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In this letter, we propose a mechanism to generate large-scale magnetic fields with
correlation lengths of 100 kpc. Domain walls with QCD scale internal structure
form and coalesce obtaining Hubble scale correlations and align nucleon spins.
Due to strong CP violation, nucleons in these walls have anomalous electric and
magnetic dipole moments and thus the walls are ferromagnetic. This induces
electromagnetic fields with Hubble size correlations. The same CP violation also
induces a maximal helicity (Chern-Simons) correlated through the Hubble volume
which supports an “inverse cascade” allowing the initial correlations to grow to
100 kpc today. We estimate the generated electromagnetic fields in terms of the
QCD parameters and discuss the effects of the resulting fields.

1 Introduction

The source of cosmic magnetic fields with large scale correlations has remained
somewhat of a mystery 1. There are two possible origins for these fields: pri-
mordial sources and galactic sources. Primordial fields are produced in the
earlier universe, then evolve, and are thought to provide seeds which gravita-
tional dynamos later amplify. Galactic sources would produce the fields as well
as amplify them. Many mechanisms have been proposed 2,3,4,5, however, most
fail to convincingly generate fields with large enough correlation lengths to
match the observed microgauss fields with ∼ 100 kpc correlations. We present
here a mechanism which, although probably requiring a dynamo to produce
microgauss fields, generates fields with hundred kiloparsec correlations. We
present this mechanism as an application of our recent understanding of QCD
domain walls, which will be described in detail elsewhere 6.

1. Sometime near the QCD phase transition, TQCD ≈ 1 GeV, QCD domain
walls form.

2. These domain walls rapidly coalesce until there remains, on average, one
domain wall per Hubble volume with Hubble scale correlations.

3. Baryons interact with the domain walls and align their spins along the
domain walls.

4. The magnetic and electric dipole moments of the baryons induce helical
magnetic fields correlated with the domain wall.

5. The domain walls decay, leaving a magnetic field.
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6. As the universe expands, an “inverse cascade” mechanism transfers en-
ergy from small to large scale modes, effectively increasing the resulting
correlation length of the observed large scale fields.

We shall start by discussing the “inverse cascade” mechanism because it seems
to be the most efficient mechanism for increasing the correlation length of mag-
netic turbulence. After presenting some estimates to show that this mechanism
can indeed generate fields of the observed scales, we shall discuss the domain
wall mechanism for generating the initial fields and some relevant astrophysical
phenomena associated with this mechanism.

2 Evolution of Magnetic Fields

As suggested by Cornwall 3, discussed by Son 4 and confirmed by Field and
Carroll 5, energy in magnetic fields can undergo an apparent “inverse cascade”
and be transfered from high frequency modes to low frequency modes, thus in-
creasing the overall correlation length of the field faster than the näıve scaling
by the universe’s scale parameter R(T ). There are two important conditions:
turbulence must be supported as indicated by a large Reynolds number Re, and
magnetic helicity (Abelian Chern-Simons number) H =

∫

~A · ~Bd3x is approx-
imately conserved. The importance of helicity was originally demonstrated by
Pouquet and collaborators 7. The mechanism is thus: the small scale modes
dissipate, but the conservation of helicity requires that the helicity be trans-
fered to larger scale modes. Some energy is transfered along with the helicity
and hence energy is transported from the small to large scale modes. This is
the “inverse cascade”.3,4,5

In the early universe, Re is very large and supports turbulence. This drops
to Re ≈ 1 at the e+e− annihilation epoch,4 T0 ≈ 100 eV. After this point (and
throughout the matter dominated phase) we assume that the fields are “frozen
in” and that the correlation length expands as R while the field strength decays
as R−2. Note that the “inverse cascade” is only supported during the radiation
dominated phase of the universe.

