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We compute O(αs) lattice-to-continuum perturbative matching coefficients for the ∆S = 2 fla-
vor changing four-quark operators for the Asqtad improved staggered action. In conjunction with
lattice simulations with three flavors of light, dynamical quarks, our results yield an unquenched
determination of BK , the parameter that determines the amount of indirect CP violation in the
neutral kaon system. Its value is an important input for the unitarity triangle analysis of weak
decays.
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I. INTRODUCTION

Lattice calculations have started extracting phe-
nomenologically relevant results with high precision and
controlled uncertainties [1]. This requires simulations
with dynamical quarks, lattice actions with small dis-
cretization errors and good control over perturbative cor-
rections. Effective field theory methods are an important
tool to achieve these goals. They enable a judicious de-
sign of lattice actions with small discretization errors. On
the other hand, the complicated form of improved lat-
tice actions puts a burden on perturbative calculations
required to match the output of lattice simulations to
continuum physics. For the matching to be meaning-
ful, perturbative calculations have to be performed with
exactly the same action and operators, with which the
non-perturbative simulations are done.

The purpose of the present paper is to compute the
matching coefficients of the four-fermion ∆S = 2 opera-
tors relevant for K− K̄ mixing for the Asqtad lattice ac-
tion, an improved staggered fermion action used in many
of the current simulations with dynamical quarks. The
strength of K−K̄ mixing is determined by the matrix el-
ement 〈K̄|(s̄d)V −A(s̄d)V −A|K〉 ∼ BK(µ), where µ is the
renormalization scale. The determination of BK(µ) has
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become an important goal of lattice simulations, since
a precise value of this parameter translates into a strin-
gent constraint on the unitarity triangle. The current
constraint is dominated by theoretical uncertainties, the
largest being the uncertainty in the value of BK [2]. The
experimental input comes from K → ππ decays and has
percent level precision [3].

Results of lattice calculations for BK(2 GeV) have
been summarized in [4, 5]; a central value of
BK(2 GeV) = 0.58(4) from quenched determinations
was advocated in [4]. The uncertainty associated with
this value does not include the systematic error induced
by quenching, i.e. neglecting the effects of dynamical
fermions. The errors from quenching are presumed to be
of the order of 15%, but are very hard to estimate reliably
[6]. In order to go beyond this accuracy, the calculation
needs to be performed with dynamical fermions. The
virtue of the improved action for which we perform our
calculation is that it allows for precise calculations with
light, dynamical quarks. The action is used by the MILC
collaboration [7] and consists of the Asqtad discretiza-
tion of staggered quarks [8, 9] coupled to a Symanzik
improved gluon action [10].

The nonperturbative calculation of the matrix ele-
ments of the lattice operators on the MILC dynamical
configurations was discussed in [11], along with prelimi-
nary results for the bare BK parameter. Together with
the matching coefficients given in this paper, these results
determine the renormalized continuum value BK(µ) [12].

In [13] two of us suggested an approach to lattice per-
turbation theory that allows an efficient separation of
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energy scales that appear in matching calculations – the
inverse lattice spacing, which plays the role of the ul-
traviolet cut-off, and the physical masses and momenta.
As a result of this scale separation, we are able to treat
the complicated integrals that appear in lattice pertur-
bation theory by algebraic means. The approach allows
a very high degree of automation, thereby circumventing
the complexity of improved lattice actions to a certain de-
gree. We have used this method in [14] to compute the
one-loop relation between the bare lattice mass and the
pole mass for the Asqtad action. In the present paper
we compute the matching coefficient for ∆S = 2 four-
fermion operators for the Asqtad action, using the alge-
braic technique [13] as well as numerically. The agree-
ment of the results obtained using these two completely
different techniques provides a strong check on the cal-
culation.
The lattice-to-continuum matching coefficients for the

∆S = 2 four-quark operators have been previously cal-
culated for the standard, unimproved, discretization of
staggered fermions [15], as well as for a class of improved
staggered actions [16]. While none of these results is di-
rectly relevant for the Asqtad action, we have checked
that we reproduce the known result for the unimproved
action, once we switch off all improvement terms.
The rest of the paper is organized as follows. In the

next Section we give the discretization of the four-fermion
operators. In Section III we discuss how the matching is
performed and give the result for each of the relevant
Feynman diagrams. In Section IV we include the tad-
pole improvement terms. We present our results for the
matching coefficients that relate bare lattice operators to
continuumMS operators in Section V. Finally, in the last
Section we summarize our results and compare the size of
the perturbative corrections found for different staggered
actions.

II. STAGGERED AND NAIVE LATTICE

OPERATORS

For energy scales below the charm quark mass, the con-
tinuum effective Hamiltonian relevant for K − K̄ mixing
reads [17]

Hweak
eff =

G2
Fm

2
W

16π2
C(µ)Q(µ), (1)

where

Q = (s̄d)V −A (s̄d)V −A. (2)

The possibility to describe K − K̄ mixing by a single op-
erator is a consequence of the V − A structure of weak
interactions and the Fierz identities that facilitate ex-
pressing any relevant four-quark operator in canonical
form (2).
Lattice simulations of the K − K̄ mixing require in-

troducing the operator Q on the lattice. It is conve-
nient to perform the perturbative calculations with naive

instead of staggered quarks and to carry out the spin-
diagonalization and the reduction from the sixteen to four
doublers (or “tastes”) afterwards. We use the standard
discretization for the staggered four-quark operators and
now show how these operators can be rewritten in terms
of the naive fermion field.
The naive fermion field ψ and the staggered field χ at

lattice site n = (n1, n2, n3, n4) are related by

ψ(n) = Γn χ(n) ψ̄(n) = χ̄(n) Γ†
n (3)

where

Γn = (γ1)
n1 (γ2)

n2 (γ3)
n3 (γ4)

n4 . (4)

