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Abstract

We study the energy spectrum of bottomonium in perturbative QCD, taking αs(MZ) =

0.1181 ± 0.0020 as input and fixing mMS
b (mMS

b ) on the Υ(1S) mass. Contrary to wide

beliefs, perturbative QCD reproduces reasonably well the gross structure of the spectrum

as long as the coupling constant remains smaller than one. We perform a detailed anal-

ysis and discuss the size of non-perturbative effects. A new qualitative picture on the

structure of the bottomonium spectrum is provided. The lowest-lying cc̄ and bc̄ states

are also examined.
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1 Introduction

In recent years our knowledge of heavy quarkonia in the framework of perturbative QCD has

developed significantly. On one hand computations of new higher-order corrections to various

physical quantities appeared [1, 2, 3, 4]. On the other hand the discovery of the mechanism of

the renormalon cancellation in the quarkonium spectrum [5, 6] led to a drastic improvement of

the convergence of the perturbative expansion of the energy levels. As important applications

up to date, the theory enabled precise determinations of the MS-mass of the bottom quark [7, 8,

9, 10] and (in the future) of the top quark [11] from (mainly) the energy spectra of the lowest-

lying states. The main uncertainty comes, in the bottomonium case, from the (essentially)

unknown non-perturbative contributions. These are generally claimed to be around 100 MeV

and ultimately set the precision of the prediction.

As for the structure of the higher quarkonium levels, the Coulomb potential seems to be

unable to explain it (for a review see [12]). For instance, the spacing between two consecutive

nS levels does not decrease with n and appears roughly constant. For this reason several

confining potentials have been introduced in the literature over the last decades. We refer to

[13] for one of the most recent phenomenological study on several of them. Progress in this

direction seems to be no longer possible, as far as the relation of the confining potentials with

QCD remains obscure. This relation has been elucidated recently in [14, 15] where a complete

and systematic parametrization inside QCD of perturbative and non-perturbative effects of

the heavy quarkonium interaction has been realized. The parametrization depends on the

mutual relation between the scale of non-perturbative physics, ΛQCD, and the other dynamical

scales in the specific heavy quarkonium system under study. A way to determine it and the

size and nature of the non-perturbative contributions, consists in establishing to which extent

perturbative QCD can consistently and successfully describe the system. This is the aim of

the present paper, which investigates the range of validity of perturbative QCD on the heavy

quarkonium spectroscopy and consequently extracts upper bounds to the non-perturbative

contributions by comparing the perturbative predictions, at the current best accuracy, with

the experimental data.

One of the main problems in having a consistent (i.e. convergent) perturbative expansion

for the quarkonium energy levels has been for a long time its bad behaviour when expressed in

terms of the pole mass (see, for instance, the poor convergence of the computations reported

in [16, 7]). The reason has been understood in the renormalon language: the pole mass [17]

and the QCD static potential [18], respectively, contain renormalon contributions of order

ΛQCD, which get cancelled in the total energy of a color singlet quark-antiquark system [5, 6].

The solution then consists in making explicit this cancellation by substituting in the energy

expansion a short-range mass (free from infrared ambiguities) for the pole mass. In [10, 9, 4]

this approach has been used in order to calculate the bottom quark mass by means of sum rules.

However, an analysis of the consistency between the whole level structure of perturbative QCD

and the experimental data is lacking and will be done in the present work. In order to make

explicit the renormalon cancellation we will express the quarkonium energies in terms of the

MS masses and rearrange the perturbative series in the so-called ε expansion [19]. This will be

the key ingredient of our analysis. We note that according to a formal argument, the residual
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uncertainty of the perturbative expansion due to the next-to-leading renormalon contribution

is estimated to be ΛQCD × (aXΛQCD)
2 for a bound-state X of size aX [18, 14], e.g. it amounts

to 5–20 MeV for the 1S bottomonium state. Provided this argument applies, in principle the

predictions of perturbative QCD can be made precise down to this accuracy by sufficiently

increasing the orders of the perturbative expansion.

