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Abstra
t

The SU(3) linear σ model (LσM) is dynami
ally generated in loop-order using

the nonstrange�strange basis. Only self�
onsistent logarithmi
 divergent graphs are

needed, with quadrati
 divergent graphs repla
ed by SU(3) mass-shell equal splitting

laws. The latter lead to an η′�η mixing angle of 41.840 whi
h is 
onsistent with

phenomenology. Finally this above SU(3)LσM in turn predi
ts strong de
ay rates

whi
h are all 
ompatible with data.
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1 Introdu
tion

The original tree�level SU(2) spontaneous symmetry breaking (SSB) linear σ model

(LσM) intera
tion Lagrangian density is [1℄

LintLσM = gψ̄ (σ + iγ5τ · π)ψ + g′σ(σ2 + π
2)− λ

4
(σ2 + π

2)2 , (1)

with tree�order 
hiral limiting (CL) 
ouplings satisfying for fπ ≈ 93 MeV

g =
m

fπ
, g′ =

m2
σ

2fπ
= λfπ , (2)

here for quark �elds, 
onstituent quark mass m and 
ubi
 and quarti
�meson 
ouplings

g′, λ. Although the g, g′, λ in (2) are not further spe
i�ed in tree order, in loop order they

are dynami
ally generated as

g =
2π√
3
≈ 3.6276 , g′ = 2gm ≈ 2.3 GeV , λ =

8π2

3
≈ 26.3 . (3)

We take m = 315 MeV, i.e., roughly one third of the nu
leon mass MN , sin
e this value

most 
onsistently satis�es the relations 
entral for the present paper, namely mass shell

equal splitting laws (MSESLs) 
onsidered below, in Se
. 3. (A dynami
al quark mass

m =
[

4παs

3
〈−ψ̄ψ〉1GeV

]1/3 ≈ 320 MeV used in QCD [2℄ would lead to some 3% higher

MSESLs value 4m2
, whereas m = 325 MeV, used in Refs. [3℄, would lead to some 6%

higher value.) While Refs. [3℄ re
over the original 
hiral relations of Eqs. (2), the loop�

order values in Eqs. (3) depend on relating slowly diverging log�divergent graphs with

the more rapidly diverging quadrati
�divergent graphs.

In this paper we instead dynami
ally generate the SU(3) LσM using only the log�

divergent graphs while repla
ing the quadrati
�divergent graphs with the dynami
al SU(3)

MSESLs. In Se
. 2 we review the log�divergent gap equations in the CL and show their

self�
onsisten
y in loop order. Then in Se
. 3 we repla
e quadrati
�divergent mass gap

equations with SU(2) and SU(3) MSESLs. In Se
. 4 we show how the SU(3) MSESLs

lead to an η�η′ nonstrange�strange mixing angle of ∼ 420, in fa
t 
losely agreeing with

the phenomenologi
al value [4,5℄. Finally in Se
. 5 we employ this SU(3) LσM with

nonstrange�strange η, η′ 
ouplings to predi
t strong intera
tion de
ay rates for σNS → ππ,
a0 → ηπ, f0 → ππ and η′ → ηππ, all in 
lose agreement with data [6℄. We give our


on
lusions in Se
. 6.
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2 Self�
onsistent log divergent gap equations

We begin with the non�perturbative loop�order equation for the pion de
ay 
onstant

δfπ = fπ in the soft�pion 
hiral limit [3℄:

1 = −i 4Nc g
2

∫

d 4p

(p2 −m2)2
, (4)

using the Goldberger�Treiman relation (GTR) m = fπg as in (2) with d 4p = (2π)−4d4p,
where the quark mass m 
an
els out of this gap Eq. (4). This log�divergent gap equation

(LDGE) (4) with g ∼ 315 MeV/90 MeV ∼ 3.5 requires an ultraviolet 
uto� Λ ≈ 750 MeV,

separating the qq elementary parti
les π and mσ ∼ 650 MeV [6℄ with mπ,σ < Λ from the

bound-state qq mesons Λ < ρ(770), ω(780), a1(1260). This natural separation of LσM
elementary parti
les from bound states is a 
onsequen
e of the Z = 0 
ompositeness


ondition [7℄ g = 2π/
√
Nc or g = 3.6276 for Nc = 3 (also dynami
ally generated in

Refs. [3℄).

