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Abstract

The infrared limit of the lattice Landau gauge gluon progagé studied. We
show that the lattice data is compatible with the pure poaer(Ig?)2¢ solution
of the Dyson-Schwinger equations. Using various latticeimes, the infinite
volume limit for the exponenk is measured. Although, the results allew=
0.498— 0.525, the lattice data favours ~ 0.52, which would imply a vanishing
zero momentum gluon propagator.

1 Introduction and motivation

The gluon propagator is a fundamental Green'’s function a@r@um Chromodynamics
(QCD). Certainly, a good description of this two point fupatis required to under-
stand the non-perturbative regime of the theory. Moreduethe Landau gauge, the
gluon and the ghost propagators at zero momentum are c@uheith possible con-
finement mechanisms. In particular, the Kugo-Ojima confieeirmechanism requires
an infinite zero momentum ghost propagafdrf]l, 2] and the Zwgan horizon con-
dition [3,[4,[5] implies either reflection positivity violan or a null zero momentum
gluon propagator. From this last condition it can be proved the zero momentum
ghost propagator should diverdgé [6].

The computation of the gluon and ghost propagators for thedinge of momenta
cannot be done in perturbation theory. Presently, we havelyoeither on Dyson-
Schwinger equations (DSE) or on the lattice formulation &% both are first prin-
ciples approaches. In the first technique a truncation ohfinite tower of equations,
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together with the parametrizations of a number of vertinasely the three gluon and
the gluon-ghost vertices, is required to solve the equatidmthe second, one has to
care about finite volume and finite lattice spacing effectgpéfully, the two solutions
will be able to reproduce the same solution. In this artickeare concerned with the
lattice Landau gauge gluon propagator in momentum space,
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for pure gauge theory. The form factbtg?) is the gluon dressing function.

Recently, in[[7] the DSE were solved for the gluon and ghospagators in the
deep infrared region. The solution assumes ghost domirertés a pure power law
[B], with the exponents of the two propagators related bynglsinumbe. For the
gluon dressing function, the solution reads

Z(q?) = z(o?) (2)

The DSE equations allow a determination of the exporent0.595, which, for the
zero momentum, implies a null (infinite) gluon (ghost) prgator, in agreement with
the criteria described above, and a finite strong couplingstzmt defined from the
gluon and ghost dressing functions][L1] 12]. Renormabratiroup analysis based
on the flow equatior [13,14,115] were able to predict, for theitson @), the range
of possible values for the exponent. The results of thisyaimbeing 62 < k <
0.595, implying, again, a null (infinite) zero momentum glugh@st) propagator. A
similar analysis of the DSE but using time-independentsstic quantisation[15,1L7]
predicted the same behaviour amd- 0.52145.

The reader should be aware that not all solutions of the D®#igra vanish-
ing zero momentum gluon propagator. [nI[L8] 19], the autikoraputed a solution
of the DSE with a finite zero momentum gluon propagator. Meegoin [20,[21] it
was claimed that the gluon and ghost propagators in the déiegrad region are not
connected via the same exponenand that there isn't yet a clear theoretical answer
concerning the value of zero momentum gluon propagatoro/tiag to the authors,
the range of possible values goes from zero to infinity.

On the lattice, there are a number of studies concerned htlgluon propagator
22,123,124 2626, -27]. On large lattices, the propagatcs imsestigated in[128].
Although the lattices used had a limited access to the defegréa region, the au-
thors conclude in favour of a finite zero momentum gluon pgapar, which would
imply k = 0.5 for the solution[[R). In[[29], the infinite volume and contimm lim-
its of the Landau gauge gluon propagator were investigateajwarious lattices and,
again, the data supported a finite zero momentum gluon pedpadn [24], the three-
dimensional lattice SU(2) Landau gauge propagator wasestwdth the authors mea-
suring an infrared exponent compatible with the correspanBSE solution.

In order to access the deep infrared region,[id [30,[31, 32hexee computed
the gluon propagator with large asymmetric lattices. Tretit[2) produced always
k < 0.5. However, the inclusion of corrections to the leading aha given by [2)
or when the gluon dressing function was modelled, eithenémhomenta regiog < 1
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GeV or for all the momentag becomes larger than 0.5. Moreover, in the prelimi-
nary finite volume studyl13Z,-34] of the two point gluon furmatiit came out thak
increases with the lattice volume and, in that sense, pusiy@omputed values should
be regarded as lower bounds. The previous studies do natleraxlear answer about
the zero momentum gluon propagator. In this paper, we ughateesults of our pre-
vious publications for the infrared region, using a largetraf lattices, that allows a
better control of the infinite volume extrapolation. Twofdient extrapolations to the
infinite volume are performed, namely the extrapolatior @nd the extrapolation of
the propagator, giving essentially the same result. Tha wanclusions from this in-
vestigation being that the lattice data is compatible whit DSE solution[{]2) for the
infrared gluon dressing function, for momental50 MeV or lower, and that the infi-
nite volume extrapolation of the lattice gluon propagatmmas to favour a vanishing
zero momentum gluon propagator.