We choose a Hermitian representation of the Euclidean
Dirac algebra with

{γi, γj} = 2δij and γ5 = γ1 γ2 γ3 γ4 . (5)

When written in terms of staggered fermions, the
quark action becomes spin diagonal and three of the four
components of the quark field χ can be dropped. In per-
turbation theory it is more convenient to keep all com-
ponents, and replace nf → nf/4 at the end of the cal-
culations to obtain the result for the single component
field.
The fields χ(2N + A) are collected into a set of Dirac

fields q(2N) that live on the even lattice sites and are
spread over a unit hypercube [18, 19, 20] (Aµ = 0 or 1,
µ = 1 . . . 4)

q(2N)αij =
1

8

∑

A

(ΓA)α,i χj(2N +A) . (6)

The index α is the Dirac index of the new field and i the
“taste” index. The second taste index j runs over the
components of the field χ. Staggered fermions have only
one component, while the four component of the naive
field give rise to 4 × 4 tastes. Bilinear quark operators
with spin structure γS and taste structure ξT = Γ∗

T (with
T again on the unit hypercube) are

q̄(2N)(γS ⊗ ξT )q(2N)

=
1

16

∑

A,B

χ̄(2N +A) χ(2N +B)
1

4
tr(Γ†

A γSΓB Γ†
T ) .

(7)

Since the quark fields in the operators are at different
lattice points, they need to be connected by Wilson lines
in order to make the operators gauge invariant. We sup-
press these Wilson lines, but it is understood that gauge
strings among all possible shortest paths connecting the
quark fields are inserted and the operator is divided by
the number of paths. Using (3) we rewrite the operator
in terms of the naive fermion field:

q̄(2N)(γS ⊗ ξT )q(2N)

=
1

16

∑

A,B

ψ̄(2N+A) ΓA Γ†
B ψ(2N+B)

1

4
tr(Γ†

A γSΓB γ
†
T ) .

(8)
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Let us write out the vector and axial currents at N = 0
with unit taste structure in terms of the naive quark field
ψ(n). We find

q̄ (γµ ⊗ 1) q =
1

16

∑

A

δAµ,0

[

ψ̄(A)γµψ(A+ µ̂) + ψ̄(A+ µ̂)γµψ(A)
]

, (9)

and (A = (1, 1, 1, 1)−A)

q̄ (γµγ5 ⊗ 1) q =
1

16

∑

A

δAµ,0

[

ψ̄(A)γµγ5ψ(A+ µ̂) + ψ̄(A)γµγ5ψ(A+ µ̂)
]

. (10)

In the continuum limit, the massless staggered action has
a SU(4)L × SU(4)R chiral symmetry (for a single stag-
gered field) and one would naively expect to find fifteen
Goldstone bosons after chiral symmetry breaking, corre-
sponding to the fifteen traceless taste matrices. However,
this symmetry is explicitly broken to an axial U(1) sym-
metry by terms in the action proportional to the lattice
spacing squared. The generator of the remaining axial
symmetry is the matrix γS ⊗ ξT = γ5 ⊗ γ5. In our case,
this implies that only the kaon with taste structure γ5
becomes massless in the chiral limit. For this reason, the
simulation is done with currents having ξT = γ5 taste
structure and not the unit matrix as in (9) and (10).
However, it has been shown that the result for diagrams
in which the fermions in the operators are not contracted
are identical for the Dirac and taste structures Γ⊗Γ′ and
Γγ5⊗Γ′γ5 [20].1 For our perturbative calculation we will
thus use (10) instead of the vector current γµ ⊗ γ5 and
(9) in place of γµγ5 ⊗ γ5.
The operator Q for which we want to perform the

matching calculation is a product of two V − A cur-
rents. We will see that QCD corrections to bare lattice
four-quark operators affect the vector and axial parts dif-
ferently; as a consequence currents of the form V + A
are generated. A minimal set of lattice operators that
matches to the continuum and closes under renormaliza-
tion consists of 4 scalar and 2 pseudoscalar operators.
Schematically these operators are

Q1 = (s̄ada)V (s̄
bdb)V , Q2 = (s̄adb)V (s̄

bda)V ,

Q3 = (s̄ada)A(s̄
bdb)A, Q4 = (s̄adb)A(s̄

bda)A,

Q5 = (s̄ada)V (s̄
bdb)A + (s̄ada)A(s̄

bdb)V ,

Q6 = (s̄adb)V (s̄
bda)A + (s̄adb)A(s̄

bda)V .
(11)

V and A are the vector and axial currents with taste
structure ξT = γ5. The color indices a, b indicate which

1 The reason is that in this case, one can view the four fermions
as four different quark flavors and perform separate axial U(1)
transformations on each field.

fields are connected by Wilson lines. The pseudoscalar
operators Q5,6 only mix amongst themselves and their
K − K̄ matrix element vanishes, because of parity. In
the following we will therefore only consider the renor-
malization of the operators Q1−4.
The above operators are used in the nonperturbative

calculation of the matrix elements by the HPQCD collab-
oration [11, 12]. In contrast to the lattice action, these
operators are not Symanzik improved.

