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Abstract

To further improve the performance of Monte Carlo simulations of

first-order phase transitions we propose to combine the multicanonical

approach with multigrid techniques. We report tests of this proposi-

tion for the d-dimensional Φ4 field theory in two different situations.

First, we study quantum tunneling for d = 1 in the continuum limit,

and second, we investigate first-order phase transitions for d = 2 in the

infinite volume limit. Compared with standard multicanonical simu-

lations we obtain improvement factors of several resp. of about one

order of magnitude.
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At first-order phase transitions standard Monte Carlo simulations in the
canonical ensemble exhibit a supercritical slowing down [1]. Here extremely
large autocorrelation times are caused by strongly suppressed transitions be-
tween coexisting phases which, on finite periodic lattices, can only proceed
via mixed phase configurations containing two interfaces. Since the proba-
bility of such configurations is suppressed by a factor exp(−2σLd−1), where
σ is the interface tension and Ld−1 the cross-section of the system, the au-
tocorrelation times in the simulation grow exponentially with the size of the
system, τ ∝ exp(2σLd−1).

A way to overcome this problem, known as umbrella [2] or multicanonical
[3] sampling, is to simulate an auxiliary distribution in which the mixed phase
configurations have the same weight as the pure phases and canonical expec-
tations are computed by reweighting [4]. Several tests for various models
[5] have demonstrated that this method works well in practice and reduces
supercritical slowing down to a power-like behavior with τ ∝ V α = Ldα,
where α ≈ 1. While this is clearly an important step forward the remaining
slowing down problem is still severe. In most cases it is even worse than for
standard (e.g., Metropolis or heat-bath) Monte Carlo simulations of critical
phenomena [6].

For the latter applications several update algorithms have been developed
which greatly reduce or even completely eliminate the critical slowing down
problem [7]. In addition to overrelaxation and cluster methods, an important
class of such algorithms are multigrid techniques [8, 9]. Here the general
strategy is to perform collective updates on different length scales by visiting
various coarsened grids in a systematic, recursively defined way, generally
known as V- or W-cycle [10].

Because of their conceptual simplicity both the multicanonical reweight-
ing approach and the multigrid update techniques are quite generally ap-
plicable. The purpose of this note is to show that the two approaches can
easily be combined and give a much better performance than each compo-
nent alone. We report tests of this combination for the Φ4 lattice field theory
with negative mass term in two conceptually different situations. We first
consider the quantum mechanical tunneling problem in one dimension and
study the performance of the new algorithm in the continuum limit. We then
discuss field driven first-order phase transitions in the two-dimensional case
and investigate the behavior of the multicanonical multigrid algorithm in the
infinite volume limit.
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For Potts models an interesting different approach was proposed only
recently in Ref.[11]. Here the idea is to combine a multicanonical demon
algorithm with cluster update methods in a hybrid-like fashion.

The basic idea of the multicanonical approach is to sample the mixed
phase configurations with the same statistical weight as the configurations of
the pure phases. At a field driven first-order phase transition this can always
be achieved by a suitably chosen reweighting factor w−1(m) ≡ exp(−f(m)),
where m =

∑

iΦi/V is the average field. In a temperature driven transition,
m has simply to be replaced by the average energy. Starting from an initial
guess based on experience or on some analytical approximation, a few iter-
ations are usually sufficient to adjust this factor. Once it is fixed, canonical
expectation values 〈O〉can of any observable O can be computed from the
basic reweighting formula

〈O〉can =
〈wO〉
〈w〉 , (1)

where 〈. . .〉 without subscripts denote expectation values in the multicanon-
ical distribution. To update field values with a Metropolis algorithm in the
multicanonical approach, we consider as usual local moves Φi → Φi + ∆Φi

and compute the energy difference ∆E. The decision of whether such moves
are accepted or not, however, is now based on the value of ∆E + f(m +
∆Φi/V )− f(m).

