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Abstrat

The SU(3) linear σ model (LσM) is dynamially generated in loop-order using

the nonstrange�strange basis. Only self�onsistent logarithmi divergent graphs are

needed, with quadrati divergent graphs replaed by SU(3) mass-shell equal splitting

laws. The latter lead to an η′�η mixing angle of 41.840 whih is onsistent with

phenomenology. Finally this above SU(3)LσM in turn predits strong deay rates

whih are all ompatible with data.
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1 Introdution

The original tree�level SU(2) spontaneous symmetry breaking (SSB) linear σ model

(LσM) interation Lagrangian density is [1℄

LintLσM = gψ̄ (σ + iγ5τ · π)ψ + g′σ(σ2 + π
2)− λ

4
(σ2 + π

2)2 , (1)

with tree�order hiral limiting (CL) ouplings satisfying for fπ ≈ 93 MeV

g =
m

fπ
, g′ =

m2
σ

2fπ
= λfπ , (2)

here for quark �elds, onstituent quark mass m and ubi and quarti�meson ouplings

g′, λ. Although the g, g′, λ in (2) are not further spei�ed in tree order, in loop order they

are dynamially generated as

g =
2π√
3
≈ 3.6276 , g′ = 2gm ≈ 2.3 GeV , λ =

8π2

3
≈ 26.3 . (3)

We take m = 315 MeV, i.e., roughly one third of the nuleon mass MN , sine this value

most onsistently satis�es the relations entral for the present paper, namely mass shell

equal splitting laws (MSESLs) onsidered below, in Se. 3. (A dynamial quark mass

m =
[

4παs

3
〈−ψ̄ψ〉1GeV

]1/3 ≈ 320 MeV used in QCD [2℄ would lead to some 3% higher

MSESLs value 4m2
, whereas m = 325 MeV, used in Refs. [3℄, would lead to some 6%

higher value.) While Refs. [3℄ reover the original hiral relations of Eqs. (2), the loop�

order values in Eqs. (3) depend on relating slowly diverging log�divergent graphs with

the more rapidly diverging quadrati�divergent graphs.

In this paper we instead dynamially generate the SU(3) LσM using only the log�

divergent graphs while replaing the quadrati�divergent graphs with the dynamial SU(3)

MSESLs. In Se. 2 we review the log�divergent gap equations in the CL and show their

self�onsisteny in loop order. Then in Se. 3 we replae quadrati�divergent mass gap

equations with SU(2) and SU(3) MSESLs. In Se. 4 we show how the SU(3) MSESLs

lead to an η�η′ nonstrange�strange mixing angle of ∼ 420, in fat losely agreeing with

the phenomenologial value [4,5℄. Finally in Se. 5 we employ this SU(3) LσM with

nonstrange�strange η, η′ ouplings to predit strong interation deay rates for σNS → ππ,
a0 → ηπ, f0 → ππ and η′ → ηππ, all in lose agreement with data [6℄. We give our

onlusions in Se. 6.
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2 Self�onsistent log divergent gap equations

We begin with the non�perturbative loop�order equation for the pion deay onstant

δfπ = fπ in the soft�pion hiral limit [3℄:

1 = −i 4Nc g
2

∫

d 4p

(p2 −m2)2
, (4)

using the Goldberger�Treiman relation (GTR) m = fπg as in (2) with d 4p = (2π)−4d4p,
where the quark mass m anels out of this gap Eq. (4). This log�divergent gap equation

(LDGE) (4) with g ∼ 315 MeV/90 MeV ∼ 3.5 requires an ultraviolet uto� Λ ≈ 750 MeV,

separating the qq elementary partiles π and mσ ∼ 650 MeV [6℄ with mπ,σ < Λ from the

bound-state qq mesons Λ < ρ(770), ω(780), a1(1260). This natural separation of LσM
elementary partiles from bound states is a onsequene of the Z = 0 ompositeness

ondition [7℄ g = 2π/
√
Nc or g = 3.6276 for Nc = 3 (also dynamially generated in

Refs. [3℄).