2 Field Definitions and Notation
In the lattice formulation of QCD, the gluon fields, are replaced by the links

Up(x) = e0mbieal?) 4 o(a®) e 9U(3), 3)

whereeg, are unit vectors along direction. QCD is a gauge theory, therefore the fields
related by gauge transformations

Uu(x) — g(x) Up(x) g'(x+a8y), ge VU@3), (4)
are physically equivalent. The set of links related by gaugesformations ttJ, () is
the gauge orbit o), ().

The gluon field associated to a gauge configuration is given by
R 1 + 1 t
Au(x+284/2) = U ~UJ0] — g Tr[Uu U] (8)

up to corrections of ordes?.
On the lattice, due to the periodic boundary conditionsgikerete momenta avail-
able are 2
~ my
= — n,=01...L,—-1 6
qu aLu ) H Pt} H ) ( )

wherel , is the lattice length over directigm. The momentum space link is
Uu(@) = 5 e "™ Upu(x) (7)
X
and the momentum space gluon field

M) = Y e 809%2) p(xta8y/2)
X
e iGua/2

- TQO{ (U@ ~Ul-a)] - 5Tr[Uu@ - Uj(-a)] } ®)
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The gluon propagator is the gluon two point correlation fiorc The dimension-
less lattice two point function is

(AL(6) AY(E)) = D)V 8(a+4) . (9)

On the continuum, the momentum space propagator in the luegnalage is given by

DR = 6% (B — 22") D). (10

Assuming that the deviations from the continuum are nebl@gadhe lattice scalar func-
tion D(g?) can be computed directly frofi{{L0) as follows

o) = e av Y (TA@AA] ). ako. Ay

and
2 - -
D(0) = m% (Tr[Au(@Au(=8)] ), a=0, (12)
where ) 4 a
Ou = a sin(q%), (13)

N = 3 is the dimension of the groufNy = 4 the number of spacetime dimensions and
V is the lattice volume.

3 The Landau Gauge

On the continuum, the Landau gauge is defined by
ouAu = 0. (14)
This condition defines the hyperplane of transverse cordtgurs
r={A: 9-A=0}. (15)

It is well known [3%] thatl" includes more than one configuration from each gauge
orbit. In order to try to solve the problem of the nonpertiiEagauge fixing, Gribov
suggested the use of additional conditions, namely theiegsh of physical configu-
rational space to the region

Q={A:0-A=0,MA >0} C T, (16)

whereM[A] = —O-DJ[A] is the Faddeev-Popov operator. Howew@iis not free of
Gribov copies and does not provide a proper definition of @aysonfigurations.

A suitable definition of the physical configurational spagegjiven by the funda-
mental modular region C Q, the set of the absolute minima of the functional

Fald) = [ 3 Tr[ALGoAR(0] an
o
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In this article, the problem of Gribov copfesn the computation of the gluon propa-
gator will not be discussed. For a numerical study on Gribapies seel[36,37] and
references therein.

On the lattice, the situation is similar to the continuumottye The Landau gauge
is defined by maximising the functional

Fulg = Cr 5 Re{Tr[g(x)Uu(x)g" (x+ )]} (18)
XH
where 1
CF = NNV (19)

is a normalization constant. L&k, be the configuration that maximiség|g] on a
given gauge orbit. For configurations nély on its gauge orbit, we have

Fol1+i000] = Fo 1+ 0 S I600Tr[ A% (U — Uu(x— ) —
xn

AR(UI — Uix=i) |, (20)

whereA? are the Gell-Mann matrices. By definitiod,, is a stationary point oF,
therefore

e i) -

22 (Ufi(x) — ug(x_m)} - 0. (1)
In terms of the gluon field, this condition reads
ZTr{Aa(A,,(erafJ/Z)—Au(x—aﬁ/Z)) } +0(@%) = 0, (22)
[

or
S AL (X) + (@) = 0, (23)
]

i.e. ) is the lattice equivalent of the continuum Landaugg condition. The lattice
Faddeev-Popov operatbt(U) is given by the second derivative §f{18).
Similarly to the continuum theory, on the lattice one defitihesregion of stationary

points of [I8)
r={U:ad-AU) =0}, (24)

1For the 16 x 128 lattice, the gluon propagator was computed using battg#uge fixing method de-
scribed here and the gauge fixing method describeldn [38thadims to find the absolute maximaréf|g]
(see equatior{18)). For a similar number of configuratidmes, 164 configurations g = 6.0, we found
no clear differences in the propagatdrsl[31]. Thereforehim study it will be assumed that Gribov copies
do not play a significant role. Note that [n]39], it was showvatt in the continuum, the expectation values
measured i are free of Gribov copies effects.




