distance between
these two peaks is 2A ≈ 0.003. The positions of the Lee-Yang zeros are consistent with
β0
Im ∼ π/(12NsiteA) ≈ 0.002 and 3π/(12NsiteA) ≈ 0.006, as given in Eq.(5).
Above property is not seen so clearly for lattices having small Nσ and large Nτ . The

position of the next-to-leading zero points of Znorm appear at random for the other data sets
relative to the nearest zero point. The positions of Lee-Yang zeros are shown in Table I. We
could not obtain clearly isolated Lee-Yang zeros for the lattices 243 × 6 and 203 × 6. The
second nearest Lee-Yang zero to the real axis could be measured only for the 242 × 36 × 4
lattice. The result on the 362 × 48 × 6 lattice (β0 = 5.8936) is also shown in Fig. 2. Only
the nearest Lee-Yang zero is obtained clearly. The Lee-Yang zero becomes less clear as Nτ

increases and Nσ decreases, hence simulations on lattices having large Nσ/Nτ seem to be
necessary for the study of Lee-Yang zeros.

The values for β0
ImV on 242 × 36 × 4 and 122 × 24 × 4 lattices are 43.9(5) and 42.0(6),

respectively. These are roughly constant and suggest the scaling behavior of β0
Im ∼ 1/V for

a first order phase transition. Also, in the previous study for lattices with Nτ = 2 [21], the
1/V scaling behavior has been confirmed for Nσ = 6, 8, 10 and 12. However, for a more
precise quantitative investigation that takes into account the errors, the spatial lattice size
122 × 24 may not be large enough to check the 1/V scaling for Nτ = 4, since the difference
of β0

ImV is larger than the statistical error. We should fit the data obtained on more than
two lattices by a curved function of 1/V , to confirm through a 1/V scaling analysis that the
phase transition of the SU(3) pure gauge theory is first order. E.g. for the study of the SU(2)
gauge-Higgs model [24], the following fitting functions have been used, Imκ0(V ) = κc

0+CV −ν

and Imκ0(V ) = κc
0 + CV −1 + DV −2 for a complex parameter κ in the model with fitting

parameters κc
0, C,D, and ν.

III. COMPLEX PHASE FLUCTUATION AND SIGN PROBLEM

As seen in the previous section, the investigation of Lee-Yang zeros in the complex β
plane seems to be useful to identify the order of phase transition. However, if we try to
extend this analysis to full QCD at non-zero baryon density, a serious problem arises. This
problem is closely related to the sign problem for finite density QCD, since the normalized
partition function can be zero in the complex β plane due to fluctuations of the complex
phase related to βIm and also due to the complex phase from the quark determinant that
causes the sign problem. Before discussing the Lee-Yang zero analysis for finite density
QCD, we would like to review the sign problem briefly.

The main difficulty for studies at finite baryon density is that the Boltzmann weight is
complex if the chemical potential is non-zero. In this case the Monte-Carlo method is not
applicable directly, since configurations cannot be generated with a complex probability.
One approach to avoid this problem is the reweighting method. We perform simulations at
µ = 0, and incorporate the remaining part of the correct Boltzmann weight for finite µ in
the calculation of expectation values. Expectation values 〈O〉 at (β, µ) are thus computed
by a simulation at (β, 0) using the following identity,
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〈O〉(β,µ) =

〈

OeNf (ln detM(µ)−ln detM(0))
〉

(β,0)

〈eNf (ln detM(µ)−ln detM(0))〉(β,0)
, (11)

where M is the quark matrix and Nf is the number of flavors (Nf/4 for staggered type quarks
instead of Nf); µ is a quark chemical potential in lattice units, i.e. µ ≡ µqa = µq/(NτT ),
and µq is the quark chemical potential in physical units. This is the basic formula of the
reweighting method. However, because ln detM(µ) is complex, the calculations of the nu-
merator and denominator in Eq.(11) becomes in practice increasingly more difficult for larger
µ. We define the phase of the quark determinant θ by (detM(µ))Nf/4 ≡ | detM(µ)|Nf/4eiθ

for staggered type quarks. If the typical value of θ becomes larger than π/2, the real part of
eiθ (= cos θ) changes its sign frequently. Eventually both the numerator and denominator of
Eq.(11) become smaller than their statistical errors and Eq.(11) can no longer be evaluated.
We call it the “sign problem”.