III. MATCHING CALCULATION

To perform the matching we calculate a physical quan-
tity in the continuum and on the lattice, expand around
the continuum limit, and adjust the Wilson coefficients
of the lattice operators in such a way that they repro-
duce the continuum result. Specifically, we determine
the bare lattice Wilson coefficients from the quark-quark
scattering amplitude

A = Z2Cbare
i 〈Obare

i 〉 = Z2Ci Zij〈Oj〉 = Z2
latC

lat
i 〈Olat

i 〉 ,
(12)

where Z and Zlat are on-shell quark wave-function renor-
malizations and 〈O〉 is the amputated four-quark Green’s
function with an insertion of the operator O. The lattice-
to-continuum matching coefficients are independent of
the quantity chosen to perform the matching. At one-
loop order, it is simplest to regulate infrared divergencies
with a gluon mass and to calculate the scattering ampli-
tude of massless quarks at zero external momentum.
At tree level in the continuum limit, the operators Qi

are identical to their continuum counterparts; this im-
plies that no tree level matching is required. At one
loop the matching coefficients C lat

i are obtained by calcu-
lating the difference between the lattice and continuum
one-loop diagrams. In the difference, the infrared diver-
gencies cancel. Below we present such a calculation for
the set of lattice operators described above.
For unimproved staggered fermions the renormaliza-

tion of the axial current operator with γS⊗ξT = γµγ5⊗γ5
is finite and identical in the continuum and on the lattice.
This happens because it renormalizes in the same way as
the vector current with unit taste structure γµ ⊗ 1 which
has exactly the same form as the quark-gluon coupling in
the Lagrangian. Because of the improvement terms, this
is not true for the Asqtad action and we will need to eval-
uate the matching not only for the four-quark operators
but also for the current.
The matching calculation requires computing matrix

elements of certain operators in lattice perturbation the-
ory; to do so we use the approach described in [13, 14].
In those references an expansion of the lattice integrals
around the continuum limit is introduced by utilizing the
technique of asymptotic expansions. The asymptotic ex-
pansion around the continuum limit splits the lattice dia-
grams into two parts: (i) a soft part which is obtained by
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evaluating continuum loop integrals (in analytic regular-
ization) and is independent of the discretization and (ii) a
hard part which depends on the discretization but is inde-
pendent of particle masses and momenta. The proximity
of the soft part of the lattice loop integrals and the con-
tinuum integrals in dimensional regularization permits
significant simplifications when computing the difference
of the lattice and continuum Green’s functions required
for matching calculations.
There are five diagrams (plus permutations) that con-

tribute at O(αs) to the quark-quark scattering ampli-
tude; they are shown in Fig. 1. To present the result
of the calculations, we introduce the following notation
for the difference of the lattice and continuum one-loop
matrix elements of the four-fermion operators:

δ〈Qi〉α =
(αs

4π

)(µa

2

)2ǫ 4
∑

j=1

qiα,jQ
j, (13)

where the label α refers to a particular diagram shown in
Fig. 1. The spacetime dimension is d = 4 − 2ǫ, µ is the
renormalization scale in the MS subtraction scheme and a
the lattice spacing. In what follows, we split the matrices
qi into soft and hard pieces. We give the result for each
diagram separately. We hope that the results for the
individual diagrams will be useful for readers performing
similar calculations in the future.

A. Soft part

As a first step in the matching calculation, we compute
the difference between the soft parts of lattice matrix el-
ements and the result derived in dimensional regulariza-
tion. To obtain the full result, we later add the hard
part for a given lattice action. Technically the soft part
is obtained by evaluating the continuum diagrams shown
in Fig. 1, first in dimensional and then in analytic regu-
larization. The calculation is simplified by noting that a
difference between the two regulators can only arise from
ultraviolet divergent loop integrals.
Below we give the results for the difference of the soft

parts of the matrices q and the corresponding contin-
uum diagrams. Since the diagrams 4 and 5 in Fig. 1 do
not have continuum analog, their contribution to the soft
part is zero: qsoft4 = qsoft5 = 0. For diagram 1, we derive

qsoft1 =













CF f
(1)
11 0 0 0

f
(1)
11

2 −
f
(1)
11

2N 0 0

0 0 CF f
(1)
11 0

0 0
f
(1)
11

2 −
f
(1)
11

2N













.

The variable N = 3 denotes the number of colors, CF =
(N2 − 1)/2N and

f
(1)
11 = −2 (1 + ξ)

(

1

ǫ
−

1

δ

)

+ 1− 2ξ . (14)

The parameter δ is an intermediate analytic regulator,
which will drop out in the sum of the hard and soft part
[13]. Setting the gauge parameter ξ = 0, one obtains the
result in Feynman gauge while ξ = −1 corresponds to
Landau gauge. For details on our notation and method
of calculation, we refer the reader to [14].
For diagrams 2 and 3 in Fig. 1 we obtain,

qsoft2 =













−
f
(2)
11

2N
f
(2)
11

2 −
f
(2)
13

2N
f
(2)
13

2
f
(2)
11

2 −
f
(2)
11

2N
f
(2)
13

2 −
f
(2)
13

2N

−
f
(2)
13

2N
f
(2)
13

2 −
f
(2)
11

2N
f
(2)
11

2
f
(2)
13

2 −
f
(2)
13

2N

f
(2)
11

2 −
f
(2)
11

2N













,

qsoft3 =













−
f
(3)
11

2N
f
(3)
11

2 −
f
(3)
13

2N
f
(3)
13

2

0 CF f
(3)
11 0 CF f

(3)
13

−
f
(3)
13

2N
f
(3)
13

2 −
f
(3)
11

2N
f
(3)
11

2

0 CF f
(3)
13 0 CF f

(3)
11













,

where

f
(2)
11 = −f

(3)
11 + 6 = (5 + 2ξ)

(

1

ǫ
−

1

δ

)

+
15

2
+ 2ξ,

f
(2)
13 = f

(3)
13 = 3

(

1

ǫ
−

1

δ

)

+
5

2
. (15)