The paper is organized as follows. In Sec. 2 we set up the formalism and the computational

strategy. In Sec. 3 we perform the numerical analysis and in Sec. 4 we discuss the errors. In

Sec. 5 we interpret our result and in Sec. 6 we draw some conclusions.

2 Perturbative Expansions

We assume that the system is non-relativistic, v ≪ 1, where v is the typical size of the

heavy quark velocity in a quarkonium state. Also, we assume that the soft scale mv is much

larger than ΛQCD. Under these assumptions, the energy (mass) of a quarkonium state X

is given as a series expansion in the MS coupling constant αs(µ) defined in the theory with

nl massless quarks only. We write a general expression valid also when the masses of the

quark and antiquark are different. The reduced mass is defined from the pole masses by

mr = m1,polem2,pole/(m1,pole + m2,pole). Moreover, we define x = 1 − 4mr/(m1,pole + m2,pole);

when the two masses are equal, x = 0. Up to O(α4
sm) the energy of a heavy quarkonium state

X , identified by the quantum numbers n, l, s and j, is given by∗

EX(µ, αs(µ), mi,pole) = m1,pole +m2,pole + Ebin,X(µ, αs(µ), mi,pole), (1)

Ebin,X(µ, αs(µ), mi,pole) = −
8

9n2
αs(µ)

2mr

2
∑

k=0

εk+1

(

αs(µ)

π

)k

Pk(Lnl), (2)

where ε = 1 is the parameter that will be used in order to properly organize the perturbative

expansion in view of the O(ΛQCD) renormalon cancellation. Pk(Lnl) is a k-th-degree polynomial

of Lnl ≡ log[ 3nµ/(8αs(µ)mr) ] + S1(n+ l) +
5

6
, and the harmonic sums are defined as Sp(q) ≡

q
∑

k=1

1

kp
. It is convenient to decompose the polynomials into renormalization-group invariant

subsets:

P0 = 1, (3)

P1 = β0 Lnl + c1, (4)

P2 =
3

4
β2
0 L

2
nl +

(

−
1

2
β2
0 +

1

4
β1 +

3

2
β0c1

)

Lnl + c2. (5)

Here, βk’s denote the coefficients of the QCD beta function, β0 = 11−2nl/3, β1 = 102−38nl/3,

and ck’s are given by

c1 = −4, (6)

∗ The full formula up to O(α4
sm) for the S state spectrum was derived in [7] and later confirmed in [9];

additional corrections necessary for the spectrum of l ≥ 1 states can be found in [16]; the formula for the

unequal mass case was derived in [21].

3



c2 = −
16 π2 {2s(s+ 1)(1− x) + 3x}

27n
δl0 −

8 π2 (DS + 3XLS)

9n l (l + 1) (2 l + 1)
(1−δl0) + β2

0 ν(n, l)

−
(11 + x) π2

9n2
+

68 π2

9n (2 l + 1)
+

473

16
+

9 π2

2
+

33 ζ3
4

−
9 π4

32
− nl

(

109

72
+

13 ζ3
6

)

,

(7)

with

DS ≡

〈

3
(~r · ~S)2

r2
− ~S2

〉

=
2l(l + 1)s(s+ 1)− 3XLS − 6X2

LS

(2l − 1)(2l + 3)
, (8)

XLS ≡
〈

~L · ~S
〉

=
1

2
[j(j + 1)− l(l + 1)− s(s+ 1)] , (9)

ν(n, l) =
π2

8
−

1

2
S2(n + l) +

n

2

(n + l)!

(n− l − 1)!

∞
∑

k=1

(n− l + k − 1)!

(n+ l + k)! k3

+
(n− l − 1)!