Lattice Update| therm.| Sep.| Conf
83x 256 || 7OVR+4HB| 1500| 1000| 80
10° x 256 || 7OVR+4HB | 1500 | 1000| 80
128 x 256 || 7OVR+4HB | 1500| 1000| 80
143 x 256 || 7OVR+4HB | 3000 | 1000| 80
163 x 256 || 7OVR+4HB | 3000 | 1500| 155
18% x 256 || 7OVR+4HB | 3000 | 1500| 40

Table 1: Lattice setup used in the study of the gluon promagaiume dependence.

the Gribov’s regiom2 of the maxima of[(1B),
Q= {U:d-AU)=0andM(U) >0} (25)

and the fundamental modular regidndefined as the set of the absolute maxima of
@@3). A proper definition of the lattice Landau gauge chodsa® each gauge orbit,
the configuration belonging to the interior &f

In this work, the gauge fixing algorithm used is a Fourier fereged steepest de-
scent method (SD) as defined in]40]. In each iteration, therdéhm chooses

2 A2
9(x) = exp lﬁlg P

> e F (ZAV [Uy(x) — UJ(x)] —trace)] (26)

where
Ay (Up(x)) = Up(x—aé) —Uu(x), (27)

p? are the eigenvalues ¢f-92), ais the lattice spacing arfd represents a fast Fourier
transform (FFT). For numerical purposes, it is enough taaexito first order the ex-
ponential in[ZB), followed by a reunitarization gfx). On the gauge fixing process,
the quality of the gauge fixing is measured by

o — ViNC > 00" () 28)

where
A(x) = Y [Uv(x—ad) —UJ(x) — h.c.— tracq (29)

is the lattice version of, A, = 0.

4 Lattice setup

The gluon propagator was computed using the SU(3) pure ga\i¢son action,3 =
6.0 configurations for the lattices reported in tdflle 1. Allfigarations were generated
with the MILC codéhttp://physics.indiana.edu/~sg/milc.htmll The
table describes the combined overrelaxed+heat bath Maarle 6weeps, the number
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of thermalisation sweeps of the combined overrelaxed-#begatsteps, the number of
combined sweeps separating each configuration and thetotdder of configurations
for each lattice. The statistical errors on the propagatese computed using the
jackknife method.

The propagators computed in this study have finite volumeceff[32]. An exam-
ple is seen in figurEl1 where the bare gluon propag&ar?) = Z(g?)/q?, is plotted
for temporal momentg; and spatial momentg, for the smallest and largest lattices.
Figurel2 show®(qg?) for temporalg < 1 GeV for the volumes considered in this study,
including the two lattices 1%6x 48 and 32 x 64, B = 6.0, temporal momenta propa-
gators from[[ZB]. For the lattices discussed here, it wasMesl that the difference
between the propagators computed using only pure tempopalre spatial momenta
becames smaller as the spatial extension of the latticeases. Moreover, the dif-
ferences vanish for sufficient high momenta and becomendogesmaller momenta.
Furthermore, it was observed that, for the smallest momémtgpropagator decreases
as the lattice volume increases, in agreement with what Wwssreed in previous stud-
ies of the volume dependenc¢e][Z9] 32]. In this work, we will discuss what should
be the right choice of momenta to minimize finite volume efeSince our smallest
momenta are pure temporal momenta, the results of the \&ladtices will be com-
bined to investigate the volume dependence of the infraledngpropagator. In the
following and in order to access the infrared region, onby plure temporal momenta
will be considered.

5 The Infrared Gluon Dressing Function

An analytical solution of the DSE for the gluon dressing fiime is given by [2). For

B = 6.0, the lattice spacing ia~* = 1.94(5) GeV [33], therefore our smallest nonzero
momentum is 46+ 1.2 MeV. Since we do not know at what momenta the above solu-
tion sets in, besides the pure power law, we will consider ptdynomial corrections

to the leading behaviour, i.e.

