
ar
X

iv
:h

ep
-p

h/
01

01
00

7v
1 

 3
1 

D
ec

 2
00

0

To be published in Phys. Lett. B RCNP-Th00047

Cubic Casimir operator of SUC(3) and confinement in the

nonrelativistic quark model

V. Dmitrašinović
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Abstract

Only two-body [Fi · Fj] confining potentials have been considered, thus far,

in the quark model without gluons, which by construction can only depend

on the quadratic Casimir operator of the colour SU(3) group. A three-quark

potential that depends on the cubic Casimir operator is added to the quark

model. This results in improved properties of q3 colour non-singlet states,

which can now be arranged to have (arbitrarily) higher energy than the singlet,

and the “colour dissolution/anticonfinement” problem of the Fi · Fj model is

avoided.

PACS numbers: 02.20.-a, 11.30.Hv

Typeset using REVTEX

1

http://arxiv.org/abs/hep-ph/0101007v1


I. INTRODUCTION

In spite of the wide-spread concensus on the validity of QCD as the theory of strong
interactions, QCD has proven essentially intractable, except in perturbative approximations.
1 It is fair to say that little (or no) understanding of quark confinement has been achieved
since QCD’s inception more than 25 years ago 2

Instead of solving QCD one often resorts to various forms of the quark model, perhaps
the simplest version being the nonrelativistic (n.r.) constituent quark model 3. The spin-
statistics problem of the simplest quark model led to the introduction of the colour degrees
of freedom that obey the SU(3) Lie algebra (this led subsequently to QCD). This “colour
SU(3)” is exactly conserved (there is no colour leakage), hence the quark model spectrum
must fall into irreducible representations of this group, and the quark Hamiltonian must be
expressible in terms of SU(3) invariant operators. There are two such independent “invari-
ants” of SU(3), the so-called Casimir operators, other than the unit operator [2,3].

Even with an infinitely rising (“confining”) q − q potential, that does not allow sep-
aration of individual quarks from their aggregates, in the simplest quark model, which
assumes colour independent quark interactions, the coloured q3 states are degenerate with
the colour-singlet one. This is in manifest contradiction with the experience. To remedy
this shortcoming, a colour-dependent factor Fi · Fj (proportional to the colour charges of
the two quarks Fa

i,j) was introduced into the two-quark potential of the quark model, in
analogy with the one-gluon exchange (OGE) potential in QCD. This goes by the name of
the “Fi · Fj model”. This colour factor is proportional to the first (“quadratic”) Casimir
operator C(1) = FaFa = F · F = F2, where Fa are the group generators of SU(3). No three-
quark or higher-order interactions have been allowed in this model so far. Whereas many
view three- and many-body forces with distaste, it is also indisputable that QCD demands
three-, and four-quark interactions at the tree approximation level. Therefore it ought to
have been clear all along that no two-body interaction could describe QCD completely.

A. Problems with the Fi · Fj model

As noted by many, e.g. [4,5], the Fi · Fj model suffers from a number of weaknesses:

1. it predicts unstable coloured q2 and qq̄ states (the “colour dissolution / anticonfine-
ment” problem);

1The highest achievement of lattice QCD is the (mere) extraction of a linearly rising colour-

singlet qq̄ potential, which is far from proving physical confinement. In particular, the existence

and energetics of coloured states remain unexplored. Moreover, multiple colour-singlet multi-quark

states appear in the theory and it is unclear just which one lies lowest.

2In this regard, see M. Chanowitz’s remarks made 23 years ago [1].

3One may think of it as QCD with gluon degrees of freedom frozen, the quark-quark interaction

being transmitted by potentials of colour-exchange character.
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2. it predicts towers of new, as yet undiscovered multiquark states, q2q̄2 being the lowest
lying ones (the “colour chemistry” problem);

3. it predicts unobserved long-range forces between colour singlets (the v.d. Waals force
problem).

The standard “solution” to problem (1), the assumption that only colour singlet states
exist, is entirely ad hoc and thus unsatisfactory. Moreover, it does not begin to address
problems (2) and (3). Hence we shall seek a change in the dynamics of the quark model that
might lead to the solution of the confinement problem(s). We consider the displacement
of coloured states to (arbitrarily) high energies/masses as a solution to the confinement
problem.

This note will show that the introduction of a three-quark force proportional to the second
(“cubic”) Casimir operator can fix (at least some of) these shortcomings. 4 To be sure, such
a three-quark potential is not an arbitrary addition: it arises from the instanton-induced
’t Hooft interaction in QCD. What we do assume, however, is that its spatial behaviour is
confining, which is ad hoc.