2(n+ l)!

n−l−1
∑

k=1

(2l + k)! (2k + 2l − n)

(k − 1)! (k + l − n)3
. (10)

It is understood that the last term of Eq. (10) is zero if n− l < 2.†

Next we rewrite the series expansion of EX in terms of the MS masses. This is done by

expressing the pole masses mi,pole in terms of the renormalization–group-invariant MS masses

mi ≡ mi,MS(mi,MS):

mi,pole = mi







1 +
4

3
ε
αs(mi)

π
+ ε2

(

αs(mi)

π

)2

d1 + ε3
(

αs(mi)

π

)3

d2







. (11)

The coefficient d1 is given in [22], while the analytic expression of d2 can be derived from the

result of [23], the renormalization-group evolutions of αs(µ) and mMS(µ), and the matching

condition [24]. Note that the counting in ε in Eq. (2) and Eq. (11) does not reflect the order

in αs but the wanted renormalon cancellation. One way to understand this is to consider that

in the sum of the pole-quark masses and the static QCD potential,
∑

imi,pole + VQCD(r), the

renormalon cancellation takes place without reordering of power counting in αs [5, 6]. The

extra power of αs comes in the energy level expansion when the dynamical variable r−1 is

replaced by the dynamical scale 〈nlsj | r−1 |nlsj 〉 ∼ CFαsmr/n.
‡ Moreover, in order to realize

the renormalon cancellation at each order of the expansion, it is necessary to expand mi,pole

and Ebin,X in the same coupling [25, 19, 26], therefore we express αs(mi) in (11) in terms of

αs(µ):

αs(mi) = αs(µ)







1 + ε
αs(µ)

π

β0
2
log

(

µ

mi

)

+ ε2
(

αs(µ)

π

)2 [
β2
0

4
log2

(

µ

mi

)

+
β1
8
log

(

µ

mi

)

]







.

(12)
†The infinite sum in Eq. (10) can be easily evaluated analytically in terms of ζ3, etc. for given values of n

and l, e.g. by using Mathematica.
‡ Since the soft scale is, in perturbative QCD, the only scale involved in the calculation of the binding

energy, Ebin,X , up to O(α4
sm), we may absorb the extra αs by reexpressing Ebin,X in terms of αs(µ) and the

soft scales µi,soft = αs(µ)mi. Then the order counting in αs(µ) coincides with the order counting in ε given

here.
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Substituting Eqs. (12) and (11) into Eqs. (2) and (1) we get an expression for the energy levels

of the heavy quarkonium states, which depends on µ, αs(µ) and mi, that we can organize as

an expansion in ε up to order ε3:

EX(µ, αs(µ), mi) = m1 +m2 + E
(1)
X (µ, αs(µ), mi)ε+ E

(2)
X (µ, αs(µ), mi)ε

2

+E
(3)
X (µ, αs(µ), mi)ε

3 + . . . (13)

Since the counting in ε explicitly realizes the order ΛQCD renormalon cancellation, and since

αs and mi are short-range quantities, the obtained perturbative expansion (13) is expected to

show a better convergence with respect to the original expansion (2).

The obtained quarkonium mass EX depends on the scale µ, due to our incomplete knowledge

of the perturbative series. We fix the scale µ by demanding stability against variation of the

scale:

d

dµ
EX(µ, αs(µ), mi)

∣

∣

∣

∣

∣

µ=µX

= 0. (14)

When we do this, we expect that the convergence properties of the series become optimal,

and that the scale becomes close to the inverse of the physical size of the bound-state X . If

the scale fixed by Eq. (14) evidently does not fulfill these expectations, then the theoretical

predictions obtained in this way will be considered unreliable. We will show that this typically

happens when the coupling constant becomes bigger than one.

Based on the formalism developed in [14], in principle three scenarios are possible under the

assumption v ≪ 1 and mv ≫ ΛQCD: 1) The energy or ultrasoft scale mv2 is much larger than

ΛQCD. In this case the potential is entirely perturbative and non-perturbative corrections are

parameterized by local condensates of the Voloshin–Leutwyler type [20]. 2) The energy scale

mv2 is of order ΛQCD. The potential is entirely perturbative and non-perturbative corrections

are parameterized by non-local condensates. 3) The energy scale, mv2, is smaller than ΛQCD. In

this case short-range non-perturbative corrections affect the potential. They are parameterized

by non-local condensates. A perturbative treatment of the energy levels is consistent only if

these are small compared to the Coulomb potential. Explicit formulas for the non-perturbative

contributions in all these three cases can be found in [14]. However, their sizes in an actual

calculation of the heavy quarkonium spectrum are affected by large uncertainties. The best

known case is 1): The leading non-perturbative contribution is ≃ 1.44n6〈αsF
2(0)〉/(m3αs(µ)

4).