2(cP) = z (o)™ {1 +zan(q2)"} : (30)

with n=1, 2. In order to be as close as possible to the infrared regiall fits only

the smallest range of momenta will be considered, i.e. pthrted fits have one degree
of freedom. Thex andx?/d.o.f. for the various fits are given in tadl® 2. In general,
the data is well described by any of the above functions. T™eeption being the
smallest lattice for a pure power law. shows finite volume effects, becoming larger
for larger volumes. Note that for the largest lattices, taBousk computed with the
corrections to the pure power law agree within one standevéhton. Moreover, for
the largest lattice, the various agree with each other within less than 1.5 standard



Lattice Z(g?)%¥ 2(g?)*(1+aq?) | 2(q?)%(1+ag? +bq?)

8% x 256 || 0.4496'53 2.14| 0.47733] 0.02| 0.4827"73 0.00

10°x 256 || 0.465073% 0.10| 0.4827"g3 0.25| 0.4765733* 0.14

12 x 256 || 0.466373% 1.19 | 0.482272% 0.21| 0.4849'%7 0.18
14° x 256 || 0.49187% 0.09 | 0.505372% 0.16 | 0.4992 % 0.06
16°x 256 || 0.4859737 0.40| 0.5070'35 0.44| 0.51317%/ 1.03
18 x 256 || 0.5017"59 0.20| 0.51693 0.00| 0.514'72 0.00

Table 2:x andx?/d.o.f. from fitting the different lattices. In all fits, the range obm
menta considered starts with the lowest non-vanishing méume The errors shown
are statistical and were computed using the bootstrap rdet¥ith the number of boot-
strap samples being about ten times the number of configusatiFor the momenta
range considered in the fits, the correction associated agttandag® + bg* to the
pure power law are below 20% and 30%, respectively. For thallest lattice, the
corrections are larger. However, this lattice is never uis¢lke extrapolations.

deviations. Figurgl3 shows the results of the fitg tas function of the inverse of the
lattice volume.

The infinite volumex can be estimated combining the results of tBble 2. Assuming,
for each of the reported fits to the dressing function, eighlerear or a quadratic depen-
dence on 1V for k(V) and excluding the smallest lattice, it comes out that theéigu
on the first column, the pure power law, are not described lyyodthese functional
forms’. Figurel3 includes, besides tevalues for each volume, the extrapolated
from fitting k(1/V) to a linear or quadratic function of/¥. Note that the points
are computed independently for each of the correctionsa@thie power law consid-
ered. The extrapolatedagree within one standard deviation, with the quadratiddits
k(1/V) giving larger errors and lying above the linear fits. For thear extrapolation
the results give

Ko = 0.516755), Ko = 0.521880) (31)

when the extrapolation uses the data from the quadratieaguhrtic corrections t@2).
The corresponding?/d.o. f. being 1.44 and 0.49. For the quadratic fit the extrapolated
values are

Ko = 0.537(13), Ko = 0.541(20); (32)

the x2/d.o.f. being 0.72 and 0.10, respectively. The ermorsere computed assum-
ing gaussian error propagation. The results of the extedipol to the infinite lattice

2The smallesy?/d.o. f. being larger than 5. This applies even if one considers aditbing function.



p Set | Set ll Set Il
83— 18° x 256 10° — 18% x 256 128 — 18 x 256
Lin Quad Cub Quarf Lin Quad Cub| Lin Quad
0| 2.84 260 154 0.213.08 194 0.13 2.99 0.01
1615 195 260 453266 267 4.71 2.92 5.07
2| 202 044 056 0.71068 059 0.77 0.72 0.90
3| 166 102 132 0.060.85 120 0.03 1.04 0.00

Table 3: Thex?/d.o.f. for the extrapolations to the infinite volume of the four lawe
momenta gluon propagator assuming a linear (Lin), quad{@tiad), cubic (Cub) and
quartic (Quart) polinomial dependence ofVland for various sets of data.

volume, point to a value of in the range (61— 0.56.

So far we have extrapolated tkevalues. Alternatively, one can extrapolate directly
the gluon propagator and fit the associated dressing fundtidigure§® anfl5 the bare
propagator is plotted, as function of the volume, for thedetwfour momenta. For all
these momenta, we tried linear, quadratic, cubic and quextrapolations. In tab[d 3
the x2/d.o.f. is reported for the various extrapolations considered anthie lowest
four momenta.

In the following, we will not consider extrapolations usiatj lattices (set I), be-
cause it involves our smallest lattice, which is too shof.8 fm in the spatial direc-
tions. Note, however, that the data reported in thble 3 fowrds a smooth approach
to the infinite volume limit, starting from lattices sizessmsall as 0.8 fm. Furthermore,
figuredd an@5 suggest that we should not use a linear exatigrol According to the
figures, a quadratic extrapolation, or a higher power of tiverise volume, seems to
be more suitable. However, for set I, and for the first nonishing momentum, the
cubic extrapolation gives a quite poor description of theadewhen compared to the
quadratic fit. So, for the reasons explained above, from nowe will consider only
the quadratic extrapolation using set Il and 1.

