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Abstract

The SU(3) linear o model (LoM) is dynamically generated in loop-order using
the nonstrange—strange basis. Only self—consistent logarithmic divergent graphs are
needed, with quadratic divergent graphs replaced by SU(3) mass-shell equal splitting
laws. The latter lead to an n’-n mixing angle of 41.84° which is consistent with
phenomenology. Finally this above SU(3)LoM in turn predicts strong decay rates
which are all compatible with data.
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1 Introduction

The original tree-level SU(2) spontaneous symmetry breaking (SSB) linear o model
(Lo M) interaction Lagrangian density is [1]

. _ ) )\
L = gi (0 + insT - 7)) + go(0® + 7%) — 1(02 +7)? (1)

with tree—order chiral limiting (CL) couplings satisfying for f, ~ 93 MeV

g:_7g:—:)\fﬂ? (2)

here for quark fields, constituent quark mass m and cubic and quartic-meson couplings
g', \. Although the g, ¢, A in (2) are not further specified in tree order, in loop order they
are dynamically generated as

2 82
g:\/—gz3.6276, g = 2gm =~ 2.3 GeV , A:%z%.i’). (3)

We take m = 315 MeV, i.e., roughly one third of the nucleon mass My, since this value
most consistently satisfies the relations central for the present paper, namely mass shell
equal splitting laws (MSESLs) considered below, in Sec. 3. (A dynamical quark mass

m = [‘”%(—1/_11@1%\/} S 320 MeV used in QCD [2] would lead to some 3% higher

MSESLs value 4m?, whereas m = 325 MeV, used in Refs. [3], would lead to some 6%
higher value.) While Refs. |3] recover the original chiral relations of Eqs. (2), the loop-
order values in Eqs. (3) depend on relating slowly diverging log—divergent graphs with
the more rapidly diverging quadratic—divergent graphs.

In this paper we instead dynamically generate the SU(3) LoM using only the log—
divergent graphs while replacing the quadratic-divergent graphs with the dynamical SU(3)
MSESLs. In Sec. 2 we review the log-divergent gap equations in the CL and show their
self—consistency in loop order. Then in Sec. 3 we replace quadratic—divergent mass gap
equations with SU(2) and SU(3) MSESLs. In Sec. 4 we show how the SU(3) MSESLs
lead to an n—7’ nonstrange—strange mixing angle of ~ 42°, in fact closely agreeing with
the phenomenological value [4,5|. Finally in Sec. 5 we employ this SU(3) LoM with
nonstrange—strange 7, ' couplings to predict strong interaction decay rates for onyg — 7,
ap — nm, fo — 7w and ' — nmm, all in close agreement with data [6]. We give our
conclusions in Sec. 6.



2 Self—consistent log divergent gap equations

We begin with the non—perturbative loop-order equation for the pion decay constant
dfx = fr in the soft-pion chiral limit [3]:

1 = —i4N, g° / (4)

p _ m2)2

using the Goldberger—Treiman relation (GTR) m = f,g as in (2) with d*p = (27)~*d*p,
where the quark mass m cancels out of this gap Eq. (4). This log—divergent gap equation
(LDGE) (4) with g ~ 315 MeV /90 MeV ~ 3.5 requires an ultraviolet cutoff A ~ 750 MeV,
separating the gq elementary particles 7 and m, ~ 650 MeV [6] with m,, < A from the
bound-state gg mesons A < p(770), w(780), a1(1260). This natural separation of LoM
elementary particles from bound states is a consequence of the Z = 0 compositeness
condition [7] ¢ = 27/y/N. or g = 3.6276 for N, = 3 (also dynamically generated in
Refs. [3]).

The self-consistency of loops “shrinking” to trees in the CL and their link to the LDGE
are seen for quark triangle and quark box graphs. In the former case the quark triangle
representing g, is log—divergent with

gr = —8ig° N, m/ =2gm , (5)

m2) —ngl 4@Ncg/
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by virtue of the LDGE (4). Then using the quark-level GTR, Eq. (5) shrinks to the tree
level g/ — ¢ = m2/2f, of (2) provided that m, = 2m, the Nambu-Jona-Lasino [8]
(NJL) result also dynamically generated in Refs. [3]. Likewise the 77 box graph in the
CL gives the quartic quark coupling [3]

d*p
— ; 4 _ 2
Abox = =8N, g /m 29 [ 4iN, g° /m} =29", (6)

again via the LDGE (4). Then using the GTR, Eq. (6) becomes

/
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by virtue of the tree-level Lo M couplings in Eq. (2). So again loops shrink to trees, while
recovering the NJL scalar mass m, = 2m in this self-consistent fashion [3].