It runs out of control for n > 1, so the estimate is suitable only for the heavy quarkonium

ground states. It is quite sensitive to the value of the gluon condensate and of αs. It is also

numerically sensitive to the replacement of the strong coupling constant in the MS scheme

in the denominator with the coupling constant in some other scheme (e.g. the V scheme or

similar) as used by some authors [7, 16]. Non-local condensates, which are suitable for the

situations 2) and 3), are even less known. Moreover, they get entangled with higher-order

perturbative corrections (starting at order α5
sm logαs [1]) and in particular with the O(Λ3

QCD)

renormalon [14]. Due to these uncertainties a direct evaluation of non-perturbative and higher-

order contributions will not be included in the present investigation. Neither we will distinguish

among the three different scenarios outlined above. Our approach consists in looking only at
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the perturbative spectrum up to O(α4
sm), under the general assumption that mv ≫ ΛQCD.

The internal consistency of the perturbative series (i.e. its convergence) and the comparison

with the experimental data will provide indirect, but more stringent, contraints on the size of

non-perturbative and higher-order corrections.

3 Numerical Analyses

In this section we examine the series expansions of the quarkonium spectra, Eq. (13), numer-

ically. The input value is α(5)
s (MZ) = 0.1181 [27]. We evolve the coupling and match it to

the couplings of the theory with nl = 4 and 3 successively following [28]§ and solving the

renormalization-group equation numerically (4-loop running). In this section we do not take

into account effects of the non-zero charm mass in the bb̄ and bc̄ systems.

Since we expect the ground states of the bb̄ and cc̄ systems to be the states less affected by

non-perturbative corrections, we fix mb and mc through the conditions

EΥ(1S)(µX , αs(µX), mb) = Eexp
Υ(1S) = 9.460GeV, (15)

EJ/ψ(µX , αs(µX), mc) = Eexp
J/ψ = 3.097GeV, (16)

where the experimental values of the vector ground states have been taken from [27]. We

assume, for the moment, that this identification is not affected by non-perturbative corrections.

From Eqs. (15), (16) and (14) we determine µX (see Tab. 1), and the b and c MS masses:

mb ≡ mMS
b (mMS

b ) = 4.203 GeV, (17)

mc ≡ mMS
c (mMS

c ) = 1.243 GeV. (18)

These values are in good agreement with recent estimates based on Υ [9, 10] and charmonium

[29] sum rules respectively.

Using these masses as input and Eq. (14), we can calculate the energy levels of other

observed quarkonium states. These are given in Tab. 1. The series expansions for the char-

monium 11S0 state and for the 13S1, 1
3Pj , 2

3S1, 2
3P0 and 33S1 bottomonium states converge

well. For these states the differences of the theoretical predictions and the experimental data

are typically 30–70 MeV. Convergence of the series expansions is poor for the 2P1, 2P2 and

4S bottomonium states as well as for the other charmonium states. We consider that the

theoretical predictions for these levels are unreliable and marked the corresponding theoretical

predictions with sharps (♯) in the case of the bottomonium. In the charmonium case unreli-

able predictions are not displayed. The differences Eexp
X − EX are rather large for the states

with sharps. Notice that for these states the corresponding αs(µX) becomes larger than one,

indicating a breakdown of the perturbative series. We also computed the mass of the Bc(
1S0)

state. The theoretical prediction is consistent with the experimental value, although the ex-

perimental error is large. Generally, for states, which we consider reliably calculable in the

above perturbative approach, the scale dependence decreases as we include more terms of the

perturbative series. For states, whose predictions we consider unreliable, the series becomes

much more convergent if we would choose a scale different from (typically larger than) µX .
§ We take the matching scales as mb and mc, respectively.