Figured® anfll5 show the lattice data together with the twoliGi@ extrapolations
to the infinite volume. Note that in both extrapolations, #arst x2/d.o.f. is asso-
ciated with the first nonzero momentum. Indeed, as can beisdegure[4, for this
momentum the data seems to fluctuate more than for the otheremta. For larger
momenta the behaviour of the gluon propagator as a funcfitimovolume becomes
smoather.

In [29] the infinite volume of the renormalized zero momentgloon propagator
was computed. The chosen renormalization condition was

1 .
F )
the lattice data was renormalizediat= 4 GeV. The quoted extrapolated renormalized

zero momentum gluon propagator bein@x13) GeV2. Our largest momentum
available isq = 3.88 GeV, a slightly lower value. Performing the renormalizatin

DR(%)|p_po = (33)



the same way but at the scale= 3.88 GeV, it comes

6.3+14GeV?2  setllldata,

D(0) = { 109+0.8GeV?  setll data. (34)

The quoted errors are pure statistical. The value quotéZBhi$ in between the above
figures, with the result from the so called set Il being altrmmmpatible within one
standard deviation with.95(13) GeV~2 and the result from set Il being compatible
only at three standard deviations.

The extrapolated propagators can be seen in fifure 6; thesemere computed
assuming gaussian error propagation. For infrared momehetaxtrapolated propaga-
tors interpolate between the two lattices simulate@ih.[R&)reover, for zero momen-
tum the extrapolated propagators are smaller than the gabpaof Leinwebeet al
computed with their largest lattice. The extrapolated pggiors from fitting the two
different sets of lattices are compatible, at least, atdkiellof two standard deviations.
The propagator computed from set Il shows much largerssizdi errors. The differ-
ences between the two propagators are larger for smalleremi@nT his difference can
be used to estimate systematic errors.

The fit of the dressing function computed from the extramulgiropagator, ob-
tained from set Il, to the first three nonzero momenta to thee power law gives
k = 0.521529) and has g?/d.o.f. = 0.02. Similar fits but using the corrections to
@) produce larger values for the same exponen065). All the computedk’s are
compatible with a vanishing zero momentum gluon propagatworeover, the fit to
the pure power law produces a number which agrees well witlegtimation from an
extrapolation ork - see equation§(B1) arld{32). If, instead, we perform theesaral-
ysis but for the extrapolated propagator obtained fromlghenk = 0.497966) and
x?/d.o.f.=0.27. Again, the fits with corrections to the pure power law darge val-
ues fork = 0.52—0.53. Note that now the fitting the pure power law is smaller than
the corresponding value obtained from our largest latsee (ablE]2) and is compatible
with k = 0.521529) within two and a half standard deviations.

6 Results and Conclusion

We have computed the Landau gauge gluon propagator for ésgametric lattices
with different volumes. For each volume, we have checked tthe lattice dressing
function is well described by the DSE solutidih (2) for monzebélow~ 150 MeV by
fitting the above functional form. The exception being ouralest lattice 8 x 256.
Note that in all these fitZ(q?)|q—0 was never used. In what concerns the infrared
exponent, the data shows finite volume effects, withbecoming larger for larger
volumes. In this sense, all values in taldle 2 can be read & lomunds on the infinite
volume figure.