To evaluate the continuum diagrams, a prescription for
the treatment of γ5 and the extension of the Fierz iden-
tities to d-dimensions [21, 22, 23] has to be adopted. We
use naive dimensional regularization for γ5 and treat the
evanescent operators exactly as in [17], to be compatible
with the results for the Wilson coefficients given in these
references. Note that with this prescription, the opera-
tors Q1 ∝ γµ ⊗ γµ and Q3 ∝ γµγ5 ⊗ γµγ5 also mix into
operators with Dirac structure 1⊗1, γ5⊗γ5 and σµν⊗σµν .
We do not give the result for this mixing, since it drops
out in the sums Q1 + Q3 and Q2 + Q4 which are rele-
vant for our matching calculation. However, separating
the vector and axial contributions also in the soft part
allows us to read off the current renormalizations from
the first diagram in Fig. 1 and provides additional con-
sistency checks, such as cancellation of δ-poles and gauge
invariance of the sum of hard and soft parts.
In addition to the diagrams shown in Fig. 1, we have to

account for the external leg corrections, given by the wave
function renormalization of the massless quarks. This
correction is universal in that it does not depend on the
operator under consideration. We obtain

δZ(1)Oi|soft = CF

(

2

ǫ
−

2

δ
+ 1

)

(1 + ξ)Oi, (16)

where Z2
lat−Z2=αs

π δZ(1)+ . . . is the difference between
the lattice (soft part only) and the on-shell quark wave
function renormalization constant. This difference van-
ishes in Landau gauge, which is a consequence of the fact
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FIG. 1: Current-current diagrams. The diagrams on the sec-
ond line do not have a continuum analog. Not shown are
additional diagrams that can be obtained by flipping one of
the above diagrams horizontally or vertically.

that in this gauge the continuum quark wave function
renormalization is finite.

Note that the coefficients of the 1/ǫ and 1/δ pieces in
all the equations above are exactly opposite. The 1/δ-
divergences will cancel against those of the hard parts.
The fact that the above differences do not depend on any
infrared scales (the gluon mass in our case) shows that
the result of a matching calculation is process indepen-
dent.

B. Hard part

We now give the result of our calculation of the hard
part. This amounts to presenting the matrices qα for
the five diagrams in Fig. 1. The symmetry factors for
each of the diagrams are included. We begin with naive
unimproved fermions coupled to unimproved glue.

The result for the hard part of the first three diagrams
in Fig. 1, has the same structure as was found for the
soft part:

qhard1 =













CF d
(1)
11 0 0 0

d
(1)
11

2 −
d
(1)
11

2N 0 0

0 0 CF d
(1)
33 0

0 0
d
(1)
33

2 −
d
(1)
33

2N













,

where

d
(1)
11 = −

2(1 + ξ)

δ
− 3.53− 2.38 ξ,

d
(1)
33 = −

2(1 + ξ)

δ
− 3.62 + 0.695 ξ , (17)

and

qhard2 =













−
d
(2)
11

2N

d
(2)
11

2 −
d
(2)
13

2N

d
(2)
13

2
d
(2)
11

2 −
d
(2)
11

2N

d
(2)
13

2 −
d
(2)
13

2N

−
d
(2)
13

2N

d
(2)
13

2 −
d
(2)
11

2N

d
(2)
11

2
d
(2)
13

2 −
d
(2)
13

2N
d
(2)
11

2 −
d
(2)
11

2N













,

qhard3 =













−
d
(3)
11

2N
d
(3)
11

2 −
d
(3)
13

2N
d
(3)
13

2

0 CF d
(3)
11 0 CF d

(3)
13

−
d
(3)
13

2N

d
(3)
13

2 −
d
(3)
11

2N

d
(3)
11

2

0 CF d
(3)
13 0 CF d

(3)
11













,

with

d
(2)
11 = −d

(3)
11 =

(5 + 2ξ)

δ
+ 0.157 + 0.689ξ,

d
(2)
13 = d

(3)
13 =

3

δ
− 0.341, (18)

The remaining two diagrams have no continuum ana-
logue. We obtain

qhardi=4,5 =













CF d
(i)
11 0 0 0

d
(i)
21 CF d

(i)
22 −

d
(i)
21

N 0 0

0 0 CF d
(i)
33 0

0 0 d
(i)
43 CF d

(i)
44 −

d
(i)
43

N













,

with entries

d
(4)
11 = 16.06 + 18.38ξ,

d
(4)
21 = 1.18 + 1.69ξ,

d
(4)
22 = 13.70 + 15.00ξ, (19)

d
(4)
33 = 12.23 + 12.23ξ,

d
(4)
43 = −0.73− 1.38ξ,

d
(4)
44 = 13.70 + 15.00ξ,

d
(5)
11 = −73.40− 9.19 ξ,

d
(5)
21 = −2.20− 0.85ξ,

d
(5)
22 = −48.9− 7.50ξ, (20)

d
(5)
33 = −24.47− 6.12ξ,

d
(5)
43 = 1.57 + 0.69ξ,

d
(5)
44 = −48.9− 7.50ξ.