The self�onsisteny of loops �shrinking� to trees in the CL and their link to the LDGE

are seen for quark triangle and quark box graphs. In the former ase the quark triangle

representing g′σππ is log�divergent with

g′σππ = −8ig3Ncm
∫

d 4p

(p2 −m2)2
= 2gm

[

−4iNcg
2

∫

d 4p

(p2 −m2)2

]

= 2gm , (5)

by virtue of the LDGE (4). Then using the quark�level GTR, Eq. (5) shrinks to the tree

level g′σππ → g′ = m2
σ/2fπ of (2) provided that mσ = 2m, the Nambu-Jona-Lasino [8℄

(NJL) result also dynamially generated in Refs. [3℄. Likewise the ππ box graph in the

CL gives the quarti quark oupling [3℄

λ
box

= −8iNc g
4

∫

d 4p

(p2 −m2)2
= 2g2

[

−4iNc g
2

∫

d 4p

(p2 −m2)2

]

= 2g2 , (6)

again via the LDGE (4). Then using the GTR, Eq. (6) beomes

λ
box

= 2g2 =
2gm

fπ
=
g′

fπ
= λ

tree

(7)

by virtue of the tree�level LσM ouplings in Eq. (2). So again loops shrink to trees, while

reovering the NJL salar mass mσ = 2m in this self�onsistent fashion [3℄.

Next the CL quark bubble plus quark σ tadpole graphs, although both being quadrat-

ially divergent give a vanishing m2
π = 0 in the CL (as required) provided the ouplings
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satisfy g′σππ = m2
σ/2fπ, again reovering Eq. (2), but independent of the quadratially

divergent sale.

Lastly the pion quark triangle photon graph automatially normalizes the form fator

Fπ(q
2 = 0) = 1 as expeted. Spei�ally this quark triangle predits [9℄

Fπ(q
2) = −i 4Nc g

2

1
∫

0

dx
∫ d 4p

[p2 −m2 + x(1 − x)q2]2
,

reovering Fπ(q
2 = 0) = 1 due to the LDGE (4).

3 Mass�Shell Equal Splitting Laws

To ontinue irumventing the dangerous quadrati divergent tadpole graphs, we �rst

invoke the Lee null tadpole sum [10℄ haraterizing the true (not false SSB) vauum.

Using only dimensional analysis, the vanishing tadpole sum requires [3℄ Nc(2m)4 = 3m4
σ,

or Nc = 3 for the SU(2) LσM sine we already know from Se. 2 that the NJL relation

mσ = 2m is also valid in the LσM in the CL, as is g = 2π/
√
3 [7℄.

Away from the CL this NJL ondition beomes for m ≈MN/3 ≈ 315 MeV,

m2

σ −m2

π = 4m2 ≈ 0.397 GeV

2 . (8)

In Se. 4 we will show that η′�η mixing requires a nonstrange�strange (NS�S) mixing angle

φP ≈ 41.840, whih in turn �xes the eta NS mass to bemNS = 757.9MeV. Then the SU(3)

extension of the mass-shell equal splitting law (MSESL) Eq. (8) is for ma0 ≈ 984.8 MeV,

m2

a0
−m2

ηNS
≈ 0.395 GeV

2 , (9)

whih we again identify with the NS quark mass fator 4m2
in Eq. (8).

MSESL (9) follows from the empirial m2
a0

and from m2
ηNS

extrated in a phenomeno-

logial way in Se. 4 (see also Ref. [11℄), but we have yet another way to avoid quadrati

divergent amplitudes and evaluate the di�erene of the a0 and ηNS self-energies expliitly.

It is enouraging that this expliit alulation below yields results whih are reasonably

lose to MSESL (9), even though we onsider only the lowest-order LσM self-energy

graphs. Also, in ounterdistintion to Eq. (9)

1
, these graphs do not apture (at least not

1
In Eq. (9), we plug in mNS = 757.9 MeV whih does ontain [11℄ the shift due to the gluon

anomaly.
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Fig. 1. Bubble graphs and tadpole graphs

fully) the e�et of the gluon anomaly whih in�uenes strongly the masses in the η − η′

omplex.