6



State X Eexp
X EX Eexp

X −EX E
(1)
X E

(2)
X E

(3)
X µX αs(µX)

J/ψ 3.097 3.097 0 0.362 0.205 0.043 1.07 0.448

ηc(1
1S0) 2.980 3.056 −0.076 0.333 0.195 0.042 1.23 0.399

Υ(13S1) 9.460 9.460 0 0.837 0.204 0.013 2.49 0.274

Υ(13P0) 9.860 9.905 −0.045 1.38 0.115 0.003 1.18 0.409

Υ(13P1) 9.893 9.904 −0.011 1.40 0.098 0.002 1.15 0.416

Υ(13P2) 9.913 9.916 −0.003 1.42 0.086 0.003 1.13 0.422

Υ(23S1) 10.023 9.966 +0.057 1.46 0.093 0.009 1.09 0.433

Υ(23P0) 10.232 10.268 −0.036 2.37 −0.66 0.15 0.693 0.691

Υ(23P1) 10.255 10.316♯ −0.061♯ 3.97 −3.56 1.50 0.552♯ 1.20

Υ(23P2) 10.268 10.457♯ −0.189♯ 4.55 −5.03 2.53 0.537♯ 1.39

Υ(33S1) 10.355 10.327 +0.028 2.34 −0.583 0.163 0.698 0.684

Υ(43S1) 10.580 11.760♯ −1.180♯ 5.45 −6.47 4.38 0.527♯ 1.61

Bc(1
1S0) 6.4± 0.4 6.324 0.08± 0.4 0.668 0.187 0.022 1.64 0.329

Table 1: Comparisons of the theoretical predictions of perturbative QCD and the experimental data. We

used nl = 4 for bb̄ systems and nl = 3 for cc̄ and bc̄ systems. All dimensionful numbers are in GeV unit.

The value of µX for the 13S1 state of bb̄ is close to the central value (2.575 GeV) used in

[7], while the value for the 13S1 state of cc̄ is lower than the central value (1.57 GeV) used by

the same authors. The value of µX used in Tab. 1 for the 11S0 state of the bc̄ is close to the

central value (1.6 GeV) used in [21]. We also notice a remarkable agreement with their value

of the Bc mass. This supports the idea that the scale of minimal sensitivity is, indeed, close

to the characteristic scale of the system, which may be identified with the inverse of its size.

Fig. 1 compares the experimental values of the bottomonium spectrum with theoretical

predictions after eliminating those states, which are not reliably calculable (23P1, 2
3P2 and

43S1 states). If we take an average of the S-wave and P -wave levels corresponding to each

principal quantum number n, the theoretical predictions with αs(MZ) = 0.1181 reproduce the

experimental values fairly well. On the other hand, the predictions for the S–P splittings and

the fine splittings are smaller than the experimental values.

4 Error Estimates

Besides non-perturbative corrections, there are three different kinds of uncertainties in our

theoretical predictions for the quarkonium spectra, listed below and in Tab. 2. We examine

them separately. Also these examinations indicate that the theoretical predictions for the 23P1,

23P2 and 43S1 bottomonium states are quite unstable, while the prediction for the 23P0 state

is at the boundary.

1) Uncertainty of α(5)
s (MZ). We analyzed the quarkonium spectra varying the input pa-

rameter within the range given in [27]: α(5)
s (MZ) = 0.1181 ± 0.0020. The level spacings

become wider for larger α(5)
s (MZ), which is consistent with our naive expectation. We

find that the central value α(5)
s (MZ) = 0.1181 reproduces the whole level structure better

7



Coulomb Experimental
QCDValues

Perturbative

Figure 1: The bottomonium level structure as given by a pure Coulombic potential, by experiments and by

the present analysis: the solid and dashed lines represent the S-states and P -states, respectively. The input

parameter of the perturbative QCD calculation is α
(5)
s (MZ) = 0.1181 (see Tab. 1). We show only those levels

that we can compute reliably. The Coulomb levels are calculated with mpole = 5.105 GeV and αs = 0.5752

such that they reproduce the 1S and 2S levels.

than α(5)
s (MZ) = 0.1201 or 0.1161.