We also give the result for the hard part fermion wave
function renormalization on the lattice:

δZ(1)Oi|hard = CF

(

− 10.614− 11.928 ξ +
2(1 + ξ)

δ

+ [24.466 + 6.117 ξ]
)

Oi. (21)
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We have separated out the tadpole contribution in (21)
in square brackets. In Landau gauge this contribution
exactly cancels against the tadpole improvement term.
We now give the results for the entries of the matrices

for the case of Asqtad action. In this case, as explained
in [14], we expand in the improvement terms, for both
quark and gluon actions. We use half of the highest order
terms as the numerical error estimate and multiply the
last term of the series by 2/3 to resum the higher order
contributions that behave like an alternating geometric
series with expansion parameter 1/2 (see [14] for details).
We find

d
(1)
11 = −

2(1 + ξ)

δ
− 3.00(1)− 2.379 ξ,

d
(1)
33 = −

2(1 + ξ)

δ
+ 0.81(4) + 0.695 ξ

d
(2)
11 = −d

(3)
11 =

(5 + 2ξ)

δ
+ 2.79(10) + 0.689ξ,

d
(2)
13 = d

(3)
13 =

3

δ
+ 2.10(9),

d
(4)
11 = 18.54(6) + 18.38ξ,

d
(4)
21 = 1.73(1) + 1.69ξ,

d
(4)
22 = 15.09(3) + 15.00ξ, (22)

d
(4)
33 = 12.23 + 12.23ξ,

d
(4)
43 = −1.43(2)− 1.38ξ,

d
(4)
44 = 15.09(3) + 15.00ξ,

d
(5)
11 = −58.0(5)− 9.19 ξ,

d
(5)
21 = −2.06− 0.84 ξ,

d
(5)
21 = −39.1(3)− 7.50 ξ,

d
(5)
33 = −20.3(1)− 6.12 ξ,

d
(5)
43 = 1.56(1) + 0.69 ξ,

d
(5)
44 = −39.1(3)− 7.50 ξ.

The gauge dependent part is the same as in the unim-
proved case because the improvement terms in the action
are transverse [14].
For the Asqtad action, the wave function renormaliza-

tion contribution is:

δZ(1)Oi|hard = CF

(

− 14.3(2)− 11.28 ξ +
2(1 + ξ)

δ

+ [30.1(6) + 5.47ξ]
)

Oi. (23)

The renormalization of the axial and vector current can
be read off from the above expressions. In both cases it
is given by one half of the corresponding entries in the
matrices qi for diagrams 1, 4 and 5 in Fig. 1 and the con-
tribution due to the wave function renormalization. As

FIG. 2: Current diagrams.

discussed earlier in this section, the discretized version of
the axial current that we use in this paper renormalizes
identically to the unimproved quark-gluon vertex. As
a consequence, the lattice-to-continuum matching coeffi-
cient for the axial current should be equal to unity for the
unimproved action, to all orders in αs. Using the results
presented above, it is easy to verify this at the one-loop
level.

C. Matching coefficients from a different method

Most of the diagrams needed in the determination of
the matching coefficients for four-fermion operators can
be calculated from the renormalization coefficients for bi-
linears operators, as was first pointed out by Martinelli
[24]. The method has been generalized to Landau-gauge
operators in [20], general local operators in [25] and stag-
gered gauge invariant operators in [16].
In Fig. 1, we did not show mirrored diagrams and did

not display the color structure of the four-quark oper-
ators. Also, we have not indicated from which of the
two currents the gluons in diagrams 4 and 5 are emitted.
Listing all possibilities, one ends up with 16 diagrams of
type 4 and 6 of type 5. Only 8 of the 16 diagrams of type
4 and 2 of the 6 diagrams of type 5 are genuine four-
fermion contributions. All other diagrams factor into a
product of a one-loop current renormalization diagram
times a tree level current. Furthermore, only half of the
remaining diagrams contribute to the mixing between
operators whose bilinears have identical taste-structure,
which is all that is relevant for matrix elements involving
external states of definite taste. One cannot avoid calcu-
lating the genuine four-fermion diagrams, but the result
for the other topologies can be obtained from the diag-
onal renormalization coefficients for bilinears operators
using Fierz and charge conjugation transformations as
described in [16]. Apart from the 5 genuine four-fermion
diagrams, the calculation reduces to the evaluation of
the current renormalization diagrams in Fig. 2 and the
universal wave function renormalization of the massless
quarks. In Fig. 2, the crossed circle denotes the insertion
of any bilinear with structure (γS ⊗ ξT ). The calculation
is further simplified by noting that the corrections are
identical if the operators are multiplied by (γ5 ⊗ γ5) due
to the axial symmetry, as stressed above.
For diagonal four-fermion operators (with identical

taste and spin structure in both bilinears) this procedure
gives us a 35× 35 matrix from which we can extract the
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2×2 block describing the mixing between [γµ⊗γ5][γµ⊗γ5]
and [γµγ5 ⊗ γ5][γµγ5 ⊗ γ5]. This block is related to the
4 × 4 matrix in (32) by including the appropriate color
factors as explained in [16].

We have done the calculation of the matching coef-
ficients for the ∆S = 2 four-quark operators using the
method described above and evaluating the integrals nu-
merically instead of algebraically. In all cases we find
full agreement with the direct evaluation of the diagrams.
This independent calculation of the matching coefficients
provides a non-trivial check of the validity of our results.
In addition, we have also performed the calculation for
the HYP actions used in [16] and reproduce the result
for the matching matrix given in that reference.

IV. TADPOLE IMPROVEMENT

Quite generally one finds that perturbative corrections
in lattice regularization are larger than those encountered
in continuum calculations, e.g. in the MS scheme. The
large corrections typically arise from the additional di-
agrams that would be absent in the continuum, in our
case the fourth and fifth diagram in Fig. 1. Since the
size of the corrections is scheme dependent they are not
by themselves meaningful. Instead of just working with
the bare lattice parameters one can try to absorb the
large perturbative corrections into a redefinition of the
basic parameters of the theory, such as coupling constant,
quark masses, Wilson coefficients of the weak Hamilto-
nian, etc. Such techniques are also used in the contin-
uum, for example in the context of Heavy-Quark Effec-
tive theories: the perturbative results for inclusive heavy
hadron decay rates get large perturbative corrections if
they are expressed in terms of the heavy quark pole mass
but the corrections are much smaller if one uses a more
suitable mass definition [26, 27, 28]. Similar ideas are
behind the so-called “physical” couplings and optimal
scale setting prescriptions, introduced quite some time
ago [29].