The infinite volumex was estimated in two different ways: i) from an extrapola-
tion of the values reported in talHlé 2, assuming a linear aqdaalratic dependence
on the inverse volume; ii) extrapolating the propagatasuasng a quadratic depen-
dence on 1V. The results of the first method afel31}1(32), giving an Wwid mean
value ofk = 0.524646). The value for the exponent from extrapolating directly the
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gluon propagator being = 0.521529), if one considers the five largest lattices (set 1),
andk = 0.497966), if one considers the four largest lattices (set IIl). Thetfiralue
is on the top of the value obtained from extrapolating diyegt as function of the
volume. Moreover, these two values agree well with the tinteependent stochastic
quantisation predictior = 0.52145 [16[1l7] and are within the range of possible val-
ues estimated with renormalization group argumdntsTTFTa}% 052 < k < 0.595.
All these results point towards a vanishing zero momentumorglpropagator. The
Kk = 0.497966), obtained from fitting the gluon dressing function, complftem the
quadratic extrapolation of the gluon propagator to the itgiolume, using only the
four largest lattices (set Ill), is compatible with both anfinite and a null zero mo-
mentum gluon propagator. This value is smaller than the oredsexponent from
our largest latticexk = 0.501749), and, although, these two numbers being compat-
ible within errors, the extrapolated does not follow the observed behaviour that
increases with the lattice volume. This is probably due ®l#ige statistical errors
observed in the extrapolation using the smaller set otlkdti Finally, one can claim a
Kk = 0.498— 0.525 with the lattice data favouring the right hand side ofittterval.
Although the lattice data seems to favour a null zero monmarmfiuon propagator,
the measured extrapolated zero momentum propagatoryclba@es not vanish - see
equation[[(3K4). As a function of the lattice volume, the bam®anomentum propagator
becomes smaller for larger volumes. Moreover 1 [32] it wlagwn that the extrapola-
tion of the zero momentum propagator, depending on the ifumaltform considered,
is compatible with both a vanishing and a nonvanishing vdluéhis study we avoided
the question of the zero momentum value by fitting only thel&sianonzero mo-
menta. Solutions to this puzzle require simulations ondalgttices and/or having a
better theoretical control on the volume extrapolationrr€utly, we are engaged in
improving the statistics for our larger lattices and sintinig bigger volumes, aiming
to improve the infinite volume extrapolations.

Acknowledgements

We would like to thank C. S. Fischer, J. I. Skullerud, A. G. Ndihs, P. Bowman,
D. Leinweber and A. C. Aguilar for inspiring discussions. JPSilva acknowledges
financial support from FCT via grant SFRH/BD/10740/2002.

References
[1] T. Kugo, I. Ojima,Prog. Theor. Phys. Suppl. 66 (1979) 1.
[2] T. Kugo, hep-th/9511033.
[3] D. ZwanzigerNucl. Phys. B364(1991) 127.
[4] D. ZwanzigerNucl. Phys. B378(1992) 525.
[5] D. ZwanzigerNucl. Phys. B399(1993) 477.

11


http://arxiv.org/abs/hep-th/9511033

[6] D. ZwanzigerNucl. Phys. B412(1994) 657.
[7] C. Lerche, L. von SmekaRhys. Rev. D65 (2002) 125006 [hep-ph/0202194].
[8] For reviews se€ 9] and10].
[9] R. Alkofer, L. von SmekalPhys. Rep. 353(2001) 281|hep-ph/0007355].
[10] C. S. Fischel, hep-ph/0304233.
[11] C. S. Fischer, R. AlkofeiRhys. Lett. B536 (2002) 177([hep-ph/0202202].

[12] C. S. Fischer, R. Alkofer, H. ReinhardtPhys. Rev. D65 (2002)
094008[hep-ph/0202195].

[13] J. M. Pawlowski, D. F. Litim, S. Nedelko, L. von Smek&lys. Rev. Lett. 93
(2004) 152002 [hep-th/0312324].

[14] D. F. Litim, J. M. Pawlowski, S. Nedelko, L. von Smekagth/0410241.
[15] C. S. Fischer, H. GieHEP 0410 (2004) 04€ [hep-ph/0408089].

[16] D. ZwanzigerPhys. Rev. D65 (2002) 094039 [hep-th/0109224].

[17] D. ZwanzigerPhys. Rev. D67 (2003) 105001 [hep-th/0206053].

[18] A. C. Aguilar, A. A. Natale, P. S. Rodrigues da Silghys. Rev. Lett. 90 (2003)
152001 [hep-ph/02121D5].

[19] A. C. Aguilar, A. A. Natale JHEP 0408(2004) 057|[hep-ph/0408254].

[20] Ph. Boucaud, J. P. Leroy, A. Le Yaouanc, A. Y. Lokhov, Jcili, O, Péne, J.
Rodriguez-Quintero, C. Roiesnel, hep-lat/0507005.

[21] Ph. Boucaud, J. P. Leroy, A. Le Yaouanc, A. Y. Lokhov, Jcivli, O, Péne, J.
Rodriguez-Quintero, C. Roiesnel, hep-ph/0507104.

[22] J. E. Mandula, M. OgilviePhys. Lett. B185(1987) 274.
[23] J. E. MandulaPhys. Rept. 315(1999) 273 [hep-lat/9907020].

[24] A. Cucchieri, T. Mendes, A. Tauring¥jys. Rev. D67 (2003) 091502
[hep-Tat/0302022].

[25] J. C. R. Bloch, A. Cucchieri, K. Langfeld, T. Mendeadcl. Phys. B687 (2004)
76 [hep-lat/0312036].

[26] S. Furui, H. NakajimaPhys. Rev. D69 (2004) 074505 [hep-lat/0305C10].