2) Charm Mass Effects. We have also made an analysis of the bottomonium spectrum

including finite charm mass effects. Since they deserve a detailed analysis of their own,

including new calculations, we will report the full results in a separate paper [30]. Here we

only summarize some of the qualitative features of the effects and include them as a part

of the uncertainties of our present analysis. The corrections to the reliable predictions

turn out to be positive and to become larger for higher states, ranging up to ∼ 200 MeV.

Much of the effects, however, may be reabsorbed by the uncertainties in α(5)
s (MZ) (as

given above).¶

3) Uncertainties from Higher-Order Corrections. We take the maximum value of the follow-

ing five estimates as an estimate of uncertainties from unknown higher-order corrections

for each series expansion: (i) The difference between the theoretical predictions computed

using αs(µ) as obtained by solving the renormalization-group equation perturbatively at

4 loops (Eqs. (3) and (11) of Ref. [28]) and numerically at 4 loops (the data of Tab.

1). (Note that the number of energy levels that can be determined in a reliable way is

larger with the former definition of the running coupling constant. Also in that case,

reliable predictions turn out to be close to the experimental values.) (ii) The difference

between the theoretical predictions computed using the 3-loop and the 4-loop (as in Tab.

1) running coupling constants, fixing α(5)
s (MZ) = 0.1181. (iii) The difference between

the theoretical estimates obtained by fixing µX on the minimum of |E(3)| and the results

of Tab. 1, obtained by fixing µX via the condition (14). (iv) The contribution ±|E
(3)
X |

from Tab. 1. (v) For the 1S states we consider the O(α5
sm) corrections calculated in the

large-β0 approximation in [3].

¶ We note that the sensitivities of the higher levels to a variation of α
(5)
s (MZ) increase by the charm mass

effects due to the decoupling of the charm quark.
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For comparison, we list more conservative error estimates. These are the variations of

mb,c and EX when we fix the scale as twice‖ of the minimal sensitivity scale: µ = 2µX ,

where µX is determined from Eq. (14).

δα(5)
s (MZ) Estimates of higher-order corrections

= ±0.0020 (i) (ii) (iii) (iv) (v) ±max µ = 2µX
δmb

−19
+18 −2 +1 0 ±7 +5 ±7 +16

δmc
−16
+15 −5 +4 +3 ±21 +20 ±21 +37

Υ(13P0)
+54
−48 +15 −14 0 ±3 ±15 −53

Υ(13P1)
+63
−42 +22 −8 +7 ±2 ±22 −48

Υ(13P2)
+57
−50 +16 −16 0 ±3 ±16 −54

Υ(23S1)
+65
−58 +18 −19 −1 ±9 ±19 −73

δEX Υ(23P0)
+117
+755♯ +33 −57 −21 ±150 ±150 −120

Υ(23P1)
+83♯

+1189♯ −4 +1637♯ −66♯ ±1500♯ ±1637♯ −97

Υ(23P2)
−44♯

+1528♯ −136 +2136♯ −206♯ ±2530♯ ±2530♯ −229

Υ(33S1)
+130
−93 +37 −63 −36 ±163 ±163 −161

Υ(43S1)
−381♯

+1883♯ −639♯ +2936♯ −1425♯ ±4380♯ ±4380♯ −1361

Bc(1
1S0)

+4
−5 −4 0 −1 ±22 ±22 +1

Table 2: Variations of the theoretical predictions of Tab. 1 when the uncertainties 1) and 3) discussed in Sec.

4 are separately taken into account. All dimensionful numbers are in MeV unit. Those values corresponding to

the unreliable theoretical predictions are marked with sharps. The input parameter is taken as αs(MZ) = 0.1181

except in the first column. The column “±max” lists ±max{|(i)|, |(ii)|, |(iii)|, |(iv)|, |(v)|}. In the last column

we write conservative estimates with the scale choice µ = 2µX .