The large effects of the tadpole diagrams can be can-
celed by tadpole improvement [30]. Tadpole improve-
ment is achieved by working with an action in which all
gauge links are divided by an average link u0. In the sim-
ulation the average link is determined numerically, while
it is evaluated perturbatively in the matching calculation.
We define

u0 = 1− αs u
(1)
0 + . . . . (24)

The average link receives large perturbative corrections
which then cancel out the large contributions from the
tadpole diagrams. In this section we give the tadpole
improvement terms relevant for our calculation. Some
care is required because different variants of tadpole im-
provement are used in the literature. First of all, two
different definitions of the the mean link u0 are common:

the mean link in Landau gauge

u0 =

〈

1

3
ReTrUn,µ

〉

ξ=−1

(25)

or the fourth root of the average plaquette

uP0 =

〈

1

3
ReTrUn,µ Un+µ,ν U

†
n+µ+ν,µ U

†
n+ν,ν

〉1/4

.

(26)
The second definition is somewhat simpler since no gauge
fixing is required and it is what MILC is using in their
simulations with the Asqtad action. Furthermore, MILC
divides the L-link terms in the action and operators not
by uL0 as [30] but by uL−1

0 and absorbs a power of u0 into
the fermion mass. With their prescription no tadpole
improvement factor is present in the fermion part of the
naive unimproved action [9].2 Since the fermion mass
does not enter our calculation, the difference between
the two prescriptions merely amount to a rescaling of
the fermion field and leads to identical results for the
matching coefficients we calculate.
If we divide the L-link terms by uL0 , the tadpole im-

provement contribution from the current operators is

q(tad) = 4πu
(1)
0







6 0 0 0
0 4 0 0
0 0 2 0
0 0 0 4






. (27)

In addition, there is a tadpole improvement correction to
the square of the wave function renormalization

δZtad
unimp.Qi = −8πu

(1)
0 Qi ,

δZtad
AsqtadQi = −18πu

(1)
0 Qi . (28)

The results given in the next section are obtained with
u0 defined as the mean link in Landau gauge (25). How-
ever, using the explicit form of the tadpole improvement
terms given above the prescription can easily be changed.

V. WILSON COEFFICIENTS OF THE LATTICE

OPERATORS

TheWilson coefficients of the lattice operators can now
be read off by imposing that the four-quark scattering
amplitudes are equal in the continuum and on the lat-
tice. Clearly, the solution to the matching equation (12)
is in general not unique since there are many different
discretizations of the same continuum operator. In the
present case, the two (s̄d)V −A (s̄d)V −A operators with
different color structure become equivalent in the contin-
uum limit where they are related by a Fierz transforma-
tion. The matching condition will thus not fix the Wilson

2 We thank C. Bernard for pointing this out to us.
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coefficients of the operators with different color structure
individually. To be specific, at tree level the matching
conditions impose only three relations

C latt
1 = C latt

3 +O(αs) ,

C latt
2 = C latt

4 +O(αs) , (29)

Ccont = C latt
1 + C latt

2 +O(αs) ,

among the four lattice operatorWilson coefficients. Here,
Ccont is the Wilson coefficient of the continuum operator
Q, while C latt

i are the coefficients of Qi.
In lattice simulations, the quarks in the operator Q are

treated as four distinct flavors [31]. In this case, there is
no ambiguity: the effective continuum Hamiltonian con-
tains operatorsQcont

i that are the continuum limit of each
Qi. Also, instead of writing relations among coefficients,
it is more convenient to rewrite the result of the matching
in the form

Qcont
i ≡

4
∑

j=1

CijQ
lat
j , (30)

where “≡” means equality at the level of matrix elements,
see (12). The 4 by 4 matrix Cij has a perturbative ex-
pansion

Cij = δij +
(αs

π

)

C
(1)
ij + . . . (31)

and is obtained from the results for the graphs in the
previous section by

C
(1)
ij = −

1

4

[

δZ(1)δij +
(aµ

2

)2ǫ ∑

α

qiα,j + δZ
(1)
ij

]

. (32)

Here δZ(1) stands for the wave function renormalization
and Zij = δij +

αs

π Z
(1)
ij is the matrix of the MS renor-

malization constants for the operators Qcont
i in the con-

tinuum. For the purposes of computing C
(1)
ij , the role

of this matrix is to remove any residual 1/ǫ dependence
in (32). Using the results for the matrices qα given in
the previous section, it is straightforward to compute the

matching coefficients. We split the matrix C
(1)
ij into three

parts

C(1) = ln
(aµ

2

)

γ(1) + C
(1)
C + C

(1)
U . (33)

Here, γ(1) is the universal one-loop anomalous dimensions
matrix of the operators Qi:

γ(1) =









0 0 1
2 − 3

2
− 3

4
9
4 − 3

4 − 7
4

1
2 − 3

2 0 0
− 3

4 − 7
4 − 3

4
9
4









. (34)

The remainder CC +CU depends on the lattice action
and we give it for three cases: (a) Asqtad fermion and

improved gauge action, (b) Asqtad fermion with plaque-
tte gluon action, (c) standard action, no improvement.
The reason for splitting the remainder into two pieces
which are not separately gauge invariant, is as follows.
Occasionally, simulations are performed with operators
that are obtained by dropping the links that connect
fermions on different sites. The simulations with these
gauge non-invariant operators are performed in Landau
gauge and their matching coefficients can be extracted
from our calculation. To obtain them, we need to ac-
count for the contributions from graphs 1 − 3 in Fig. 1,
the wave function renormalization contributions as well
as the tadpole improvement for the wave function given
in (28). We denote the corresponding matching matrix
by CC . The remainder, denoted by CU is the contri-
bution from graphs 4 and 5 which arises from the link
fields in the current operator and the operator tadpole
improvement term given in (27). We give the matrices
CC,U in Landau gauge; their sum is gauge invariant.