[27] A. Sternbeck, E.-M. ligenfritz, M. Muller-Preusskéy, Schiller, Phys. Rev. D72
(2005) 014507 [hep-lat/0506007].

[28] D. B. Leinweber, J. I. Skullerud, A. G. Williams, C. Paello, Phys. Rev. D60
(1999) 094507Erratum, Phys. Rev. D61 (2000) 079901 |hep-lat/9811C27].

12


http://arxiv.org/abs/hep-ph/0202194
http://arxiv.org/abs/hep-ph/0007355
http://arxiv.org/abs/hep-ph/0304233
http://arxiv.org/abs/hep-ph/0202202
http://arxiv.org/abs/hep-ph/0202195
http://arxiv.org/abs/hep-th/0312324
http://arxiv.org/abs/hep-th/0410241
http://arxiv.org/abs/hep-ph/0408089
http://arxiv.org/abs/hep-th/0109224
http://arxiv.org/abs/hep-th/0206053
http://arxiv.org/abs/hep-ph/0212105
http://arxiv.org/abs/hep-ph/0408254
http://arxiv.org/abs/hep-lat/0507005
http://arxiv.org/abs/hep-ph/0507104
http://arxiv.org/abs/hep-lat/9907020
http://arxiv.org/abs/hep-lat/0302022
http://arxiv.org/abs/hep-lat/0312036
http://arxiv.org/abs/hep-lat/0305010
http://arxiv.org/abs/hep-lat/0506007
http://arxiv.org/abs/hep-lat/9811027

[29] F. D. R. Bonnet, P. O. Bowman, D. B. Leinweber, A. G. Vdiltis, J. M. Zanotti,
Phys. Rev. D64 (2001) 034501 [hep-lat/0101C13].

[30] O. Oliveira, P. J. SilvaAlP Conf. Proc. 756 (2005) 290|[hep-lat/0410048].
[31] P.J. Silva, O. OliveiraPoS (LAT2005) 286 |hep-1at/0509034].

[32] O. Oliveira, P. J. SilvaPoS (LAT2005) 287 |hep-1at/0509037].

[33] G. S. Bali, K. SchilingPhys. Rev. D47 (1993) 661|[hep-lat/9208028].

[34] For a finite volume analysis of the DSE see C. S. FischeGiiter, R. Alkofer,
hep-ph/0506053.

[35] V. N. Gribov,Nucl. Phys. B139(1978) 1.
[36] P.J. Silva, O. OliveiralNucl. Phys. B690(2004) 177|[hep-lat/0403026].

[37] I. L. Bogolubsky, G. Burgio, V. K. Mitrjushkin, M. Mueé#r-Preussker,
hep-lat/0511056.

[38] O. Oliveira, P. J. SilvaComp. Phys. Comm. 158(2004) 73 |hep-lat/0309134].
[39] D. ZwanzigerPhys. Rev. D69 (2004) 016002 [hep-ph/0303028].

[40] C. H. T. Davies, G. G. Batrouni, G. P. Katz, A. S. Kronfetd. P. Lepage, P.
Rossi, B. Svetitsky and K. G. WilsoRhys. Rev. D37 (1988) 1581.

13


http://arxiv.org/abs/hep-lat/0101013
http://arxiv.org/abs/hep-lat/0410048
http://arxiv.org/abs/hep-lat/0509034
http://arxiv.org/abs/hep-lat/0509037
http://arxiv.org/abs/hep-lat/9208028
http://arxiv.org/abs/hep-ph/0506053
http://arxiv.org/abs/hep-lat/0403026
http://arxiv.org/abs/hep-lat/0511056
http://arxiv.org/abs/hep-lat/0309184
http://arxiv.org/abs/hep-ph/0303028

130
120

110

100
90
80
70
60

ked
fed
HI—H

D)

gl

X
50 +

40
30
20
10

LA AL AL L LA R
ol

ecrecnsacnd

14
L&

ol
o
(&)
-
=
(&)
N
N
(&)

w IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

130

120

« 8%2564
110

10’256 q
= 8x256q
10’256 q

I_.H._II---II-O-I

100
90
80

o

70

totaf
g W

D)

60
50
40
30
20

IIIIIIII”I”IIIIIIII””I””I””III-I.I-I"—IOI—‘

10 ...
IIIIIIIIIIIIII‘lIY‘||—

15
g (GeV)

ol
o
a1
[N

Figure 1: Bare gluon dressing function for all momenta fa iBrgest (top) and the
two smallest (bottom) lattices. The figure shows the glumppgator computed with
pure temporal momentg and pure spatial momendg. For the spatial momentaz

average was performed.
14



130_| |||||||||IIIIIIIIIIIIIIIIII||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||_
120F- — 18%256 E
: *—* 16256 ]
110F 14256 ]
L 3 ]