II. THREE-BODY POTENTIAL

The three-quark potential can be factored into a colour part C123 and the spin-spatial
part V123:

V123 = C123V123. (1)

The following 3-body colour factors can be written down:

C123 =











∑3
i<j Fi · Fj = F1 · F2 + F1 · F3 + F2 · F3

dabcFa
1F

b
2F

c
3

ifabcFa
1F

b
2F

c
3,

(2)

where Fa = 1
2
λa is the quark colour charge, the lower index indicates the number of the

quark, λa are the Gell-Mann matrices, and fabc, dabc are the SU(3) structure constants.
Only the first two factors, Eqs. (2,2) are SU(3) invariants, however, i.e., only they can be
expressed in terms of Casimir operators as follows

3
∑

i<j

Fi · Fj =
1

2
C

(1)
i+j+k − 2 (3)

dabcFa
1F

b
2F

c
3 =

1

6

[

C
(2)
i+j+k −

5

2
C

(1)
i+j+k +

20

3

]

; (4)

where i + j + k stands for the three-quark colour state. Only the second factor, Eq. (4),
depends on the cubic Casimir operator. The third colour factor, Eq. (2), is an off-diagonal

4The second Casimir operator C(2) of SU(3) is tri-linear (“cubic”) in the group generators Fa, viz.

C(2) = dabcFaFbFc, so it can only appear in three- or more-quark potentials.
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operator that annihilates the two SU(3) eigenstates with definite exchange symmetry, i.e.
the 1 and 10, see Table I, and converts one 8 state into another. Therefore, it is not allowed
in the quark model Hamiltonian 5.

The first two colour factors Eqs. (2,2) are symmetric under the interchange of any pair of
indices i ↔ j, i ↔ k, and j ↔ k, whereas the third one, Eq. (2), is antisymmetric. All three
are symmetric under cyclic permutations i → j → k and i → k → j. Since the complete
potential has to be symmetric under each of these permutations, the corresponding spin-
spatial parts have to have the same symmetry properties as the colour ones. Consequently,
the third one has to be spin dependent, whereas the first two need not. For the sake of
simplicity in this letter we limit ourselves to spin-independent potentials, i.e. again to the
first two cases, Eqs. (2,2).

Keeping with the tradition of the quark model, we take the harmonic oscillator for both
the two- and three-quark spatial parts of potentials:

V12 =
1

2
mω2 (r1 − r2)

2 (5)

V123 = c
1

2
mω2

[

(r1 − r2)
2 + (r3 − r2)

2 + (r1 − r3)
2
]

; (6)

with an as yet undetermined strength c for the latter. With the harmonic oscillator as-
sumption we find that the Fi · Fj model two-body interaction leads to the same form of the
effective potential in the q3 system as the three-body force Eq. (2). Similar statements hold
for the colour-independent two- and three-body potentials. For this reason there is no need
to introduce such two- and three-body potentials separately, but only one of a kind. We shall
show that a colour-independent two-body potential is necessary for the stabilization of both
qq̄ and q3 spectra. Hence we do not introduce a separate colour-independent three-body
potential. With these results we can write down the Hamiltonians for few-quark systems
and then solve for their spectra.

A. q3 Hamiltonian and its spectrum

We shall start with the Fi · Fj model two-body potential and show that the “cubic
Casimir” 3-body force alone cannot stabilize it. We find the following Hamiltonians in the
colour channels of the q3 system

H1 =
3

∑

i

p2
i

2m
+

2

3

3
∑

i<j

Vij +
10

9
V123 (7)

H8 =
3

∑

i

p2
i

2m
+

1

6

3
∑

i<j

Vij −
5

36
V123 (8)

H10 =
3

∑

i

p2
i

2m
−

1

3

3
∑

i<j

Vij +
1

9
V123. (9)

5It is true, of course, that the “Mercedes-Benz star” diagram of QCD carries this colour factor.

This factor does not appear in the quark model because that diagram alone is not gauge invariant.
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After going to centre-of-mass and Jacobi coordinates ρ,λ we find the following potentials

V1 =
(

2

3
+

10

9
c

)

3

2
mω2

(

ρ2 + λ2
)

(10)

V8 =
(

1

6
−

5

36
c

)

3

2
mω2

(

ρ2 + λ2
)

(11)

V10 =
(

−
1

3
+

1

9
c

)

3

2
mω2

(

ρ2 + λ2
)

(12)

from which we can read off the stability conditions as

1 > −
5

3
c (13)

1 >
5

6
c (14)

1 <
1

3
c. (15)

Note that two of the three inequalities are in conflict, regardless of the sign of c. We conclude
that the cubic Casimir three-body force cannot stabilize the 3q system with the Fi ·Fj model
two-quark interaction. Consequently, we turn to modification of this model that will lead
to stable states in both the qq̄ and q3 systems.