For the Asqtad and improved gauge action, we find

C
(1a)
C =







2.83(14) −0.75 0.38(1) −1.15(2)
−1.25(1) 4.33(10) −0.58(1) −1.34(3)
0.38(1) −1.15(2) 2.59(15) −0.75
−0.58(1) −1.34(3) −1.34(2) 4.36(10)






,

(35)

C
(1a)
U =







2.08(5) 0 0 0
0.29 0.98(3) 0 0
0 0 0 0
0 0 −0.20(1) 1.14(3)






.

These results are obtained after tadpole improvement
with the “mean link in Landau gauge” definition of the

improvement parameter, u
(1)
0 = 0.750(2) for the im-

proved gluon action and u
(1)
0 = 0.97432 for the unim-

proved action. For Asqtad with the standard plaquette
gluon action, the result is

C
(1b)
C =







2.33 −0.75 0.34 −1.03
−1.18 3.61(1) −0.51 −1.20
0.34 −1.03 2.09 −0.75
−0.51 −1.20 −1.27 3.64(1)






,

(36)

C
(1b)
U =







2.97 0 0 0
0.32 1.43 0 0
0 0 0 0
0 0 −0.20 1.60






.

Notice that case (b) is not equivalent to what is consid-
ered in [16]. These authors employ a different discretiza-
tion of the operators using insertions of fattened links to
make the operators gauge invariant while we are using
thin links. Also, their fermion action is similar but not
identical to the fermion part of the Asqtad action.
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Without any improvement terms in the action, we get

C
(1c)
C =







−0.81 −0.75 0.18 −0.54
−0.85 −0.5 −0.27 −0.63
0.18 −0.54 0.25 −0.75
−0.27 −0.63 −0.46 −0.63






,

(37)

C
(1c)
U =







3.83 0 0 0
0.47 1.86 0 0
0 0 0 0
0 0 −0.38 2.14






.

The matrices for the unimproved action agree with the
known results in the literature [15, 16].
We write the finite correction to the normalization of

the axial-vector current in the form ZA = 1+ αs

π δZA and
obtain

δZ
(a)
A = 1.17(7), δZ

(b)
A = 0.921, δZ

(c)
A = 0. (38)

The current renormalization happens to be identical for
the gauge invariant and non-invariant operators in Lan-
dau gauge. This occurs because in this gauge, the contri-
bution of the fourth graph vanishes and the contribution
from fifth graph gets canceled by tadpole improvement.

VI. SUMMARY AND DISCUSSION

We have calculated the matching of the Wilson coef-
ficients in the ∆S = 2 flavor changing effective Hamil-
tonian from the continuum to the lattice for the Asqtad
lattice action. Together with non-perturbative calcula-
tions of the K − K̄ matrix element of the lattice oper-
ators, our results determine the amount of indirect CP
violation in the kaon system. The matrix elements are
currently being evaluated by the HPQCD and UKQCD
collaborations [11, 12]. The calculation uses the configu-
rations with nf = 2 + 1 dynamical flavors generated by
the MILC collaboration.
Previous calculations of the quantity BK , which de-

termines the strength of K − K̄ mixing, were performed
in the quenched approximation. This induces an essen-
tially unknown and irreducible systematic error into the
result. Precise simulations with dynamical fermions are
necessary in order to be able to make full use of the exper-
imental data onK−K̄ mixing to constrain the CKM ma-
trix elements entering the effective Hamiltonian. Among
the currently available fermion actions, only staggered
actions allow for simulations with low statistical errors at
small quark masses. However, the unimproved staggered
action suffers from large taste-changing interactions. The
Asqtad action, for which we have performed the match-
ing, has been designed to reduce these as well as other
cut-off effects.
We have performed our calculation with two indepen-

dent methods. First, we have evaluated the diagrams
in two different ways: by directly calculating the vari-
ous diagrams and by first separating off the part which

can be inferred from the renormalization of the current
operators. Second, we have evaluated the lattice inte-
grals both algebraically and numerically. For the alge-
braic evaluation, we have expanded the diagrams around
the continuum limit. This produces a set of lattice tad-
pole integrals which we then reduced to a minimal set of
master integrals using computer algebra. The agreement
between these two rather different methods provides a
strong check on our results.

We find that the size of one-loop corrections to the
tree level matching for the Asqtad action is very sim-
ilar to what is found with unimproved staggered and
other improved staggered actions, such as the HYP ac-
tion [32]. In quenched calculations at a lattice spacing
1/a = 1.6 GeV, the shift in the value of the bare BK due
to O(αs) corrections is around 10% for all these actions
[12]. In dynamical simulations with the Asqtad action
the shift turns out to be over 15% at the same lattice
spacing, simply because the value of the strong coupling
is much larger for nf = 3 than for nf = 0 dynamical
flavors. Also, it turns out that the values for the match-
ing coefficients are not very sensitive to the improvement
of the gluon action. Switching off the gluon improve-
ment terms in the Asqtad action changes the entries of
the one-loop matching matrix by less than 20% and the
changes are even smaller for the larger elements on the
diagonal. The motivation for using an improved stag-
gered action in the calculation of BK is not to reduce the
size of the one-loop corrections, which are already small
in the unimproved case, but to correct the large O(a2)
scaling violations that highly affect the unimproved case;
see [11, 12] for further discussion.