This other way to avoid quadrati divergent amplitudes is to subtrat mass shell bubble

(and tadpole) graphs of Fig. 1. Sine the quadrati divergent tadpole graphs of Figs. 1

b,d learly anel (due to the LσM oupling relation g′a0a0σ = g′ηNSηNSσ
), the remaining

quadratially divergent bubble graph di�erene (Figs. 1 a,) give the formal result

m2

a0
−m2

ηNS
= −8iNc g

2

1
∫

0

dx
∫

d 4p

[

p2 −m2
a0
x(1− x) +m2

(p2 +m2
a0x(1− x)−m2)2

− p2 −m2
ηNS

x(1 − x)−m2

(p2 +m2
ηNS

x(1− x)−m2)2

]

. (10)

Here we have ombined propagator denominators using Feynman's trik

1

ab
=

1
∫

0

dx

[ax+ b(1 − x)]2
.

In other words, we evaluate the bubble graphs with propagator momentum p→ p−qx
for mass shell values q2 = m2

a0 , m
2
ηNS

for Figs. 1 a, . Spei�ally for ma0 = 984.8 MeV

and mηNS
= 757.9 MeV and a onstituent nonstrange quark mass of 315 MeV, a omputer

alulation detailed in the Appendix, evaluates Eq. (10) as

m2

a0 −m2

ηNS
= 5.83m2 − i 3.83m2 . (11)
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We neglet the negative imaginary part of Eq. (11) (ompatible with unitarity) sine

quarks in the bubble graph of Figs. 1 should be on�ned. Considering the deliate an-

ellation due to the mean value (6
∫

1

0 x(1 − x) = 1) giving in the seond denominator

in Eq. (10) m2
ηNS

x(1 − x) − m2 ≈ −0.035m2
, and espeially realling i) that we have

used only the lowest order graphs and ii) that it is known that the gluon anomaly shifts

mηNS
upwards [whih is taken into aount in the result (11) only partially and indiretly,

through the mass shell value q2 = m2
ηNS

= (757.9 MeV)2℄ so that the di�erene (11) is

understandably somewhat overestimated, we suggest that the real part of (11) is not far

from the numerial values of Eqs. (8) and (9), i.e. [12℄,

m2

σNS
−m2

π = m2

a0
−m2

ηNS
= 4m2 ≈ 0.397 GeV

2 . (12)

Stated another way, ombining the partial fration integrands in Eq. (10), we note that

the leading p6 terms in the numerator of (10) exatly anel sine they are quadratially

divergent terms. Moreover, the log�divergent p4 terms in (10) are proportional to 6(m2
a0 −

m2
ηNS

)x(1 − x) −m2
; they anel using the mean value, resulting in m2

a0
−m2

ηNS
= 4m2

.

Thus again we support the MSESLs of Eq. (12).

4 Dynamial η′�η Mixing

Given the MSESL Eq. (12), one may extrat the NS eta mass as mηNS
≈ 757 MeV.

Alternatively we may express the eta NS�S mass matrix as







m2
ηNS

γ

γ m2
ηS







→
φP







m2
η 0

0 m2
η′






, (13)

where the NS�S pseudosalar mixing angle φP determines the mixing relations

|η〉 = cosφP |ηNS〉 − sinφP |ηS〉 , |η′〉 = sinφP |ηNS〉+ cosφP |ηS〉 . (14)

The angle φP is uniquely determined via the trae onstraint

m2

ηNS
+m2

ηS
= m2

η +m2

η′ ≈ 1.217 GeV

2 , (15)

(beause the diagonal masses mη and mη′ are measured [6℄) with o��diagonal hamiltonian

matrix elements vanishing 〈η′|H|η〉 = 〈η|H|η′〉 = 0, giving

m2

ηNS
= cos2 φP m

2

η + sin2 φP m
2

η′ , m2

ηS
= sin2 φP m

2

η + cos2 φP m
2

η′ . (16)
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The two�level quantum mehanial solution of Eqs. (13), (15), (16) is the angle

φP = arctan

√

√

√

√

m2
ηNS

−m2
η

m2
η′ −m2

ηNS

= 41.840 , (17)

with masses

mηNS
= 757.9 MeV , mηS = 801.5 MeV . (18)

Not only is the eta NS mass in (18) lose to 757 MeV found via the MSESL Eq. (12),

but the mixing angle in (17) is preisely the dynamial angle obtained via nonperturbative

QCD. More spei�ally, Refs. [13,11℄ predit φP as

φP = arctan

√

√

√

√

(m2
η′ − 2m2

K +m2
π)(m

2
η −m2

π)