The basic idea of multigrid techniques is to perform updates on dif-
ferent length scales. Using the so-called linear interpolation scheme this
amounts, in the equivalent unigrid viewpoint, to proposing moves for blocks
of 1, 2d, 4d, . . . , V = Ld = 2nd adjacent variables in conjunction, with the
sequence of length scales 2k, k = 0, . . . , n chosen in a specific, recursively
defined order. Particular successful sequences are the so-called V-cycle with
k = 0, 1, . . . , n− 1, n, n− 1, . . . , 1, 0 and the W-cycle whose graphical repre-
sentation looks like the letter W (for n=3, e.g., this is 0, 1, 2, 3, 2, 3, 2, 1, 2,
3, 2, 3, 2, 1, 0, and for large n the W looks more and more like a “fractal”).
In a canonical simulation the update at level k thus consists in considering
a common move ∆Φ for all 2kd variables of one block, Φi −→ Φi + ∆Φ,
i ∈ block.

The modifications for a multicanonical multigrid simulation are quite triv-
ial. Since at level k the proposed move would change the average field by
2kd∆Φ/V , the decision of acceptance is now simply to be based on the value
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of ∆E + f(m + 2kd∆Φ/V ) − f(m), with ∆E computed as in the canonical
case. For didactic reasons we have emphasized here the conceptually sim-
pler unigrid viewpoint. It should be stressed that in the recursive multigrid
formulation, which can be implemented more efficiently (similar to the fast-
Fourier transformation FFT), the multicanonical modification is precisely
the same.

We have tested the multicanonical multigrid algorithm for the scalar Φ4

lattice field theory in d = 1 and d = 2 dimensions, defined by the partition
function

Z =
Ld

∏

i

[∫

∞

−∞

dΦi/A
]

exp



−ǫ
Ld

∑

i=1

(

1

2ǫ2
(~∇Φi)

2 − µ2

2
Φ2

i + gΦ4
i

)



 , (2)

with A =
√
2πǫ and µ2, g > 0. We always impose periodic boundary condi-

tions. For d = 1 we keep Lǫ = β fixed. Here the model describes the quantum
statistics of a particle tunneling back and forth in a double-well potential in
contact with a heat-bath at temperature T = 1/β [12]. At fixed β the limit
L → ∞ corresponds to the continuum limit. For d ≥ 2 we put ǫ = 1.
Here reflection symmetry is spontaneously broken for all µ2 > µ2

c(g) > 0 as
L → ∞, which is now the infinite volume limit. Consequently, if a term
h
∑

i Φi is added to the energy, the system exhibits a line of first-order phase
transitions driven by the field h.

Even though in the one-dimensional case no spontaneous symmetry break-
ing occurs, the numerical difficulties are quite similar. This is due to the
fact that for small quartic coupling g tunneling events are strongly sup-
pressed by a factor ∼ exp(−const/g), which plays a similar role as the factor
exp(−2σLd−1) at a first-order phase transition. The important difference is,
of course, that the suppression factor stays roughly constant in the contin-
uum limit, while at a first-order phase transition it rapidly decreases in the
infinite volume limit. Nevertheless, for small values of g analogous slowing
down problems in canonical simulations of the quantum problem are notori-
ous, and a number of modified Monte Carlo schemes have been proposed in
the past [13, 14]. None of these techniques, however, is general enough to be
easily adapted to different potential shapes.

To evaluate the performance of the multicanonical multigrid algorithm,
we have recorded the time series for several observables and studied their
autocorrelation times. In this note we shall concentrate on the average field
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m =
∑

i Φi/V , which reflects most directly the tunneling process.
In previous investigations [5] emphasis was laid on the exponential au-

tocorrelation time τ (0)m of m, i.e., directly on the multicanonical dynamics.
While this nicely illustrated the absence of exponential slowing down, it is
not immediately clear how the remaining autocorrelations enter into the error
estimates for canonical expectation values computed according to (1). To be
precise, we are interested in the variance ǫ2 = σ2

Ô
= 〈Ô2〉−〈Ô〉2 of the (weakly

biased) estimator for 〈O〉can, Ô =
∑Nm

1 w(mi)Oi/
∑Nm

1 w(mi) ≡ wiOi/wi, if
Nm (multicanonical) measurements are performed. To facilitate a direct
comparison with canonical simulations, we hence define for multicanonical
simulations an effective autocorrelation time τ eff by the standard error for-
mula for Nm correlated measurements,