Under the assumption that the field is maximally helical, these conditions
imply the following relationships 4,5 between the initial field Brms(Ti) with ini-
tial correlation l(Ti) and present fields today (Tnow ≈ 2×10−4 eV) Brms(Tnow)
with correlation l(Tnow):

Brms(Tnow) =

(

T0

Tnow

)−2 (
Ti

T0

)−7/3

Brms(Ti) (1)

l(Tnow) =

(

T0

Tnow

)(

Ti

T0

)5/3

l(Ti). (2)
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As pointed out by Son 4, the only way to generate turbulence is either by
a phase transition Ti or by gravitational instabilities. We consider the former
source. As we shall show, our mechanism generates Hubble size correlations
li at a phase transition Ti. In the radiation dominated epoch, the Hubble size

scales as T−2
i . Combining this with (2), we see that lnow ∝ T

−1/3
i ; thus, the

earlier the phase transition, the smaller the possible correlations.
The last phase transition is the QCD transition, Ti = TQCD ≈ 0.2 GeV

with Hubble size l(TQCD) ≈ 30 km. We calculate (24) the initial magnetic field
strength to be Brms(Ti) ≈ eΛ2

QCD/(ξΛQCD) ≈ (1017G)/(ξΛQCD) where ξ is a
correlation length that depends on the dynamics of the system as discussed
below and ΛQCD ≈ 0.2 GeV. With these estimates, we see that we can achieve

Brms ∼
10−9G

ξΛQCD
, l ∼ 100 kpc (3)

today. One might consider the electroweak transition which might produce
100 pc correlations today, but this presupposes a mechanism for generating
fields with Hubble scale correlations. Such a mechanism does not appear to be
possible in the Standard Model. Instead, the fields produced are correlated at
the scale T−1

i which can produce only ∼ 1 km correlations today.
These are crude estimates, and galactic dynamos likely amplify these fields.

The important point is that we can generate easily the 100 kpc correlations
observed today provided that the fields were initially of Hubble size correlation.
Unless another mechanism for amplifying the correlations of magnetic fields is
discovered, we suggest that, in order to obtain microgauss fields with 100
kpc correlation lengths, helical fields must be generated with Hubble scale
correlations near or slightly after the QCD phase transition TQCD. The same
conclusion regarding the relevance of the QCD scale for this problem was
also reached by Son, Field and Carroll 4,5. The rest of this work presents
a mechanism that can provide the desired Hubble size fields, justifying the
estimate (3). We shall explain the mechanism and give simple estimates here,
but present details of the calculations elsewhere 6.

3 Domain Walls

The key players in our mechanism are domain walls formed at the QCD phase
transition that possess an internal structure with QCD scale. We shall present
a full exposition about these types of walls in another paper6 but, to be specific,
here we shall discuss the so-called axion-η′ (aη′) domain wall 6.

We start with a similar effective Lagrangian to that used by Huang and
Sikivie except that we included the effects of the η′ singlet field which they
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neglected. The Lagrangian density is

Leff =
f2
a

2

∣

∣∂µe
ia
∣

∣

2
+

f2
π

4
Tr |∂µU|2 − V (U, a) (4)

where a is the dimensionless axion field and the matrix U = exp(iη′ + iπfλf )
contains the pion and η′ fields (to simplify the calculations, we consider only
the SU(2) flavor group). The η′ field is not light, but as we shall see, is the
dominant player in aligning the magnetic fields so we include it. The potential
V is given by

V =
1

2
Tr

(

MUeia + h.c.
)

− E cos

(

i ln[det(U)]

Nc

)

(5)

which was first introduced by Halpern and Zhitnitsky.9 It should be realized
that i ln[det(U)] ≡ i ln(det(U)) + 2πn is a multivalued function and we must
choose the minimum valued branch. Details about this potential are discussed
in the original paper 9 but several points will be made here. All dimension-
ful parameters are expressed in terms of the QCD chiral and gluon vacuum
condensates and are well known numerically: M = −diag(mi

q|〈q̄iqi〉|) and
E = 〈bαs/(32π)G

2〉.
The result is that two different types of axion domain walls form.6 One

is almost identical to the one discussed by Huang and Sikivie 8 with small
corrections due to the η′ field. We shall call this the axion/pion (aπ) domain
wall. The second type, which we shall call the axion/eta’ (aη′ ) domain wall
is a new solution characterized by a transition in both the axion and η′ fields
(see our other paper 6 for a complete description of this wall). The boundary
conditions (vacuum states) for this wall are a(−∞) = η′(−∞) = 0 and a(∞) =
η′(∞) = ±π with π0 = 0 at both boundaries.