Here, the denominator of Eq.(11), or simply 〈cos θ〉, is a good indicator for the occurrence
of the sign problem. If this indicator is zero within statistical errors, Eq.(11) cannot be
computed. In the following we give an estimate for the value of the complex phase. Since
the direct calculation of the quark determinant is difficult except for calculations on small
lattices, we expand ln detM(µ) in a Taylor series,

ln detM(µ)− ln detM(0) =
∞
∑

n=1

[

∂n(ln detM)

∂µn

]

µn

n!
. (12)

Then, we can easily separate it into real and imaginary parts because the even derivatives
of ln detM(µ) are real and the odd derivatives are purely imaginary [4]. The complex phase
θ is given by

θ =
Nf

4

∞
∑

n=1

Im
∂2n−1(ln detM)

∂µ2n−1

µ2n−1

(2n− 1)!
, (13)

for staggered type quarks at small µ. The Taylor expansion coefficients are rather easy to
calculate by using the stochastic noise method. The comparison between the value of θ with
this approximation and the exact value has been done in Ref. [25], and the reliability and
the application range have been discussed.

We use data for the Taylor expansion coefficients obtained in Ref. [9]. The data were
generated by using Symanzik-improved gauge and p4-improved staggered fermion actions.
Coefficients up to O(µ5) have been calculated. Figure 3 shows the indicator 〈cos θ〉 measured
at β = {3, 60, 3.65, and 3.68}, for ma = 0.1, corresponding to T/Tc = 0.90, 1.00, and 1.07,
respectively, on a 163 × 4 lattice2. We also estimate the values of µq/T ≡ Nτµ at which

2As mentioned in Ref. [4], in the calculation using the stochastic noise method, the error due to

the finite number of noise vector (Nnoise) is large for the calculation of 〈cos θ〉 with Nnoise = 10.

For the purpose of this study we increased the number of noise vector to Nnoise = 100. We checked

that the difference between the results with Nnoise = 50 and Nnoise = 100 is about 10% for the

calculation of the position at which 〈cos θ〉 = 0.1.
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〈cos θ〉 = 0.1, 0.01 and 0.0. Results are given in Table II. The situation now is quite similar to
the non-singular case of the normalized partition function in the complex β plane discussed
in the previous section. This becomes even more apparent if we consider for simplicity
only the first term in the expansion of θ which is proportional to µ. Then 〈cos θ〉, µ and
Im[∂(ln detM)/∂µ] correspond to the normalized partition function, βIm and plaquette,
respectively.

Because the distribution of the complex phase θ is almost of Gaussian shape, the indi-
cator, 〈cos θ〉, decreases exponentially as µ increases, and it may cross zero at a point where
the expectation value becomes smaller than the statistical error. Therefore, the points of
〈cos θ〉 = 0 appear accidentally and the results given in Table II are unstable. Moreover,
∂(ln detM)/∂µ becomes larger as the volume increases, hence the indicator for the sign
problem vanishes in the infinite volume limit for any non-zero µ, which means that the
range of applicability for the reweighting method approaches µ = 0 in the infinite volume
limit.

IV. LEE-YANG ZERO ANALYSIS FOR FINITE DENSITY QCD

The Lee-Yang zero analysis for finite density QCD has been performed by Fodor and
Katz [2,3]. They measured the normalized partition function Znorm using the reweighting
method, and determined the points where Znorm = 0 as a function of spatial volume. The
normalized partition function is defined by

Znorm(βRe, βIm, µ) ≡

∣

∣

∣

∣

∣

Z(βRe, βIm, µ)

Z(βRe, 0, 0)

∣

∣

∣

∣

∣

=
∣

∣

∣

∣

〈

e6iβImNsite∆P eiθ
∣

∣

∣e(Nf/4)(ln detM(µ)−ln detM(0))
∣

∣

∣

〉

(βRe,0,0)

∣

∣

∣

∣

(14)

or

Znorm(βRe, βIm, µ) ≡

∣

∣

∣

∣

∣

Z(βRe, βIm, µ)

Z(βRe, 0, µ)

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

〈

e6iβImNsite∆P eiθ
∣

∣

∣e(Nf/4)(ln detM(µ)−ln detM(0))
∣

∣

∣

〉

(βRe,0,0)

〈eiθ |e(Nf/4)(ln detM(µ)−ln detM(0))|〉(βRe,0,0)

∣

∣

∣

∣

∣

∣

∣

(15)

for staggered type quarks. θ is the complex phase of exp[(Nf/4)(ln detM(µ)− ln detM(0))].
Since the numerator of Eq.(15), which is the same as Znorm in Eq.(14), is required to be zero
at a zero point of Znorm in Eq.(15), we consider Eq.(14) as an indicator for the Lee-Yang
zero.