Next the CL quark bubble plus quark ¢ tadpole graphs, although both being quadrat-
ically divergent give a vanishing m2 = 0 in the CL (as required) provided the couplings



satisfy ¢/ = m?/2f., again recovering Eq. (2), but independent of the quadratically
divergent scale.

Lastly the pion quark triangle photon graph automatically normalizes the form factor

F.(¢* = 0) =1 as expected. Specifically this quark triangle predicts |9
ap

2—m?+ (1 —x)¢?)?

Y

1
Fr(¢*) = —i4N., gz/dx/

; p

recovering Fy(¢?> = 0) = 1 due to the LDGE (4).

3 Mass—Shell Equal Splitting Laws

To continue circumventing the dangerous quadratic divergent tadpole graphs, we first
invoke the Lee null tadpole sum [10] characterizing the true (not false SSB) vacuum.
Using only dimensional analysis, the vanishing tadpole sum requires [3] N.(2m)* = 3mZ,
or N. = 3 for the SU(2) LoM since we already know from Sec. 2 that the NJL relation
my = 2m is also valid in the Lo M in the CL, as is g = 27//3 [7].

Away from the CL this NJL condition becomes for m ~ My /3 ~ 315 MeV,

m2 —m?2 = 4m? =~ 0.397 GeV? . (8)

In Sec. 4 we will show that 1~ mixing requires a nonstrange—strange (NS—S) mixing angle
¢p ~ 41.84° which in turn fixes the eta NS mass to be mygs = 757.9 MeV. Then the SU(3)
extension of the mass-shell equal splitting law (MSESL) Eq. (8) is for m,, ~ 984.8 MeV,

m2 —m?2  ~0.395 GeV? (9)

ao NINS

which we again identify with the NS quark mass factor 4m? in Eq. (8).

MSESL (9) follows from the empirical m and from m; __ extracted in a phenomeno-
logical way in Sec. 4 (see also Ref. [11]), but we have yet another way to avoid quadratic
divergent amplitudes and evaluate the difference of the ay and nyg self-energies explicitly.
It is encouraging that this explicit calculation below yields results which are reasonably
close to MSESL (9), even though we consider only the lowest-order LoM self-energy
graphs. Also, in counterdistinction to Eq. (9)[F], these graphs do not capture (at least not

L' In Eq. (9), we plug in mys = 757.9 MeV which does contain [11] the shift due to the gluon
anomaly.
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Fig. 1. Bubble graphs and tadpole graphs

fully) the effect of the gluon anomaly which influences strongly the masses in the n — 7’
complex.

This other way to avoid quadratic divergent amplitudes is to subtract mass shell bubble
(and tadpole) graphs of Fig. 1. Since the quadratic divergent tadpole graphs of Figs. 1
b,d clearly cancel (due to the LoM coupling relation g; .., = ;. cnvso)s the remaining
quadratically divergent bubble graph difference (Figs. 1 a,c) give the formal result

L 2 2 2
2 2 . 2 4 p?—mix(l—x)+m
Mg, — My o = —8iN. g O/d:c/d D [(pQ +mgooz(1 —
2 .2 N a2
S ki ik ki (10)
(p* +m2 x(1l —x) —m?)

Here we have combined propagator denominators using Feynman’s trick

1

dx
ab :O/[a:c+b(1—:c)]2 ‘

In other words, we evaluate the bubble graphs with propagator momentum p — p —qx
for mass shell values ¢* = m? , m?__ for Figs. 1 a, c. Specifically for mg, = 984.8 MeV
and m,, ¢ = 757.9 MeV and a constituent nonstrange quark mass of 315 MeV, a computer
calculation detailed in the Appendix, evaluates Eq. (10) as

m2 —m2  =583m*—i3.83m?>. (11)
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We neglect the negative imaginary part of Eq. (11) (compatible with unitarity) since
quarks in the bubble graph of Figs. 1 should be confined. Considering the delicate can-
cellation due to the mean value (6 ) (1 — z) = 1) giving in the second denominator
in Eq. (10) m? (1 —x) —m* ~ —0.035m? and especially recalling 4) that we have
used only the lowest order graphs and i7) that it is known that the gluon anomaly shifts
My upwards [which is taken into account in the result (11) only partially and indirectly,
through the mass shell value ¢*> = m? = (757.9 MeV)?| so that the difference (11) is
understandably somewhat overestimated, we suggest that the real part of (11) is not far
from the numerical values of Egs. (8) and (9), i.e. [12],

m2 —m2=m2 —m? =4m®~0.397 GeV? . (12)
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Stated another way, combining the partial fraction integrands in Eq. (10), we note that
the leading p® terms in the numerator of (10) exactly cancel since they are quadratically
divergent terms. Moreover, the log—divergent p* terms in (10) are proportional to 6(7’1120 -

2

2, - i g2 2 _ g2
m; o )r(1 —x) —m?; they cancel using the mean value, resulting in mg —m; = 4m”.