The main difference between the structures of the two walls is that, whereas
the aπ domain wall has structure only on the huge scale of m−1

a , the η′ tran-
sition in the aη′ has both scales, the axion scale, m−1

a , as well as Λ−1
QCD scale.

Therefore, the aη′ domain wall has a “sandwich” structure. The reason is
that, in the presence of the non-zero axion (θ) field, the pion becomes effec-
tively massless due to its Goldstone nature. The η′ is not so sensitive to θ
parameter and so its mass never becomes zero. It is crucial that the walls have
a structure of scale Λ−1

QCD: thus there is no way for the aπ wall to trap nucleons
because of the huge differece in scales but the aη′ wall has exactly this struc-
ture and can therefore efficiently align the nucleons. The QCD domain walls
(which were also discussed in 6) have the same property as aη′ walls. Namely,
they have the structure of scale Λ−1

QCD and they can play the same role as aη′

walls. In what follows, for more concreteness, we use aη′ walls.
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The model we propose is this: Immediately after the phase transition, the
universe is filled with domain walls on the scale of T−1

QCD. As the temperature
drops, these domain walls coalesce, resulting in an average of one large do-
main wall per Hubble volume with Hubble scale correlations 10,11. It is these
Hubble scale aη′ domain walls which align the dipole moments of the nucleons
producing the seed fields.

The following steps are crucial for this phenomenon:

1. The coalescing of QCD domain wall gives the fields π, . . . , η′ Hubble scale
correlations.

2. These fields interact with the nucleons producing Hubble scale correla-
tions of nucleon spins residing in the vicinity of the domain wall. (The
spins align perpendicular to the wall surface.)

3. Finally, the nucleons, which carry electric and magnetic moments (due
to strong CP violation), induce Hubble scale correlated magnetic and
electric fields.

4. These magnetic and electric fields eventually induce a nonzero helicity
which has the same correlation. This helicity enables the inverse cascade.

4 Domain Wall Properties

We present here a method for simplifying the calculations of the bulk properties
of domain walls. This method makes the approximation that the domain wall
is flat and that translational and rotational symmetries are preserved in the
plane of the wall which we take to be the x–y plane. These approximations
are valid in the case of domain walls whose curvature is large in comparison
to the length scale of the pertinent physics.

Once this approximation is made, we can reformulate the problem in 1+1
dimensions (z and t) and calculate the density of the desired bulk properties
along the domain wall. To regain the full four-dimensional bulk properties,
we must estimate the density of the particles in the x–y plane to obtain the
appropriate density and degeneracy factors for the bulk density. Thus, the
final results are not independent of physics in the x–y plane, but rather, these
effects are accounted for only through the degeneracy factors.

4.1 Alignment of Spins in the Domain Wall Background

We proceed to demonstrate this technique by calculating the alignment of
fermionic spins along the wall. To estimate the strengths of the fields involved,
we consider only the η′ transition because it has a similar structure in both
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the aη′ domain wall and the QCD domain walls. We take the following simple
interaction between the η′ field and the nucleons:

Ψ̄
[

i 6∂ −mNeiη
′(z)γ5

]

Ψ. (6)

For our approximations, we assume that fluctuations in the nucleon fields do
not affect the domain walls and, thus, treat the domain walls as a background
fielda. The strategy is to break (6) into two 1 + 1 dimensional components by
setting ∂x = ∂y = 0 and then by manipulating the system of equations that
result to obtain an equivalent two-dimensional system.