Sufficient condition for the stabilization of the 8 qq̄ state is to have as the two-body
potential

V12 =
[

c1 +
4

3
+ Fi · Fj

]

1

2
mω2 (r1 − r2)

2
, (16)

with c1 > 0. For simplicity we take c1 = 1. With this two-body potential we find

V1 =
(

5

3
+

10

9
c

)

3

2
mω2

(

ρ2 + λ2
)

(17)

V8 =
(

13

6
−

5

36
c

)

3

2
mω2

(

ρ2 + λ2
)

(18)

V10 =
(

8

3
+

1

9
c

)

3

2
mω2

(

ρ2 + λ2
)

(19)

Note that with this new and improved two-body interaction and no three-body force (c = 0),
all three q3 colour states are stable, but the octet 8 is lighter than the singlet 1, again in
contrast with the experiment!

Turning on the three-body force, c 6= 0, we find the following stability condition

−
3

2
< c <

78

5
. (20)

For values of c < 2
5
we find the anticipated ordering of colour states: singlet 1 is the lowest

lying, the next lowest is the octet 8, and then the decimet 10. The ratio of their ground
state energies can be made arbitrarily large by choosing c sufficiently close to - 1.5. For
example, with c = - 1.43, the 8 and 10 states are lying above 4 GeV. We conclude that
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the colour-independent two-body force stabilizes the q3 system, whereas the cubic Casimir
three-body force makes it well ordered in colour, i.e. properly confined.

This should not be a surprise: for the colour singlet to separate away from other colour
multiplets, the Hamiltonian must contain at least one piece proportional to the colosinglet
projection operator P1 shown below

P1 =
1

27
−

1

36

3
∑

i<j

λi · λj +
1

12
dabcλa

1λ
b
2λ

c
3 (21a)

P8 =
16

27
−

1

9

3
∑

i<j

λi · λj −
1

6
dabcλa

1λ
b
2λ

c
3 (21b)

P10 =
10

27
+

5

36

3
∑

i<j

λi · λj +
1

12
dabcλa

1λ
b
2λ

c
3 (21c)

which manifestly depends on both the two-body and the three-body operators. Without the
three-quark (cubic Casimir), there is bound to be some (accidental) degeneracy left and the
colour singlet state could not be isolated.

Concrete (observable) phenomenological consequences of our new three-quark interaction
only become visible in (“exotic”) multiquark systems, such as q4q̄, or q2q̄2, because the
“ordinary” states, such as q3, only allow one colour singlet, and non-singlet states have not
been observed.

III. THE Q2Q̄2 SYSTEM

Having found a confining potential that predicts the presumed ordering of the q3 colour
spectrum, we turn to its application to the q2q̄2 system. We break up this system into
three-body configurations. For our purposes one can equivalently think of this system either
as (q2q̄)q̄, or as q(qq̄2). Thus we need to evaluate the three-body potential’s colour factor in
variously coloured q2q̄ and qq̄2 states.

The q2q̄ system can occupy one of the following four colour states (3⊗ 3) ⊗ 3̄ =
(3̄⊕ 6) ⊗ 3̄ = (6̄⊕ 3a) ⊕ (3s ⊕ 15). Note that there are two colour triplets and that
they have different symmetry properties under the interchange of the two quark indices:
one is symmetric, another antisymmetric. This means that there will be two colour singlet
q2q̄2 states with corresponding quark interchange symmetry properties. Our three-body
interaction will distinguish between the two colour singlet states.

We must be careful about the definition of the colour factors in the nonrelativistic three-
body potential involving antiquarks as they are sensitive to the C-conjugation properties of
the relativistic interaction from which the potential was derived (the latter’s properties carry
over into the nonrelativistic limit for odd number of quarks). More specifically, one finds a
difference between the Lorentz scalar and zeroth component of Lorentz vector models, which
is unusual. In the quark model one ordinarily replaces the quark colour factor Fa by

F̄a = −
1

2
λaT = −

1

2
λa∗ (22)

which is the definition of the colour charge operator of an antiquark. Note, however, that the
minus sign in this definition stems from the C-conjugation properties of the vector current
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and not from SU(3) itself. So for Lorentz scalar, pseudoscalar and axial-vector interactions
this sign changes into a plus. 6 In two-body potentials this sign makes no difference, as there
are two such factors that cancel. In the three-body case the sign makes a difference. For
example, due to the odd number of interacting particles there is a sign difference between
the “cubic Casimir” three-quark and three-antiquark potentials in the Lorentz-vector model
(unlike the two-body potential), thus apparently violating C-conjugation symmetry and
CPT, since P- and T- are conserved. For Lorentz scalar interactions the antiquark potential
has the same sign as the quark potential and there is no such problem. Lorentz-vector 3-
point functions are forbidden by C-conjugation (“Furry’s theorem”) anyway, so we conclude
that only Lorentz scalar three-quark potential is allowed.