Thus again we support the MSESLs of Eq. (12).

4 Dynamical n’—ny Mixing

Given the MSESL Eq. (12), one may extract the NS eta mass as m,,, ~ 757 MeV.
Alternatively we may express the eta NS—S mass matrix as

2 2
mnNS g — mn O (13)
vy oml A my,

where the NS-S pseudoscalar mixing angle ¢p determines the mixing relations

n) = cos ¢p|nns) —singplns) . [n') = singp|nns) + cos gplns) - (14)
The angle ¢p is uniquely determined via the trace constraint
2 2 2 2 2

m, o +m,. = m, +m, = 1217 GeV~ , (15)

(because the diagonal masses m,, and m,, are measured [6]) with off-diagonal hamiltonian
matrix elements vanishing (/| H|n) = (n|H|n') = 0, giving
2 2

2 2 | 2 2 . 9 2 2 2
m, o = COS” ppm, +sin”gpm,, , m, =sin”dpm, +cos” ppm,, . (16)



The two-level quantum mechanical solution of Eqgs. (13), (15), (16) is the angle

2 2

m2 _—m
¢p = arctan | —S—— = 41.84° (17)
My = Mg
with masses
Mpyg = 107.9 MeV ,  m,, = 801.5 MeV . (18)

Not only is the eta NS mass in (18) close to 757 MeV found via the MSESL Eq. (12),
but the mixing angle in (17) is precisely the dynamical angle obtained via nonperturbative
QCD. More specifically, Refs. [13,11] predict ¢p as

47 — arctan (m?, — 2m% +m2)(m2 — m2)
=2 w2

=41.84" (19)

/—mi)

found from the nonperturbative QCD gluon quark annihilation strength

(miy — m3z)(m —m3)

A(mi —m3)

B = ~ 0.278 GeV? (20)

and a constituent quark mass ratio X ~ 0.78 ~ m/mg obtained from the NS-S QCD
mass matrix [13,11]

m2 + 2 V28X m2 0
V26X 2mi —m2 4 X2 PP 0 m
Equations (18), (20), (21) have the solution
tan(2¢p) = 2v2BX (my, —ml )7 =9.02 or ¢p =41.84° . (22)

Again we see that ¢p in (17), (19) and (22) are extremely close in magnitude. Moreover,
the dynamical approach to n-7' using the Schwinger-Dyson (SD) and Bethe-Salpeter (BS)
integral equations found ¢p ~ 42° (that is, in terms of the singlet—octet state mixing
angle 0p = ¢p — arctan /2 ~ —12.7%) [14]. Its subsequent refinement [11] also included
the effect of the “strangeness attenuation parameter” X in the SD-BS mass matrix. The
SD-BS estimate was X = 0.663, again close to the constituent quark mass ratio m/ms
found there. Fitting the trace constraint (15) then led to 8 = 0.277 GeV?, practically the
same as Eq. (20), to m,,,, = 757.87 MeV and m,,, = 801.45 MeV, almost the same as Eq.
(18), and to Op = —13.4%, that is, ¢p = 41.3%, very close to ¢p in Eq. (22). (These results



were for the original parameters of Ref. [14]. Reference [11] also varied the parameters to
check the sensitivity on SD-BS modeling, but the results changed little.) Because of the
close link between Eqs. (17), (18), the QCD Egs. (19), (22) and the SD-BS scheme, we
suggest that ¢p =~ 41.84° is the dynamical -1 mixing angle in the NS-S quark basis. It
corresponds to [4,5] the singlet—octet angle p = ¢p —arctan /2 ~ —12.9°. Also note that
Ref. [11] showed there is no contradiction between our approach utilizing one state—mixing
angle, and the mixing scheme employing two angles pertaining to the mixing of the decay
constants (see Refs. [5], esp. the second reference for review.) Not only is the difference
small in the NS-S basis, but our Ref [11] also showed that our results are in agreement
with what is found in the two-angle scheme [5].