(2m2
K −m2

π −m2
η)(m

2
η′ −m2

π)
= 41.840 , (19)

found from the nonperturbative QCD gluon quark annihilation strength

β =
(m2

η′ −m2
π)(m

2
η −m2

π)

4(m2
K −m2

π)
≈ 0.278 GeV

2
(20)

and a onstituent quark mass ratio X ≈ 0.78 ≈ m̂/ms obtained from the NS�S QCD

mass matrix [13,11℄







m2
π + 2β

√
2βX

√
2βX 2m2

K −m2
π + βX2







→
φP







m2
η 0

0 m2
η′





 . (21)

Equations (18), (20), (21) have the solution

tan(2φP ) = 2
√
2βX(m2

ηS
−m2

ηNS
)−1 = 9.02 or φP = 41.840 . (22)

Again we see that φP in (17), (19) and (22) are extremely lose in magnitude. Moreover,

the dynamial approah to η�η′ using the Shwinger�Dyson (SD) and Bethe�Salpeter (BS)
integral equations found φP ≈ 420 (that is, in terms of the singlet�otet state mixing

angle θP ≡ φP − arctan
√
2 ≈ −12.70) [14℄. Its subsequent re�nement [11℄ also inluded

the e�et of the �strangeness attenuation parameter� X in the SD�BS mass matrix. The

SD�BS estimate was X = 0.663, again lose to the onstituent quark mass ratio m̂/ms

found there. Fitting the trae onstraint (15) then led to β = 0.277 GeV

2
, pratially the

same as Eq. (20), to mηNS
= 757.87 MeV and mηS = 801.45 MeV, almost the same as Eq.

(18), and to θP = −13.40, that is, φP = 41.30, very lose to φP in Eq. (22). (These results
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were for the original parameters of Ref. [14℄. Referene [11℄ also varied the parameters to

hek the sensitivity on SD-BS modeling, but the results hanged little.) Beause of the

lose link between Eqs. (17), (18), the QCD Eqs. (19), (22) and the SD�BS sheme, we

suggest that φP ≈ 41.840 is the dynamial η′�η mixing angle in the NS�S quark basis. It

orresponds to [4,5℄ the singlet�otet angle θP = φP −arctan
√
2 ≈ −12.90. Also note that

Ref. [11℄ showed there is no ontradition between our approah utilizing one state�mixing

angle, and the mixing sheme employing two angles pertaining to the mixing of the deay

onstants (see Refs. [5℄, esp. the seond referene for review.) Not only is the di�erene

small in the NS-S basis, but our Ref [11℄ also showed that our results are in agreement

with what is found in the two�angle sheme [5℄.

It is also satisfying that the phenomenologial analysis of the NS�S η′�η NS mixing

angle extrats [4℄ φP = 43.2◦±2.8◦ from T → PP deays, φP = 36.6◦±1.4◦ from V → Pγ
and P → V γ deays, φP = 41.3◦ ± 1.3◦ from P → γγ deays and φP = 40.2◦ ± 2.8◦ from
J/ψ → ρη, ρη′ and ωπ0

deays. Moreover the reent Refs. [5℄ obtain φP = 39.3◦ ± 1.0◦ by
global phenomenologial �ts and φP = 42.4◦ as their theoretial predition, whih is all

within the region of the dynamial φP angles in Eqs. (17) or (19).

5 SU(3) LσM Strong Deay Rates

We have thus far used the LDGE (4), indued the MSESLs m2
σNS

−m2
π = m2

a0
−m2

ηNS
=

m2
κ−m2

K = 4m2 ≈ 0.397GeV2
(for κ(805−820) advoated by, e.g., Delbourgo and Sadron

[12℄) and the NS�S mixing angle φP ≈ 41.840 all while avoiding quadrati divergent

graphs and extending the SU(2) LσM to SU(3). In the latter ase the ubi meson LσM
Lagrangian density has the SU(3) form [12℄

LLσM
ubi

= dijk
(

g′SPPS
iP jP k + g′SSSS

iSjSk
)

. (23)

Then with fπ ≈ 93 MeV and m ≈ MN/3 ≈ 315 MeV, the MSESLs above suggest the

Lagrangian g′SPP ouplings

g′σNSππ
=
m2

σNSππ
−m2

π

2fπ
≈ 2.13 GeV , (24)

g′a0ηNSπ
=
m2

a0
−m2

ηNS

2fπ
≈ 2.13 GeV , (25)

g′κKπ =
m2

κ −m2
K

2fπ
≈ 2.13 GeV , (26)

along with g′a0ηπ = cosφP g
′

a0ηNSπ
, g′η′a0π = sin φPg

′

a0ηNSπ
, et.
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The nonstrange σ deay rate is predited as [6,15℄