ǫ2 = σ2
can2τ

eff/Nm, (3)

where σ2
can = 〈O2

i 〉can−〈Oi〉2can is the variance of the canonical distribution of
single measurements, which can be computed in a multicanonical simulation
by using eq. (1). The squared error ǫ2 can be estimated either by block-
ing or better by jack-knife blocking [15] procedures, or by applying standard
error propagation to the variance of Ô = wiOi/wi, which involves the (multi-
canonical) variances and covariances of wiOi and wi, and the three associated
autocorrelation times τm;m ≡ τm, τwm;wm ≡ τwm, and τwm;m = τm;wm [16]. By
symmetry, for O = m this simplifies to

ǫ2 =
〈wimi;wimi〉

〈wi〉2
2τwm

Nm

≡ σ2
muca

2τwm

Nm

, (4)

where 〈x; y〉 ≡ 〈xy〉 − 〈x〉〈y〉 and τx;y = 1/2 +
∑

k〈x0; yk〉/〈x0; y0〉 is the
integrated autocorrelation time of multicanonical measurements. In this way
properties of the multicanonical distribution (given by σ2

muca) are disentangled
from properties of the update algorithm (given by τwm). Note that in τ eff =
(σ2

muca/σ
2
can)τwm, it is the autocorrelation time of w(m)m that enters and not

that of m, as previously investigated.
Let us first discuss our results for the quantum mechanical case in d = 1,

where we shall confine ourselves to the case µ2 = 1.0, g = 0.04 and β = 10.
This choice of parameters may perhaps be better characterized by the first
few energy eigenvalues (obtained by a numerical integration of the associated
Schrödinger equation), E0 = −0.913371, E1 = −0.892348, E2 = 0.029846,
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and E3 = 0.37813, or the probability ratio Pmin/Pmax = P (0)/Pmax ≈ 1.9 ×
10−3, where P (m) is the probability distribution of the magnetization (or, in
the present interpretation, of the average path). In a canonical simulation
it would consequently be about 500 times harder to sample configurations
with m = 0 than configurations contributing to the peaks of P (m). To
set up the multicanonical reweighting factor we started from a variational
approximation [17] that works quite well for not too large β-values and is
known to provide locally a lower bound on P (m) [18]. Alternatively, as the
distribution depends only weakly on L, one could also use the distribution for
small L (which is quite easy to generate by standard techniques) as input for
the other simulations. Since the m-values vary continuously, we introduced
bins of size ∆m = 0.02 to store the weight factor w(m). A single short run
was usually sufficient to improve the initial guess such that the multicanonical
distribution P ′(m) had the desired flat shape, P ′(m) ≈ const, between the
two peaks.

In this way we performed multicanonical Metropolis and multigrid simu-
lations for L = 4, 8, 16, 32, 64, 128, and 256, and using the multigrid update
also for L = 512. In the multigrid case we investigated both the V-cycle
(using npre = npost = 1 pre- resp. post-sweeps [8, 9, 10]) and the W-cycle
(using npre = npost = 1 as well as npre = 1, npost = 0). In the log-log plot
of Fig. 1 we show our results for τ eff of the multicanonical Metropolis and
W-cycle (without post-sweeps) update algorithm, and for comparison also
previous results [19] for the canonical counterparts. We see that canonical
and multicanonical simulations exhibit qualitatively the same behavior in the
continuum limit L → ∞. For both distributions, the Metropolis update leads
to a power-law growth τ ∝ Lz with z ≈ 2, while for the W-cycle update the
autocorrelation times stay roughly constant [20]. Here it is the overall scale
which is reduced in the multicanonical simulation. For our choice of param-
eters we obtain an improvement factor of about 60 (30) for the Metropolis
(W-cycle) update. For smaller g, since this factor is essentially given by the
inverse of the suppression factor exp(−const/g), we found the multicanoni-
cal Metropolis update to be more favorable than the canonical W-cycle for
reasonably large L. Eventually, however, there will always be a crossover at
some L. For g = 0.04, if we compare the Metropolis update and the W-cycle
in the multicanonical simulation we obtain an improvement factor of about
50, 000 for L = 512.