It is also satisfying that the phenomenological analysis of the NS-S n’—n NS mixing
angle extracts |[4] ¢pp = 43.2°+£2.8° from T"— PP decays, ¢p = 36.6°+1.4° from V — Py
and P — V~ decays, ¢p = 41.3° + 1.3° from P — ~7 decays and ¢p = 40.2° 4+ 2.8° from
J/ — pn, pn’ and wr® decays. Moreover the recent Refs. [5] obtain ¢p = 39.3° 4 1.0° by
global phenomenological fits and ¢p = 42.4° as their theoretical prediction, which is all
within the region of the dynamical ¢p angles in Egs. (17) or (19).

5 SU(3) LoM Strong Decay Rates

We have thus far used the LDGE (4), induced the MSESLs m2 . —m2 =m2 —m} =
m?2—m?2 = 4m? =~ 0.397 GeV? (for k(805—820) advocated by, e.g., Delbourgo and Scadron
[12]) and the NS-S mixing angle ¢p ~ 41.84° all while avoiding quadratic divergent
graphs and extending the SU(2) Lo M to SU(3). In the latter case the cubic meson Lo M
Lagrangian density has the SU(3) form [12]

LEM = diji (sppS'PTPY + glogS'STSF) (23)

cubic

Then with f; ~ 93 MeV and m ~ My/3 ~ 315 MeV, the MSESLs above suggest the
Lagrangian g5pp couplings

M onm = M3
Oomn = ST~ 213 GeV (24)
/ m?Lo — m%NS
gaOWNSW = T ~ 2.13 GeV s (25)
2 2
Ooper = mﬁzime ~ 2.13 GeV | (26)

: / _ / / o /
along with g, .. = COS QP Goopyors Gyaon = SN PPYgny ors €1C.



The nonstrange o decay rate is predicted as [6,15]

171

)2
ONSTT 2
8mmy .

3
Doys — ) = 5(2g'

~ 754 MeV | (27)

for m,,, ~ 650 MeV and |p] = 294 MeV. This rate is compatible with Weinberg’s mended
chiral symmetry estimate [16]:

Ne}

T,y ~ =L, ~ 676 MeV . (28)
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Likewise the SU(3) LoM ag — nm decay rate is

i

2
8mmg,

. 2
Cron(ag — nm) = {anomvsﬂ coS gbp} ~ 133 MeV (29)

for p = 321 MeV, g, o = 2.13 GeV, ¢p = 41.84°. One may infer a nearby ag rate from
the PDG tables [6]. Specifically the rate ratio

F(ao — KK)

=0.1774+0.024 30
I'(ag — nm) (30)

and I'(ap — KK) =~ 24.5 MeV from Refs. [17], then suggests ['(ag — nm) ~ 138 MeV,
near Eq. (29). Also, this predicted LoM decay rate (29) is not too distant from the high
statistics data [18]

Toone = (95 £ 14) MeV . (31)

The SU(3) companion f,(980) — 77 rate is estimated [6] to be

D(form) /= (47 MeV)(0.781) ~ 37 MeV (32)

assuming the small I'( foyy) ~ 0.56 keV rate in the 1998, 1996 PDG tables combined with
the measured branching ratio B(fyyy) ~ 1.19 x 1075. On the other hand we must account
for scalar o—fy mixing (the analogue of pseudoscalar -1’ mixing). Thus in the NS-S basis
we define in parallel with Eq. (14)

|o) = cos gpglons) —sindglos) , | fo) = sin gglons) + cos dglos) , (33)

and estimate ¢g from the measured decay rate ratio

D(form) 3 (470 Mev> (sin¢5>2 37 MeV
T2

~ ~ 0. ~ 18.3% . 4
T (agn) MY ) \cosop) =~ 05 ey 039 or [os| = 1837 (34)




Prior theoretical estimates were |¢s| ~ 16°,20° [12] and 14° [19]. The DM2 data of 1989
[6] also suggests from J/1) — wnm that f5(980) is mostly §s (not nonstrange), compatible
with (34) (and near the ¢ (1020) which is known to be almost all 5s) [12,20].

Lastly we calculate the strong decay rate ' — nmm in the context of the SU(3)
LoM |21], with ag, 0, fy poles contributing as ' — agm — nrw (4 modes), ' — no —
nrmw,n — nfy — nrw. Although the 4ay pole modes should dominate, the well-known
LoM 1’ — nmm contact term 3\ [normalized to the quartic term in the SU(2) Lagrangian
Eq. (1)] has the opposite sign relative to ag, o and fy poles and “miraculously cancels”
them [22] due to chiral symmetry - assuming one treats the ag, o, fy poles in narrow
width approximation. While Iy /my,, Iy, /mys, ~ 1/10 as needed, the o is broad with
Ly/m, ~ 1.