First, we introduce the following chiral components of the Dirac spinors

Ψ+ ≡
(

χ1

χ2

)

, Ψ− ≡
(

η1
η2

)

, Ψ =
1√
2

(

Ψ+ +Ψ−
Ψ+ −Ψ−

)

(7)

Secondly, we assume that our system is effectively two-dimensional (an infi-
nite domain wall lying in the x–y plane) and hence neglect the conserved x
and y momenta. We find that the Dirac equations which follow from (7) are
equivalent to the coupled system

[i∂0 + iσ3∂3] Ψ+ = mNe−iη′

Ψ−

[i∂0 − iσ3∂3] Ψ− = mNe+iη′

Ψ+ (8)

in Ψ+ and Ψ−. At this stage it proves convenient to rearrange these equations
by introducing new “two-dimensional” Dirac spinors Ψ(1) and Ψ(2)

Ψ(1) =

(

χ1

η1

)

, Ψ(2) =

(

η2
χ2

)

(9)

Using the definitions (9), we put system (8) into the form of two two-dimensional
(2D) Dirac equations

[

iγ̂µ∂µ −mNe−iη′γ̂5

]

Ψ(1) = 0
[

iγ̂µ∂µ −mNe+iη′γ̂5

]

Ψ(2) = 0 (10)

where we have introduced the 2D Dirac matrices

γ̂0 = σ1, γ̂1 = −iσ2, γ̂5 = γ̂0γ̂1 = σ3, γ̂µγ̂ν = gµν + ǫµν γ̂5. (11)
aA full account would take into account the effects of this back-reaction. We expect that
they would affect the potential (5) by altering the form of the last term E cos() and possibly
adding higher order corrections, but that they would not alter the nature of the domain walls.
Quantitatively this would alter the numerical results, but would not change the qualitative
picture presented here.
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Equations (10) are reproduced from the following effective 2D Lagrangian

L2D = Ψ̄(1)
[

iγ̂µ∂µ −mNeiη
′γ̂5

]

Ψ(1) + Ψ̄(2)
[

iγ̂µ∂µ −mNe−iη′γ̂5

]

Ψ(2), (12)

where η′ = η′(z) is the background classical field with boundary conditions
η′(−∞) = 0, η′(∞) = π. This 2D Lagrangian describes two species of 2D
Dirac fermions of oposite chiral charge intracting with the external η′ field.

Now we are ready to demonstrate that the domain walls align the spins of
the fermions. The relevant operator (which becomes the spin operator for the
nonrelativistic system) is

Ψ†~ΣΨ = Ψ̄~γγ5Ψ = Ψ†
+~σΨ+ +Ψ†

−~σΨ−, ~Σ ≡
(

~σ 0
0 ~σ

)

, (13)

and our goal is to demonstrate that the mean value 〈Σz〉 of this operator is
generally non-zero in the domain wall. Thus, the nucleon spins are aligned in
the z direction and have a correlation length similar to the domain wall.

The easiest way to demonstrate this phenomenon in our model (which is
effectively 2D) is to use the Goldstone-Wilczek adiabatic approximation 12,13

together with a bosonization trick

Ψ̄(i)iγ̂µ∂µΨ
(i) → 1

2∂µφi∂µφi Ψ̄(i)iγ̂5Ψ
(i) → −µ sin (2

√
πφi)

Ψ̄(i)γ̂µΨ
(i) → 1√

π
εµν∂νφi Ψ̄(i)Ψ(i) → −µ cos (2

√
πφi)

(14)

(µ ∼ mN is a scale parameter). The Lagrangian (12) after bosonization is

L2D =
1

2

[

(∂µφ1)
2 + (∂µφ2)

2
]

− U(φ1, φ2)

U(φ1, φ2) = −µmN

[

cos(2
√
πφ1 − η′) + cos(2

√
πφ2 + η′)

]

(15)

The adiabatic approximation 13 is to neglect the kinetic terms in the analysis
of the dynamics of φ1 and φ2 fields in Equation (15). In this case, the mean
values 〈φ1(z)〉 and 〈φ2(z)〉 will follow the background field η′(z), and can be
found by minimizing the potential U in Equation (15).