5 Interpretation

The most non-trivial feature of the present theoretical predictions for the bottomonium spec-

trum is that the level spacings between consecutive n’s are almost constant, whereas in the

Coulomb spectrum the level spacings decrease as 1/n2.∗ Conventionally, this same difference

between the Coulomb spectrum and the observed quarkonium spectra motivated people to

construct various potential models. It is, therefore, imperative to elucidate how the above

perturbative QCD calculation is able to reproduce such a level structure. We will focus on two

points: (1) the leading renormalon cancellation, which implies that infrared physics decouples;

this is essential to obtain convergent series expansions; (2) the meaning of the scale µX chosen

by the scale-fixing prescription (14).

‖ If we fix the scale as half of the minimal sensitivity scale, µ = µX/2, the predictions for the n = 2

bottomonium states appear to be meaningless, since the scales are quite close to the infrared singularity of the

runnning coupling constant, and the predictions for the n ≥ 3 states do not exist, since the scales lie below the

infrared singularity.
∗ If we consider, for instance, the ratio (E3S −E2S)/(E2S −E1S), then we obtain experimentally 0.59, from

the data of Tab. 1, 0.71, while from a pure Coulomb interaction 0.19.
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Figure 2: The support functions fX(q) vs. q for X = 1S, 2S and 3S (solid lines). fX(q) is calculated using

mpole = 5 GeV and a different αs(µX), taken from Tab. 1, for eachX . Vertical lines represent the corresponding

scales µX taken from the same table. Also α
(4)
s (q) is shown by a dashed line.

Let us approximate each term on the right-hand-side of Eq. (1) (in the equal-mass case) as

2mpole ≃ 2m+
∫

|~q|<m

d3~q

(2π)3
|VQCD(q)| = 2m+

2CF
π

∫ m

0
dq αV (q), (19)

Ebin,X ≃ 〈X |
~p 2

mpole
+ VQCD |X 〉 . (20)

Here, VQCD(q) = −CF4παV (q)/q
2 is the QCD static potential in momentum space; |X 〉 de-

notes the Coulomb wave function (the zeroth-order approximation) and CF = 4/3. The first

approximation follows from the fact that the dominant contribution to the pole-MS mass rela-

tion can be read from the infrared region, loop momenta q ≪ m, of the QCD static potential

[6]. The second approximation is more obvious. Let us note that also the right-hand-side of

Eq. (20) incorporates and is dominated by the leading renormalon contribution to the static

potential. From Eqs. (19) and (20) we obtain

EX ≃ 2m+
2CF
π

∫ ∞

0
dq αV (q) fX(q) + 〈X |

~p 2

mpole

|X 〉 ≃ 2m+
2CF
π

∫ ∞

0
dq αV (q) fX(q). (21)

The last approximation follows from the fact that the kinetic energy contribution to the bot-

tomonium levels turns out to be numerically small† (notice that this does not contradict the

virial theorem, since the static potential we are considering here incorporates the running of

αs and therefore is not simply of the form 1/r). The support function fX is

fX(q) = θ(m− q)−
∫ ∞

0
dr r2|RX(r)|

2 sin(qr)

qr
, (22)

where RX(r) is the radial part of the Coulomb wave-function of X . fX(q) is almost unity

in the region 1/aX <
∼ q < m, where aX is the inverse of the dumping scale of fX and may

†It is about 17% of E
(1)
X for the X = 1S state, 6% of E

(1)
X for the X = 2S state, 4% of E

(1)
X for the X = 3S

state. Moreover, these contributions tend to cancel each other in the level spacings.
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be interpreted as the size of the bound-state X .‡ For the 1S state fX(q) dumps slowly as

q decreases. For other states fX(q) dumps rapidly from scales which are somewhat smaller

than the naive expectations (CFαsmpole)/nX . Eq. (21) tells that the major contribution to the

energy levels comes from the region 1/aX <
∼ q <

∼ m of the self-energy corrections of quark

and antiquark (apart from the constant contribution 2m). In Fig. 2 we show fX for different

states calculated with mpole = 5 GeV and αs(µX) taken from Tab. 1. The corresponding values

of µX are also displayed. For those states which we consider the predictions reliable, µX is

located within the range where fX(q) ≃ 1 (close to the infrared edge); for those states with

unreliable predictions, µX is located out of this range but far in the infrared region. In Fig. 2

also αs(q) is shown. We see that as nX increases from 1 to 3, the coupling αs(q), close to the

dumping scale of fX(q), grows rapidly. According to Eq. (21), this is the very reason for the

widening of the level spacings in excited states in comparison to the Coulomb spectrum.