Then after the chiral cancellation, we must still account for the broad—width o inverse
propagator as s —m?2 +im,[', with |s — m2| << |im,T,|. Thus the net ' — na°7°Lo M
amplitude has the magnitude

/ /
gr]’r]o‘goﬂw
mel's

~

Gy
| ~ \%\ ~5.7. (35)

| Migy(n' — nr°n%)| ~ |

Here we [11] estimated g;,,, = cos ¢p sin ¢p g, = 1.06 GeV. Then the net SU(3) LoM
decay rate is predicted to be (folding in the 3-body phase space integral [23])

Cron(n — nr7%) = 1.06| M}, | keV ~ 34.4 keV . (36)

A slight increase of this rate (36) is due to the 10% non-narrow widths of the ag and f
poles. Recent data gives [6] T'(n — nm°7%) = (424 4) keV. The total decay rate assuming
isospin invariance is

Cron(n' — nam) =Cron(n’ — nr°n®) + Tron(n' — prn™)
=3 x (34.4 £ 4) keV = (103 £ 12) keV' (37)

near the total observed rate of 3x (424+4) = (1264+12 )keV. We know of no other dynamical
scheme (such as using the original singlet-octet mixing angles [21]) which recover all the
approximately needed SU(3) strong decay rates (27), (29), (36), (37) as found above.

6 Conclusion

In this paper we have consistently avoided dealing with quadratic divergent graphs when
computing SU(2) and SU(3) linear ¢ model (LoM) diagrams. Instead in Secs. 2 and
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3 we work only with self-consistent log—divergent gap equation integrals Eqs. (4), (10).
Sections 3 and 4 extend this pattern from SU(2) to SU(3) dynamical mass-shell equal
splitting laws, leading to the off-diagonal eta nonstrange and strange constituent quark
masses My, ~ 757.9 MeV and m,; ~ 801.5 MeV. Then the dynamical 7'~n mixing angle
in the NS-S basis is ¢p ~ 41.84° compatible with nonperturbative QCD and near many
phenomenological analysis of this NS-S angle (see, e.g., Refs. [4,5,13]).

Stated another way, the only SU(3)-breaking pattern we allow is characterized by the
constituent quark mass GTR ratio [24] as used in the phenomenological analysis of Refs. [4]
ms/m =~ 2fk/fr — 1 ~ 1.44 for fx/f = 1.22 as measured [6]. Then in Sec. 5 the SU(3)
SPP LoM couplings (again following the above MSESLs) of Egs. (8), (9), (11), (12) in
turn predict strong interaction oyg — 7w, ag — nmw, fo — 7w, B’ — nuw decay rates all
compatible with data [6].
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Appendix: On the bubble graph integral

If the integrand of Eq. (10) is rewritten using the common denominator D(x,p?), as
f(z,p*) = N(z,p*)/D(x,p?), one should note that the O(p®) terms in its numerator
N(x,p?) cancel exactly. The numerator is thus a polynomial of degree 2 in (p?): N(x,p?) =
co(z) + c1(x) p? + c2(x) (p?)? . The integrand is therefore conveniently written as the sum

fla,p?) =) filz,p*) = _ci(x) D(pi

i=0 i=0 (z,p%) (38)

The four—dimensional integral over p is effectively one-dimensional because the integrand
depends on p? only. After the Wick rotation, we performed this integration analytically, us-
ing the Mathematica program package. The log—divergent integral [ d*p fo(z, p*) depends
on our ultraviolet cutoff A = 750 MeV required by Eq. (4). After the p*-integration, the
logarithmic forms

m?—m?_ (1— x)x> 39)

l(x) =In < Lt

m?—m2 (1 —z)x

appear in the integrand, requiring some care. The mild divergences at the points xy =
0.115698, x; = 0.222046, x5 = 0.777954, and x3 = 0.884302 correspond to the roots of

polynomials  — m?* —m?_ (1 — )z and x — m* — m (1 — x)z. In order to perform

11



the residual = integration of the functions = — [d*p fi(z,p?) (i = 0,1,2), the interval
[0,1] is divided into five integration regions, [0, x1], [x1,xs], T2, 23], T3, x4], and [z4, 1].
These integrations were numerical, with an adaptive algorithm which can handle the mild,
integrable singularities appearing at the edges of the integration regions.
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