: — 12°x256 :
100F : E
. 10'x256 ]
90 gx256 E
80 F] e-oq,Lein. etal 364 E
705 =-aq Leinetal 16x48 |
AR SN ]
0 60 .
50F =
40F =
30F =
20F =
100
0:I|IIIIIIIII|IIIIIIIII|IIIIIIIII|IIIIIIIII|IIIIIIIII|IIIIIIIII|IIIIIIIII|IIIIIIIII|IIIIIIIII|IIIIIIIII:

0 0.1 0.2 0.3 04 05 0.6 0.7 0.8 0.9 1
q(GeV)

Figure 2: Bare gluon dressing function for temporal momémtall lattices volumes.
For comparisation, the figure includes theé ¥648 and 32 x 64 propagators computed

atf =6.0in [29].

15



fllllllllll TTTTTTTTT TTTTTTTTT TTTTTTTTT IIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIII:
0.54F° 2,2k -
ko * (@) ]
- 2, 2k 2 -
B (@) (1+aq) ]
C 2.2k 2 ]
0.52 © @) (1+aq+bq4) =
Tk % Linear Extrapolation ]
E ﬂ o Quadratic Extrapolation ]
0.5F =+ % .
X~ C ]
: L1 E
0.48F =
0.46[ -
044;|IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII:
0 le-06 2e-06 3e-06 4e-06 5e-06 6e-06 7e-06 8e-06

v
Figure 3: k as a function of the inverse volume. Note that in order to nthkeplot

more clear, the from the fits to the corrections to the pure power law weretstiin
the 1/V axis.

16



100

90

80

70

60

50

D(0)

40

[LALLLLLLLI LLLLL “t““““l |

30

20

10

i

\ — Quad. Ext. (5 lattices
\ —— Quad. Ext. (4 lattices

\ > 32°%64 Lein et al

) N N I I I I B | I ) N N I I I B | I LN I ) N N S N S B B |

:
)

o LLLLLLLLL] LLLLLLLL Loy

150

2e-06 4e-06 6e-06 8e-06

140F
130

120
110
100
90
80
70
60
50
40
30

D)

20E
10

— — Quad. Ext. (4 lattices
1 I 1 I 1 I 1

— Quad. Ext. (5 Iattices%

2e-06 4e-06 6e-06 8e-06
v

Figure 4: Bare gluon propagator for the two smallest momasta function of the
inverse volume. For comparison, for zero momentum we irel@®) from the largest
lattice of [28], i.e. 33 x 64.

17



150
140
130
120
110
100

90

D)

70
60
50
40
30
20
10

150
140
130
120
110
100
90
80
70
60
50
40
30
20
10

D)

80F

= — — Quad. Ext. (4 lattices

3 — Quad. Ext. (5 Iattices%

I
0 2e-06 4e-06 6e-06 8e-06

= — — Quad. Ext. (4 lattices

3 \ | — Quad. Ext. (5 Iattices%

| | N I
1 1 T 1

0 2e-06 4e-06 6e-06 8e-06

v

Figure 5: Bare gluon propagator as a function of the invecerwe for the third and
fourth smallest momenta.

18



100 \

v g, Lein. etal 16+48

4+ g lLein etal 3364

e Quadratic Ext. (5 lattices)
+ Quadratic Ext. (4 lattices)

80

60

D)

40

[T T T T A T T O P T T T T T T [T T T T et

20

/

|

o
=
N
w
D

100 ‘

80

60

D)
\\\\\\\\\‘\\\\\\\\\‘\\\\\\\\\‘\\\\\\\\\‘\\\\\\\\\
b b
FoH——

Fob—

o cv e b b b b

40
v g, Lein. etal 1648

20 4 g Lein. etal 3364
e Quadratic Ext. (5 lattices)
+ Quadratic Ext. (4 lattices)

0 \ \ \ \ \
0 0.1 0.2 0.3 0.4 5
q (GeV)

Figure 6: The bare extrapolated gluon propagator. Thedulyje of temporal momenta
is seen on the top with a zoom for the infrared region on theobmtThe errors on the

propagator were computed assuming a gaussian error pitigpaggor comparisation,

the figure includes the $6< 48 and 33 x 64 propagators computedfit= 6.0 in [28].

19



	Introduction and motivation
	Field Definitions and Notation
	The Landau Gauge
	Lattice setup
	The Infrared Gluon Dressing Function
	Results and Conclusion