Γ(σNS → ππ) =
3

2
(2g′σNSππ

)2
|~p|

8πm2
σNS

≈ 754 MeV , (27)

for mσNS
≈ 650 MeV and |~p| = 294 MeV. This rate is ompatible with Weinberg's mended

hiral symmetry estimate [16℄:

ΓσNS
≈ 9

2
Γρ ≈ 676 MeV . (28)

Likewise the SU(3) LσM a0 → ηπ deay rate is

ΓLσM (a0 → ηπ) =
|~p|

8πm2
a0

[

2g′a0ηNSπ
cosφP

]2 ≈ 133 MeV (29)

for p = 321 MeV, g′a0ηNSπ
≈ 2.13 GeV, φP = 41.840. One may infer a nearby a0 rate from

the PDG tables [6℄. Spei�ally the rate ratio

Γ(a0 → KK̄)

Γ(a0 → ηπ)
= 0.177± 0.024 (30)

and Γ(a0 → KK̄) ≈ 24.5 MeV from Refs. [17℄, then suggests Γ(a0 → ηπ) ≈ 138 MeV,

near Eq. (29). Also, this predited LσM deay rate (29) is not too distant from the high

statistis data [18℄

Γa0ηπ = (95± 14) MeV . (31)

The SU(3) ompanion f0(980) → ππ rate is estimated [6℄ to be

Γ(f0ππ) ≈ (47 MeV)(0.781) ≈ 37 MeV (32)

assuming the small Γ(f0γγ) ≈ 0.56 keV rate in the 1998, 1996 PDG tables ombined with

the measured branhing ratio B(f0γγ) ≈ 1.19×10−5
. On the other hand we must aount

for salar σ�f0 mixing (the analogue of pseudosalar η�η′ mixing). Thus in the NS�S basis

we de�ne in parallel with Eq. (14)

|σ〉 = cosφS|σNS〉 − sin φS|σS〉 , |f0〉 = sin φS|σNS〉+ cosφS|σS〉 , (33)

and estimate φS from the measured deay rate ratio

Γ(f0ππ)

Γ(a0ηπ)
≈ 3

2

(

470 MeV

321 MeV

)(

sin φS

cosφP

)2

≈ 37 MeV

95 MeV

≈ 0.39 or |φS| ≈ 18.30 . (34)
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Prior theoretial estimates were |φs| ∼ 160, 200 [12℄ and 140 [19℄. The DM2 data of 1989

[6℄ also suggests from J/ψ → ωππ that f0(980) is mostly s̄s (not nonstrange), ompatible

with (34) (and near the φ (1020) whih is known to be almost all s̄s) [12,20℄.

Lastly we alulate the strong deay rate η′ → ηππ in the ontext of the SU(3)

LσM [21℄, with a0, σ, f0 poles ontributing as η′ → a0π → ηππ (4 modes), η′ → ησ →
ηππ, η′ → ηf0 → ηππ. Although the 4a0 pole modes should dominate, the well�known

LσM η′ → ηππ ontat term 3λ [normalized to the quarti term in the SU(2) Lagrangian

Eq. (1)℄ has the opposite sign relative to a0, σ and f0 poles and �miraulously anels�

them [22℄ due to hiral symmetry - assuming one treats the a0, σ, f0 poles in narrow

width approximation. While Γa0/ma0 , Γf0/mf0 ∼ 1/10 as needed, the σ is broad with

Γσ/mσ ∼ 1.