〈φ1(z)〉 =
η′(z)

2
√
π
, 〈φ2(z)〉 = −η′(z)

2
√
π

(16)

To calculate the induced spin Ψ†~ΣΨ in our theory we should present the spin
operator in terms of 2D fields φ1 and φ2, and replace these fields by their mean
values (16) in the domain wall background:

Ψ†ΣzΨ = Ψ̄(1)γ̂0Ψ
(1) − Ψ̄(2)γ̂0Ψ

(2) =
1√
π
(∂zφ1(z)− ∂zφ2(z)) , (17)
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where, in the last step, we used the bosonic representation for the 2D Ψ(i)

fieldsb. The last step is to replace these fields by their mean-values (16)

〈Ψ†ΣzΨ〉 = N × 1

π

∂η′(z)

∂z
, (18)

where N is the appropriate normalization and degeneracy factor for the Ψ field
which has canonical dimension 3/2 in four dimensions while the 2D Ψ(i) fields
have canonical dimension 1/2.

4.2 Fermion Degeneracy in the Domain wall Background

We have assumed that locally the domain walls have only a spatial z de-
pendence. This implies that there is still a 2-dimensional translational and
rotational symmetry in the x–y plane. These translational degrees of freedom
imply that momentum in the plane is conserved and hence we can treat the
neglected degrees of freedom for the fermions as free degrees. The degeneracy
in a region of area S will simply be a sum over these degrees with a discrete
factor g = 4 = 2× 2 for spin and isospin degeneracy

N = g

∫

dxdydpxdpy
(2π)2

=
gp2F
4π

S ≃
Λ2
QCD

π
S (19)

where we estimated the Fermi energy pF ≃ ΛQCD ≃ 150 MeV. As expected,
the degeneracy is proprtional to the area of the domain wall S. Now it is clear
that an appropriate normalization for the two dimensional Ψ(i) fields can be
achieved by adding a factor 1/

√
S in the definition (9). In this case these 2D

fields have correct canonical dimension 1/2. Now we are ready to estimate the
original four-dimensional expectation value (18):

〈Ψ†ΣzΨ〉4D =
1

S
×N × 1

π

∂η′(z)

∂z
≃

Λ2
QCD

π2

∂η′(z)

∂z
∼

Λ2
QCDmη′

π2
, (20)

which has correct dimension 3. Using the same technique one can estimate
other matrix elements in the domain wall background which have non-zero
magnitude and thus demonstrate that they have a large correlation L on the
of the size of the domain wall in the x–y direction. In particular, the result for
the mean value 〈Ψ̄γ5σxyΨ〉 is:

〈Ψ̄σxyγ5Ψ〉4D ∼ µ
Λ2
QCD

π
, (21)

bThe 2D problem under discussion is quite familiar to physics community: namely, the
calculation of the induced fermion charge in a solitonic background.
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where the factor ∼ Λ2
QCD/π has the same origin as in Equation (20) and is

related to the degeneracy of the system (19), while the factor µ ∼ mN is a
dimensional parameter originating from the bosonic representation (15) of the
effective two-dimensional theory.

5 Magnetic Field Generation Mechanism

Here we estimate the strengths of the induced fields in terms of the QCD
parameters. We consider two types of interactions. First, the nucleon spins
align with the domain wall. We assume that the fluctuations in the nucleon
field Ψ are rapid and that these effects cancel, leaving the classical domain
wall background unaltered. Thus, we are able to estimate many mean values
correlated on a large scale on the domain walls such as 〈Ψ̄γ5σxyΨ〉 (21) and
〈Ψ̄γzγ5Ψ〉 (20) through these interactions as described above. These mean
values are only nonzero within a distance Λ−1

QCD of the domain wall and are
correlated on the same Hubble scale as the domain wall.