Here, we notice that for βIm = 0 this normalized partition function is exactly the same
as the indicator for the sign problem, i.e. the denominator of Eq.(11). As discussed in
the previous section, in any practical simulation this indicator will be consistent with zero
within errors for large values of µ. Moreover, the region where the indicator is non-zero
becomes narrower as the volume increases, and this region vanishes in the infinite volume
limit. Hence, the Lee-Yang zeros always approach the βIm = 0 axis in the infinite volume
limit for any finite µ. This means that the scaling behavior for crossover will not be obtained
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for the case with the sign problem. This is clearly different from the usual expectation for
the QCD phase diagram in the (T, µ) plane. Most model calculations suggest that the
transition is crossover in the low density region. This might be a problem of the definition
of the normalized partition function, Eq.(14). The normalized partition function on the
real β axis is exactly one for µ = 0, but it vanishes for finite µ in the infinite volume
limit. Therefore, it is very difficult to distinguish the first order transition and crossover
by investigating the position of Lee-Yang zeros as a function of spatial volume. This is the
most important difference between the definitions for the pure gauge theory in Sec. II and
QCD at non-zero density.

The critical endpoint is shown to be located at µB = 3µq = 725(35)MeV in Ref. [2]
and 360(40)MeV in Ref. [3], which is inconsistent with the above argument. This may be a
problem of the fitting function. In Refs. [2,3] the position of Lee-Yang zeros has been fitted
by β0

Im = A(1/V ) + β∞

Im, where A and β∞

Im are fitting parameters. The first order transition
and crossover have then been distinguished by the value of β∞

Im. As we discussed in Sec. II,
this fitting function is too simple to fit the data of Lee-Yang zeros obtained on lattices as
small as those used in Ref. [2,3], i.e. V ≤ 123. In fact, if one assumes a curved extrapolation
function, all data in Table 1 of Ref. [3] seems to approach βIm = 0 in the 1/V → 0 limit.

In our argument, the statistical error of Znorm, which is controlled by the number of
configurations in the Monte-Carlo simulation, plays an important role. If the statistical error
of Znorm becomes much smaller than the mean value of Znorm by increasing the statistics for
each simulation, the method in Ref. [2,3] would be applicable. However, one cannot satisfy
this condition in general simply because we are looking for the Lee-Yang zero which gives
Znorm = 0. Namely, statistical error cannot be smaller than 0. Moreover, if the error of
Znorm is sizeable, there appear fake Lee-Yang zeros which are located even closer to the real
β axis than the true zero in the region where the mean value of Znorm is smaller than the
error. Since we adopt the closest zero as the Lee-Yang zero in the actual scaling analysis,
we may thus misidentify the true zero by the fake one.

The above point can be seen explicitly for the second Lee-Yang zero of the SU(3) gauge
theory with Nτ = 6 shown in Fig. 2. Theoretically, we expect the second Lee-Yang zero
exists around βIm ≈ 0.013, i.e. three times larger than that of the first Lee-Yang zero as
shown in Fig. 1. However we find several β which give Znorm = 0 in the region of βIm > 0.006,
and they distribute randomly. If we identify the second nearest point as the second Lee-Yang
zero, the resulting βIm is much smaller than the theoretical expectation. This problem is
caused by the existence of the region in the complex β-plane where the statistical error of
Znorm is larger than the mean value as discussed above. As the statistics is increased for
fixed V , such a region should become smaller and fake Lee-Yang zeros should disappear.

Now we discuss how the above situation changes by increasing the volume V . Fortunately,
in the SU(3) gauge theory, the location of Lee-Yang zero can be determined better also as
the volume increases as shown in Sec. II. In this case, the validity of the scaling assumption
becomes better as the volume increases. On the other hand, for the case with the sign
problem, the error normalized by the mean value grows exponentially as a function of volume.
Then the size of the region having fake Lee-Yang zeros cannot be made smaller unless one
has exponentially large statistics. This leads to the conclusion that the quality of the scaling
analysis is not improved by increasing the volume, and any reliable information about Lee-
Yang zeros in the infinite volume limit cannot be obtained. This is the reason why the
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serious problem of identifying the critical endpoint is intimately related to the sign problem.
This discussion suggests that the finite volume scaling analysis suffers serious damage

through the unsolved sign problem, and it is very difficult to apply the criterion used by
Fodor and Katz for the investigation of the critical endpoint in practice. However, the
property of the second nearest Lee-Yang zero characteristic for a first order transition in
Fig. 1, i.e. the fact that the distance to the second Lee-Yang zero from the real axis is
three times larger than that of the first Lee-Yang zero, could be investigated on a finite
lattice. This study is possible for small µ without taking the infinite volume limit. On the
other hand, we do not expect any isolated Lee-Yang zero for a crossover transition, hence we
may be able to determine the order of phase transition by investigating the distribution of
Lee-Yang zeros in the complex β plane. Although the measurements of the second Lee-Yang
zero may require large lattice sizes and high statistics, as seen for the case of pure SU(3)
gauge theory, it may be possible to find the region of the first order phase transition, if the
critical endpoint exists in the low density region.