Summarizing the above discussion we may draw the following qualitative picture of the

structure of the bottomonium spectrum:

• The energy levels of bottomonium are mainly determined by (i) the MS masses of b and

b̄, and (ii) contributions to the self-energies of b and b̄ from gluons with wavelengths

1/m <
∼ λ <∼ aX . The latter contributions may be regarded as the difference between the

(state-dependent) constituent quark masses and the current quark masses.

• Level spacing between consecutive n’s increases rapidly with n as compared to the

Coulomb spectra. This is because the self-energy contributions (ii) grow rapidly as the

physical size of the bound-state increases.

6 Conclusions

For all the bottomonium states, where the predictions of perturbative QCD can be made

reliably (i.e. αs < 1), our results are consistent with the experimental data within the estimated

uncertainties of the theoretical predictions. The obtained value formb is in good agreement with

the recent sum-rule calculations. The theoretical uncertainties given in Tab. 2 are numerically

of the same size as ΛQCD × (aXΛQCD)
2, i.e. of the effect of the O(Λ3

QCD) renormalons: if we

approximate 1/aX ≃ µX , take the values of Tab. 1, and ΛQCD = 300−500 MeV, we obtain for

the 1S state a contribution of order ±(5−20) MeV, for the n = 2 states a contribution of order

±(20 − 110) MeV and for the 3S state a contribution of order ±(50 − 250) MeV. Since the

mass mb has been fixed on the vector ground state and has not been adjusted for higher states,

the data at our disposal suggest that: 1) the bulk of the bottomonium spectrum is accessible

by perturbative QCD up to some of the n = 3 states; 2) non-perturbative contributions do not

need to be larger than 250 MeV for the reliable n = 3 states, than 100 MeV for the n = 2 states

and than 20 MeV for mb and may be of the type associated with the O(Λ3
QCD) renormalon.

These upper bounds to the non-perturbative corrections are conservative and their true sizes

‡ According to Eq. (21), 1/aX acts as an infrared cut off in the computation of the energy level. We may

compare it with a qualitative picture where the gluons, whose wavelengths are much larger than the size of the

color-singlet bound-state, cannot couple to it.
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may be considerably smaller; note that for reliable predictions all of |Eexp
X − EX | in Tab. 1

are smaller than 80 MeV. The existence of non-perturbative corrections of the above sizes may

also explain the discrepancy observed in Tab. 1 between the theoretical estimates and the

experimental data of the fine structure and the 2S-1P splittings. However, before making any

definitive statement, an analysis including higher-order corrections is necessary.

The reliability of the perturbative calculations and the agreement with the experimental

data indicates that the assumptions made at the end of Sec. 2 are, indeed, satisfied by the n = 1,

n = 2 and some of the n = 3 bottomonium states. Hence, non-perturbative contributions are

encoded into non-local condensates, which may reduce to local ones for the ground states. These

are expected to reabsorb the O(Λ3
QCD) renormalon [14] and are of the order ΛQCD×(aXΛQCD)

2.

The agreement noticed above, between this estimate and the uncertainties of the perturbative

series given in Tab. 2, shows the consistency of our conclusions.

For what concerns the cc̄ system, with the present method we are not in the condition to

make reliable predictions for states higher than the ground state, and, therefore, we cannot

extrapolate from consistency arguments the size (and the nature) of the non-perturbative

corrections. We have noticed, however, that our estimate for mc is in good agreement with

recent sum-rule calculations. From the prediction of the ηc mass we may guess non-perturbative

contributions to be, in this case, of the order of 100 MeV. Also this figure is consistent with

the O(Λ3
QCD) renormalon effect (20− 110 MeV).
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