Thus we conclude that the “cubic Casimir” three-body interaction must have the follow-
ing colour factor when antiquarks are involved

C̄123 =











−dabcFa
1F

b
2F̄

c
3

dabcFa
1F̄

b
2F̄

c
3

−dabcF̄a
1F̄

b
2F̄

c
3

(23)

Once again, we can express the two SU(3) invariant colour factors in terms of the Casimir
operators. The first one remains unchanged:

3
∑

i<j

Fi · Fj = F1 · F2 + F1 · F̄3 + F2 · F̄3 =
1

2
C

(1)
i+j+k − 2, (24)

whereas the second one becomes

dabcFa
1F

b
2F̄

c
3 =

1

6

[

C
(2)
i+j+k −

5

2
C

(1)
i+j +

50

9

]

. (25)

Note that in the second factor, Eq. (25) the first (quadratic) Casimir is evaluated between
the two-quark (sub-)state i+ j, which leads to a distinction between the two overall colour
triplets (which are symmetric and antisymmetric in the quark indices). This leads to results
shown in Table II. Using Table II, we find the following potentials in the two overall colour
singlet states [s ≡ 8, a ≡ 1]

Vs = c
5

18
ω2

(

r212 + r213 + r214 + r223 + r224 + r234
)

(26)

Va = −c
5

9
ω2

(

r212 + r213 + r214 + r223 + r224 + r234
)

. (27)

From the signs of the two interaction potentials we see that the mass/energy of the “octet”
state is enhanced for c ≥ 0 and vice versa for the “singlet” state. As we have already shown
that c can be either positive or negative (it only needs to be less than 0.4), we conclude that
the 3-body interaction can elevate the mass of the unobserved (symmetric) “octet” states
above the conventional/ordinary two-meson states and thus make them less stable and less
likely to be detected. In this sense, one may think of this three-body interaction as a solution
to Isgur’s problem (“fiasco”) of unobserved (towers of) q2q̄2 states in the Fi · Fj model.

6This definition ignores the SU(3) analog of G-parity transformation.
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IV. CONCLUSIONS

We have looked into the question of the second (cubic) Casimir interaction in the quark
model and found that:

1. It is insufficient to stabilize the Fi ·Fj model by itself. A colour-independent two-body
force is necessary to prevent colour dissolution in both the qq̄ and the q3 systems.

2. In conjunction with a colour-independent two-body force it leads to a proper ordering
in energy of the coloured q3 states for three-body coupling constants c in the range
−1.5 < c < 0.4.

3. In the q2q̄2 system it leads to a distinction between the two colour singlet states, in
that it enhances overall binding in one and diminishes it in the other, depending on
the sign of its coupling constant c.

We have made several simplifying assumptions that can and ought to be relaxed in
the future. For example: (1) harmonic oscillator nature-, and (2) spin independence of
the three-body potential. Relaxation of these assumptions leads to new predictions in the
observable (colour singlet) sector. For example, the replacement of the usual two-body
“colour-spin” interaction with a more complicated, three-body one will change the pattern
of SU(6) splitting in multi-quark states.

Many papers have been written on the “saturation” of quark-quark interactions, starting
with those of Nambu [6] and of Greenberg and Zwanziger [7]. Those early papers assumed
two-quark (quadratic Casimir operator) potentials that vanish at infinite quark-quark sep-
arations, in contrast with modern notions that allow them to infinitely rise. This work can
be viewed as a natural continuation of those early works to models with infinitely rising
potentials and three-quark (cubic Casimir) colour operators.
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TABLES

TABLE I. Diagonal matrix elements of the three operators for variously coloured q3 states. Of

course, there are two distinct 8 states, but they are equivalent in this regard.

1 8 10

〈
∑3

i<j Fi · Fj〉 −2 - 1
2 1

〈dabcFa
1F

b
2F

c
3〉

10
9 - 5

36
1
9

〈fabcFa
1F

b
2F

c
3〉 0 0 0

TABLE II. Diagonal matrix elements of the three-body colour operators for variously coloured

q2q̄ states.

3a 3s 6̄ 15

〈
∑3

i<j Fi · Fj〉 -43 -43 - 1
3

2
3

〈dabcFa
1F

b
2F̄

c
3〉

5
9 - 5

18 − 5
18

1
18
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