From now on we treat the expectation value (21) as a background classical
field correlated on the Hubble scale. Once these sources are known, one could
calculate the generated electromagnetic field by solving Maxwell’s equations
with the interaction

Lint =
1

2
(dΨΨ̄σµνγ5Ψ+ µΨΨ̄iσµνΨ)Fµν + Ψ̄(iD)2Ψ (22)

where dΨ (µΨ) is effective electric (magnetic) dipole moments of the field Ψ.
Due to the CP violation (nonzero θ) along the axion domain wall, the anoma-
lous nucleon dipole moment in (22) dΨ ∼ µΨ ∼ e

mN

is also nonzero 14. This is
an important point: if no anomalous moments were induced, then only charged
particles could generate the magnetic field: the walls would be diamagnetic not
ferromagnetic as argued by Voloshin15 and Landau levels would exactly cancel
the field generated by the dipoles.

Solving the complete set of Maxwell’s equations, however, is extremely
difficult. Instead, we use simple dimensional arguments. For a small planar
region of area ξ2 filled with aligned dipoles with constant density, we know
that the net magnetic field is proportional to ξ−1 since the dipole fields tend to
cancel, thus for a flat section of our domain wall, the field would be suppressed
by a factor of (ξΛQCD)

−1. For a perfectly flat, infinite domain wall (ξ → ∞),
there would be no net field as pointed out 15. However, our domain walls
are far from flat. Indeed, they have many wiggles and high frequency modes,
thus, the size of the flat regions where the fields are suppressed is governed by
a correlation ξ which describes the curvature of the wall. Thus, the average
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electric and magnetic fields produced by the domain wall are of the order

〈Fµν 〉 ≃
1

ξ∗ΛQCD

[

dΨ〈Ψ̄σµνγ5Ψ〉+ µΨ〈Ψ̄iσµνΨ〉
]

(23)

where ξ∗ is an effective correlation length related to the size of the dominant
high frequency modes.

To estimate what effective scale ξ∗ has, however, requires an understanding
of the dynamics of the domain walls. Initially, the domain walls are correlated
with a scale of Λ−1

QCD. As the temperature cools, the walls smooth out and
the lower bound ξ(t) for the scale of the walls correlations increases from
ξ(0) ≃ Λ−1

QCD. This increase is a dynamical feature, however, and is thus slow.
In addition, the walls coalesce and become correlated on the Hubble scale
generating large scale correlations. Thus the wall has correlations from ξ(t) up
to the upper limit set by the Hubble scale. Thus, the effective ξ∗ ≪ Hubble size
at the time that the fields are aligned and so the suppression is not nearly as
great as implied by Voloshin15. Note that, even though the effects are confined
to the region close to the wall, the domain walls are moving and twisted so
that the effects occur throughout the entire Hubble volume.

The picture is thus that fields of strength

〈Ez〉 ≃ 〈Bz〉 ∼
1

ξ∗ΛQCD

e

mN

mNΛ2
QCD

π
∼ eΛQCD

ξ∗π
(24)

are generated with short correlations ξ∗, but then domains are correlated on
a large scale by the Hubble scale modes of the coalescing domain walls. Thus,
strong turbulence is generated with correlations that run from ΛQCD up to the
Hubble scale.

Finally, we note that this turbulence should be highly helical. This helic-
ity arises from the fact that both electric and magnetic fields are correlated
together along the entire domain wall, 〈~E〉 ∼ 〈~A〉/τ where 〈~A〉 is the vector
potential and τ is a relevant timescale for the electrical field to be screened
(we expect τ ∼ Λ−1

QCD as we discuss below). The magnetic helicity density is
thus:

h ∼ ~A · ~B ∼ τ〈Ez〉〈Bz〉 ∼ τ
e2

π2

Λ2
QCD

ξ∗2
. (25)

Note carefully what happens here: The total helicity was zero in the quark-
gluon-plasma phase and remains zero in the whole universe, but the helicity
is separated so that in one Hubble volume, the helicity has the same sign.
The reason for this is that, as the domain walls coalesce, initial perturbations
cause either a soliton or an antisoliton to dominate and fill the Hubble vol-
ume. In the neighboring space, there will be other solitons and antisolitons so
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that there is an equal number of both, but they are separated and this spatial
separation prevents them from annihilating. This is similar to how a particle
and anti-particle may be created and then separated so they do not annihilate.
In any case, the helicity is a pseudoscalar and thus maintains a constant sign
everywhere along the domain wall: thus, the entire Hubble volume is filled
with helicity of the same sign. This is the origin of the Hubble scale correla-
tions in the helicity and in B2. The correlation parameter ξ which affects the
magnitude of the fields plays no role in disturbing this correlation.