The situation is different for the calculation of other
weak matrix elements relevant in the study of CP-
violating effects in the kaon system. For the unimproved
staggered action, Sharpe and Patel [20] found very large
perturbative corrections for operators with scalar and
tensor Dirac structure. The contributions are large even
after tadpole improvement, which casts doubt on the per-
turbative expansion for the unimproved action. The cor-
rections are reduced to an acceptable level with the HYP
action [33] and operators which are made gauge invari-
ant by the insertion of fattened links [16, 34]. In order to
check whether these large corrections are present for the
Asqtad action with standard four-quark operators, we
have analyzed the mixing of scalar operators. We find
that the corrections are small with the improved action.
The suppression arises because the improvement terms
reduce taste-changing interactions. In Appendix A we
present the results for the mixing of scalar operators and
discuss the suppression of the large contributions in more
detail.

The absence of anomalously large one-loop corrections
suggests that the two-loop corrections to our results
should be reasonably small. However, in order to reduce
the uncertainty in dynamical calculations to the level of
a few per-cent, a two-loop matching calculation will be
necessary.



10

Acknowledgments We are grateful to Christine
Davies and Andreas Kronfeld for discussions and com-
ments on the manuscript. We thank the KITP in Santa
Barbara and the INT in Seattle where part of this work
was carried out for their hospitality and financial sup-
port. This research was supported in part by the U.S.
Department of Energy contracts DE-AC02-76CH03000,
DE-FG03-94ER-40833 and the Outstanding Junior In-
vestigator Award DE-FG03-94ER-40833, and by the Al-
fred P. Sloan Foundation. E.G. is indebted to the Eu-
ropean Commission for a Marie-Curie Grant No. MEIF-
CT-2003-501309. Fermilab is operated by Universities
Research Association Inc., under contract with the U.S.
Department of Energy.

APPENDIX A: MIXING OF SCALAR

OPERATORS

In this appendix we evaluate the matching for the op-
erators

QS
1 = (ψ̄a

1ψ
a
2 )S(ψ̄

b
3ψ

b
4)S ,

QS
2 = (ψ̄a

1ψ
b
2)S(ψ̄

b
3ψ

a
4 )S ,

(A1)

where the bilinears (ψ̄a
i ψ

a
j )S have unit Dirac and taste

structure, γS ⊗ ξT = 1 ⊗ 1 (or equivalently γ5 ⊗ γ5).
These operators are not needed for the evaluation of BK ,
but scalar and pseudoscalar operators are present in the
∆S = 1 effective Lagrangian used to determine ε′. The
scalar operators mix into tensor operators under renor-
malization, but the form of this mixing is not important
for our discussion.
For gauge non-invariant operators, the above matching

has been studied by Sharpe and Patel [20], who find very
large perturbative corrections for these operators even
after tadpole improvement. Such large corrections are
absent for the HYP action [33] with operators which are
made gauge invariant by the insertion of fattened links
[16, 34]. As we show below, this is true also for the
Asqtad action with standard operators.
Using the same notations and conventions as in Section

V, the 2 × 2 matrix for the anomalous dimension of the
operators in (A1) is

γ(1) =

(

4 0
3
2 − 1

2

)

. (A2)

After tadpole improvement, the corresponding matching
matrices for the unimproved action are

C
(1c)
C =

(

−17.26 0
−6.28 1.59

)

,

(A3)

C
(1c)
U =

(

0 0
−2.45 2.83

)

.

The one-loop correction to the matching is indeed very
large, in particular for the element that describes the
mixing of QS

1 into itself. The large correction is entirely
due to the first diagram in Fig. 1. It is twice the renor-
malization of the scalar current. Note that the operator
QS

1 is completely local. In terms of the naive field, it is
simply

q̄ (1⊗ 1) q =
1

16

∑

A

ψ̄(A)ψ(A) . (A4)

This implies that for the unimproved action large values
are obtained, independently of the prescription adopted
to make the operators gauge invariant.
The values obtained for the Asqtad action are

C
(1a)
C =

(

−1.8(1) 0
−0.6(1) 3.6(1)

)

,

(A5)

C
(1a)
U =

(

0 0
−1.81(1) 1.68(3)

)

.

It is comforting to see that the corrections are smaller
with the improved action. The dramatic reduction is
mostly due to the fat-link terms in the fermion action.
The origin of the large corrections for the unimproved

action, such as those in (A3), has been analyzed by
Golterman [35]. He splits the integration region for the
loop momenta π < kµ ≤ π into a region around zero
π/2 < kµ ≤ π/2 and a remainder which contains the
corners of the Brillouin zone. For Wilson fermions, he
finds that after tadpole improvement the main contribu-
tion arises from the integration region around zero. For
staggered fermions, on the other hand, large corrections
arise from the corners of the Brillouin zone. In this re-
gion, the gluon propagator is off-shell, but the staggered
fermion propagator has poles.3 Because the gluon prop-
agator is far off-shell, the first graph in Fig. 2 can be
viewed as a fermion tadpole in the corner region. This is
the interpretation put forward by Golterman.
The reason for the reduction achieved with the im-

proved action is that the improved quark gluon coupling
is designed to suppress taste-changing interactions. The
quark-gluon interaction switches off if the in- and out-
going tastes differ. This mechanism suppresses the con-
tribution from the corners of the Brillouin zone to the
first diagram in Fig. 1, which corresponds precisely to
the situation where the taste of the internal quark line is
different from the taste of the external line.
To conclude, we find that the anomalously large per-

turbative corrections present in some cases for the unim-
proved staggered action are suppressed in the Asqtad re-
sults due to the smaller taste-symmetry breaking of this
action. We thus expect that the two-loop corrections to
our matching calculation will be reasonably small.
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3 Note that the contribution we are talking about is from the re-
gion of hard loop momentum; there are no singularities from
propagating doublers. Such contributions only arise at higher

order in the expansion in the lattice spacing.
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