In the continuum limit the distribution P (m) and the ratio Pmin/Pmax
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stay roughly constant. This implies that the multicanonical approach can
only give an improvement factor which is independent of L. In this case it is
the update algorithm that plays the dominant role asymptotically for large
L, while the multicanonical reweighting procedure sets the overall scale. The
relative importance of the two approaches is just reversed at first-order phase
transitions when the infinite volume limit is considered.

As a test case we have studied the model (2) with ǫ = 1. For this model
the line of second-order phase transitions separating the broken and unbro-
ken phase in the µ2 − g plane has recently been determined by Toral and
Chakrabarti [21]. Here we concentrate on the first-order phase transition
between the two ordered phases at g = 0.25 and µ2 = 1.30, which is suffi-
ciently far away from the critical point at µ2

c = 1.265(5) [21] to display the
typical behavior already on quite small lattices. A sensitive measure of the
strength of the transition is the interface tension σoo between the + and −
phase, which turns out [16] to be σoo = 0.03459(49) (for comparison, about
the same value is found for the order-disorder interface tension in the two-
dimensional q-state Potts model with q = 9, where σod = 0.03355 . . . [22]).
We performed multicanonical simulations using the Metropolis update and
the W-cycle without post-sweeps for lattices of size V = L2 with L = 8, 16
and 32. With the multigrid algorithm, due to the improved performance, we
were also able to study lattices of size L = 64. Here each time series contains
a total of 106 measurements taken every neth sweep, after discarding 104×ne

sweeps for thermalization. The number of sweeps between measurements,
ne, was adjusted in such a way that in each simulation the measurements of
wm had an autocorrelation time of maximal 50, i.e., the length of each time
series is at least 20, 000 τwm.

A few of our results are collected in Table 1, where we give the integrated
and exponential autocorrelation times of m and w(m)m as well as τ eff ac-
cording to eq. (3) for both update algorithms. We see that integrated and
exponential autocorrelation times for m agree well with each other, show-
ing that the corresponding autocorrelation function can be approximated by
a single exponential. For wm we obtain values for τ (0) that are consistent
with those for m within error bars. The integrated autocorrelation times,
however, are significantly lower, implying that the autocorrelation function
is composed of many different modes. We also observe that the difference
between τwm and τ eff can be quite appreciable. From L = 8 to L = 64 the ra-
tio τ eff/τwm = σ2

muca/σ
2
can varies from about 1.9 to 4.6, reflecting the varying
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probability distribution shapes with increasing L.
By fitting τ eff to a power law, τ eff ∝ Lz, we obtain for both update

algorithms an exponent of z ≈ 2.3, i.e., in this case it is thus the multigrid
update that reduces the overall scale. The autocorrelation times of the W-
cycle are reduced by a roughly constant factor of about 20 as compared with
the Metropolis algorithm. Of course, for a fair comparison we should also
take into account that a W-cycle requires more elementary operations than
a Metropolis sweep [8]. Such a work estimate, however, depends on many
details of the implementation and it is hence difficult to give generally valid
figures. With our implementations on a CRAY Y-MP we obtained a real
time improvement factor of about 10.

Table 1: Autocorrelation times for the multicanonical simulation using the
standard Metropolis (M) or multigrid W-cycle (W) update algorithm.

L = 8 L = 16 L = 32 L = 64

τ (0)m M 212(12) 668(23) 3120(200) −
W 11.30(32) 37.2(2.0) 148(11) 746(62)

τm M 204.4(4.0) 690(11) 2984(63) −
W 10.88(12) 34.69(76) 150.0(4.0) 758(37)

τ (0)wm M 209(12) 655(31) 2880(190) −
W 11.34(33) 36.9(2.0) 146(13) 600(120)

τwm M 171.1(3.4) 509.8(8.9) 1840(40) −
W 9.82(11) 27.58(59) 96.6(2.4) 374(23)

τ eff M 322.7(6.1) 1258(21) 6050(120) −
W 18.51(20) 67.4(1.3) 321.9(7.6) 1724(86)
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Figure Heading

Fig. 1: Effective autocorrelation times τ eff for the model (2) in d = 1 as
a function of lattice size L with Lǫ = β = 10, µ2 = 1, g = 0.04 for
different Monte Carlo algorithms. The canonical data are taken from
Ref. [19].
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