As we mentioned, eventually, the electric field will be screened. The
timescale for this is set by the plasma frequency for the electrons (protons
will screen much more slowly) ωp which turns out to be numerically close to
ΛQCD near the QCD phase transition. The nucleons, however, also align on
a similar timescale Λ−1

QCD, and the helicity is generated on this scale too, so
the electric screening will not qualitatively affect the mechanism. Finally, we
note that the turbulence requires a seed which remains in a local region for
a timescale set by the conductivity 16 σ ∼ cT/e2 ∼ ΛQCD where for T = 100
MeV, c ≈ 0.07 and is smaller for higher T . Thus, even if the domain walls
move at close to the speed of light (due to vibrations), there is still enough
time to generate turbulence.

For this mechanism to work and not violate current observations, it seems
that the domain walls must eventually decay. Several mechanisms have been
discussed for the decay of axion domain walls 10,17 and the timescales for these
decays are much larger than Λ−1

QCD, ie. long enough to generate these fields
but short enough to avoid cosmological problems. In addition, we have found
some additional structures which may help solve this problem. We shall present
these elsewhere6. In any case, we assume that some mechanism exists to resolve
the domain wall problem in an appropriate timescale. Thus, all the relevant
timescales are of the order Λ−1

QCD except for the lifetime of the walls which is
substantially longer and thus, although the discussed interactions will affect
the qualitative results, they will not affect the mechanism or substantially
change the order of the effects.

6 Conclusion.

We have shown that this mechanism can generate the magnetic fields (3) with
large correlations. It seems that galactic dynamos should still play an impor-
tant amplification role. It seems that the crucial conditions for the dynamo to
take place are fields B > 10−20 G with large (100 kpc) correlations. From (3)
we see that we have a huge interval 10−10 ≪ ξ∗ΛQCD ≤ 1 of ξ∗ to seed these
dynamos. Also, if ξ∗ is small, then this mechanism may generate measurable
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extra-galactic fields.

We mention two new points that distinguish this mechanism from previous
proposals 18. First, the key nucleon is the neutron which generates the fields
due to an anomalous dipole moment induced by the CP violating domain walls.
The nucleons thus make the wall ferromagnetic, not diamagnetic as discussed
in 15. Second, the interaction between the domain walls and nucleons are
substantial because of the similar scale (Λ−1

QCD) of the η′ transition in the aη′

domain wall. There is no way that axion domain walls with scales ∼ m−1
a can

efficiently align nucleons at a temperature TQCD.

The presence of the magnetic fields generated by our mechanism may have
several observable effects. First, large magnetic fields may alter nucleosynthesis
production ratios19. Secondly, large scale magnetic fields may distort the CMB
spectrum in a measurable manner20. These place upper bounds on the strength
of the fields. Even the maximal fields (24) with ξ∗ΛQCD = 1 generated by
domain walls lie within these bounds. Also, if ξ∗ turns out to be quite small,
then, unless the distribution of galaxies is correlated with the domain walls,
this mechanism might generate measurable extra-galactic fields.

Two other effects may be closely related to magnetic fields generated from
domain walls. One is the observation of ultra-high energy cosmic rays past
the GZK cutoff 21. Magnetic fields on the scale of those discussed here may
hold a key to explaining this mystery. The other is an apparent anisotropy
of radiation propagation over large distances resulting in a constant offset in
Faraday measurements 22. One possible explanation involves the introduction
of a Chern-Simons term by hand 23. This type of term might arise naturally
from CP violating domain walls.

Domain walls at the QCD phase transition provide a nice method of gen-
erating magnetic fields on 100 kpc correlations today (3). In addition, the
fields and domain walls key to this mechanism may play a role in a number of
unexplained astrophysical phenomena. We conclude on this optimistic note.
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