V. CONCLUSIONS

We commented on the Lee-Yang zero analysis for the study of the critical endpoint in
the (T, µq) phase diagram. It is found that the Lee-Yang zero analysis at non-zero baryon
density encounters a serious problem. The complex phases of the quark determinant and the
complex β are mixed at non-zero chemical potential. In this case, in practical simulations
with limited statistics the normalized partition function can develop zeros even on the real
β axis for large µq in finite volumes. Moreover, in the infinite volume the normalized
partition function is always zero except for µq = 0. This means that the nearest Lee-Yang
zero always approaches the real β axis in the infinite volume limit. The scaling behavior
suggesting a crossover transition thus will not be obtained. This is clearly different from
usual expectations for the QCD phase diagram. To avoid this problem, the sign problem
must be removed by careful treatments increasing the number of configurations exponentially
as the volume or µq/T increases, otherwise the finite volume scaling behavior for the position
of Lee-Yang zeros, which has been analyzed by Fodor and Katz [2,3], does not provide an
appropriate criterion for the investigation of the order of the phase transition.

To make the underlying problem more transparent, we applied the Lee-Yang zero analysis
to the SU(3) pure gauge theory, which does not have a sign problem and for which the
simulations are much easier. Lee-Yang zeros are found in the complex β plane. They appear
periodically as expected by the discussion using a plaquette distribution function for a first
order phase transition. The positions of the first Lee-Yang zero on two lattices having
different volume sizes are roughly consistent with the finite size scaling behavior for a first
order phase transition, i.e. β0

Im ∼ 1/V . However, for quantitative analysis it is necessary to
fit data from more than two different lattice sizes by a curved function to study the order
of the phase transition. It is found, in this analysis, that complex phase fluctuations arising
from the imaginary part of β play an important role, and the mechanism that leads to the
appearance of the Lee-Yang zeros is quite similar to the situation in QCD where the sign
problem is present.

The property of a first order phase transition that isolated Lee-Yang zeros appear peri-
odically at βIm ∼ C(2n + 1), where C is the distance to the nearest Lee-Yang zero and n

11



is an integer, is free from the problems that arise in the infinite volume limit. Therefore,
to investigate the pattern of the appearance of Lee-Yang zeros in the (βRe, βIm) plane is im-
portant. For this calculation, the simulations by using high statistics data and large lattice
size are indispensable. Further studies are clearly important to find the endpoint of the first
order phase transition line in the (T, µq) plane.

Recently, a close relation between the strength of the sign problem and the position of
the phase transition line for pion condensation in phase quenched QCD has been discussed
in Ref. [26]. There it has been found that the endpoints of the first order transition line
determined in Ref. [2,3] are located near the phase transition line of pion condensation.
These results may relate to our discussion given here.

Moreover, the pathologies in the Glasgow method have been discussed in Ref. [17]. Sim-
ilar problems arise also in the Glasgow method. It would be interesting to consider the
relation between the pathologies in the Glasgow method and those in the Lee-Yang zero
analysis.
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TABLES

TABLE I. Positions of Lee-Yang zeros for the SU(3) pure gauge theory

Lattice size βRe βIm
122 × 24 × 4 1st zero 5.69178(23) 0.01216(17)

242 × 36 × 4 1st zero 5.69252(5) 0.00212(2)

242 × 36 × 4 2nd zero 5.69309(7) 0.00556(7)

362 × 48 × 6 1st zero 5.89411(10) 0.00434(8)

TABLE II. Values of µq/T ≡ Nτµ at which 〈cos θ〉 = 0.1, 0.01 and 0. Nsite = 163 × 4.

T/T0 〈cos θ〉 = 0.1 〈cos θ〉 = 0.01 〈cos θ〉 = 0.0

0.90 0.70(2) 1.0(2) 1.2(2)

0.96 0.80(2) 1.1(1) 1.1(1)

1.00 0.87(2) 1.9(2) 2.3(4)

1.02 0.96(3) 2.2(12) 2.3(1)

1.07 1.13(3) 1.8(4) 2.0(2)
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FIG. 1. Contour plot of the normalized partition function Znorm in the (βRe, βIm) plane mea-

sured on the 242 × 36 × 4 lattice. Values in the right edge are Znorm . The simulation point is

β0 = 5.6925.

5.89 5.892 5.894 5.896

β
Re

0

0.002

0.004

0.006

0.008

β Im

36
2
x48x6 lattice 

0.1

0.5

0.05

0.01

0.0050.001

FIG. 2. Contour plot of the normalized partition function Znorm for the 362 × 48 × 6 lattice.

The simulation point is β0 = 5.8936.
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FIG. 3. The expectation value of the complex phase 〈cos θ〉 for QCD with two flavors of

p4-improved staggered quarks at ma = 0.1.
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