Then after the hiral anellation, we must still aount for the broad�width σ inverse

propagator as s−m2
σ + imσΓσ with |s−m2

σ| << |imσΓσ|. Thus the net η′ → ηπ0π0LσM
amplitude has the magnitude

|Mnet

LσM (η′ → ηπ0π0)| ≈ |g
′

η′ησg
′

σππ

mσΓσ

| ≈ |g
′

η′ησ

2fπ
| ≈ 5.7 . (35)

Here we [11℄ estimated g′η′ησ ≈ cos φP sin φP g
′

σππ ≈ 1.06 GeV. Then the net SU(3) LσM
deay rate is predited to be (folding in the 3�body phase spae integral [23℄)

ΓLσM (η′ → ηπ0π0) = 1.06|Mnet

LσM |2 keV ≈ 34.4 keV . (36)

A slight inrease of this rate (36) is due to the 10% non�narrow widths of the a0 and f0
poles. Reent data gives [6℄ Γ(η′ → ηπ0π0) = (42±4) keV. The total deay rate assuming

isospin invariane is

ΓLσM (η′ → ηππ)≡ΓLσM (η′ → ηπ0π0) + ΓLσM (η′ → ηπ−π+)

= 3× (34.4± 4) keV = (103± 12) keV , (37)

near the total observed rate of 3×(42±4) = (126±12 )keV. We know of no other dynamial

sheme (suh as using the original singlet-otet mixing angles [21℄) whih reover all the

approximately needed SU(3) strong deay rates (27), (29), (36), (37) as found above.

6 Conlusion

In this paper we have onsistently avoided dealing with quadrati divergent graphs when

omputing SU(2) and SU(3) linear σ model (LσM) diagrams. Instead in Ses. 2 and
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3 we work only with self�onsistent log�divergent gap equation integrals Eqs. (4), (10).

Setions 3 and 4 extend this pattern from SU(2) to SU(3) dynamial mass-shell equal

splitting laws, leading to the o��diagonal eta nonstrange and strange onstituent quark

masses mηNS
≈ 757.9 MeV and mηS ≈ 801.5 MeV. Then the dynamial η′�η mixing angle

in the NS�S basis is φP ≈ 41.840 ompatible with nonperturbative QCD and near many

phenomenologial analysis of this NS�S angle (see, e.g., Refs. [4,5,13℄).

Stated another way, the only SU(3)�breaking pattern we allow is haraterized by the

onstituent quark mass GTR ratio [24℄ as used in the phenomenologial analysis of Refs. [4℄

ms/m ≈ 2fK/fπ − 1 ≈ 1.44 for fK/fπ ≈ 1.22 as measured [6℄. Then in Se. 5 the SU(3)

SPP LσM ouplings (again following the above MSESLs) of Eqs. (8), (9), (11), (12) in

turn predit strong interation σNS → ππ, a0 → ηπ, f0 → ππ, η′ → ηππ deay rates all

ompatible with data [6℄.
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Appendix: On the bubble graph integral

If the integrand of Eq. (10) is rewritten using the ommon denominator D(x, p2), as
f(x, p2) ≡ N(x, p2)/D(x, p2), one should note that the O(p6) terms in its numerator

N(x, p2) anel exatly. The numerator is thus a polynomial of degree 2 in (p2): N(x, p2) =
c0(x) + c1(x) p

2 + c2(x) (p
2)2 . The integrand is therefore onveniently written as the sum

f(x, p2) =
2
∑

i=0

fi(x, p
2) =

2
∑

i=0

ci(x)
(p2)i

D(x, p2)
. (38)

The four�dimensional integral over p is e�etively one-dimensional beause the integrand

depends on p2 only. After the Wik rotation, we performed this integration analytially, us-

ing the Mathematia program pakage. The log�divergent integral

∫

d4p f2(x, p
2) depends

on our ultraviolet uto� Λ = 750 MeV required by Eq. (4). After the p2�integration, the
logarithmi forms

l(x) = ln

(

m2 −m2
ηNS

(1− x)x

m2 −m2
a0
(1− x)x

)

(39)

appear in the integrand, requiring some are. The mild divergenes at the points x0 =
0.115698, x1 = 0.222046, x2 = 0.777954, and x3 = 0.884302 orrespond to the roots of

polynomials x 7→ m2 − m2
ηNS

(1 − x)x and x 7→ m2 − m2
a0(1 − x)x. In order to perform

11



the residual x integration of the funtions x 7→ ∫

d4p fi(x, p
2) (i = 0, 1, 2), the interval

[0, 1] is divided into �ve integration regions, [0, x1], [x1, x2], [x2, x3], [x3, x4], and [x4, 1].
These integrations were numerial, with an adaptive algorithm whih an handle the mild,

integrable singularities appearing at the edges of the integration regions.
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