The self�
onsisten
y of loops �shrinking� to trees in the CL and their link to the LDGE

are seen for quark triangle and quark box graphs. In the former 
ase the quark triangle

representing g′σππ is log�divergent with

g′σππ = −8ig3Ncm
∫

d 4p

(p2 −m2)2
= 2gm

[

−4iNcg
2

∫

d 4p

(p2 −m2)2

]

= 2gm , (5)

by virtue of the LDGE (4). Then using the quark�level GTR, Eq. (5) shrinks to the tree

level g′σππ → g′ = m2
σ/2fπ of (2) provided that mσ = 2m, the Nambu-Jona-Lasino [8℄

(NJL) result also dynami
ally generated in Refs. [3℄. Likewise the ππ box graph in the

CL gives the quarti
 quark 
oupling [3℄

λ
box

= −8iNc g
4

∫

d 4p

(p2 −m2)2
= 2g2

[

−4iNc g
2

∫

d 4p

(p2 −m2)2

]

= 2g2 , (6)

again via the LDGE (4). Then using the GTR, Eq. (6) be
omes

λ
box

= 2g2 =
2gm

fπ
=
g′

fπ
= λ

tree

(7)

by virtue of the tree�level LσM 
ouplings in Eq. (2). So again loops shrink to trees, while

re
overing the NJL s
alar mass mσ = 2m in this self�
onsistent fashion [3℄.

Next the CL quark bubble plus quark σ tadpole graphs, although both being quadrat-

i
ally divergent give a vanishing m2
π = 0 in the CL (as required) provided the 
ouplings
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satisfy g′σππ = m2
σ/2fπ, again re
overing Eq. (2), but independent of the quadrati
ally

divergent s
ale.

Lastly the pion quark triangle photon graph automati
ally normalizes the form fa
tor

Fπ(q
2 = 0) = 1 as expe
ted. Spe
i�
ally this quark triangle predi
ts [9℄

Fπ(q
2) = −i 4Nc g

2

1
∫

0

dx
∫ d 4p

[p2 −m2 + x(1 − x)q2]2
,

re
overing Fπ(q
2 = 0) = 1 due to the LDGE (4).

3 Mass�Shell Equal Splitting Laws

To 
ontinue 
ir
umventing the dangerous quadrati
 divergent tadpole graphs, we �rst

invoke the Lee null tadpole sum [10℄ 
hara
terizing the true (not false SSB) va
uum.

Using only dimensional analysis, the vanishing tadpole sum requires [3℄ Nc(2m)4 = 3m4
σ,

or Nc = 3 for the SU(2) LσM sin
e we already know from Se
. 2 that the NJL relation

mσ = 2m is also valid in the LσM in the CL, as is g = 2π/
√
3 [7℄.

Away from the CL this NJL 
ondition be
omes for m ≈MN/3 ≈ 315 MeV,

m2

σ −m2

π = 4m2 ≈ 0.397 GeV

2 . (8)

In Se
. 4 we will show that η′�η mixing requires a nonstrange�strange (NS�S) mixing angle

φP ≈ 41.840, whi
h in turn �xes the eta NS mass to bemNS = 757.9MeV. Then the SU(3)

extension of the mass-shell equal splitting law (MSESL) Eq. (8) is for ma0 ≈ 984.8 MeV,

m2

a0
−m2

ηNS
≈ 0.395 GeV

2 , (9)

whi
h we again identify with the NS quark mass fa
tor 4m2
in Eq. (8).

MSESL (9) follows from the empiri
al m2
a0

and from m2
ηNS

extra
ted in a phenomeno-

logi
al way in Se
. 4 (see also Ref. [11℄), but we have yet another way to avoid quadrati


divergent amplitudes and evaluate the di�eren
e of the a0 and ηNS self-energies expli
itly.

It is en
ouraging that this expli
it 
al
ulation below yields results whi
h are reasonably


lose to MSESL (9), even though we 
onsider only the lowest-order LσM self-energy

graphs. Also, in 
ounterdistin
tion to Eq. (9)

1
, these graphs do not 
apture (at least not

1
In Eq. (9), we plug in mNS = 757.9 MeV whi
h does 
ontain [11℄ the shift due to the gluon

anomaly.
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u,d

a0

u,d

u,d

σ

u,d

σ

η NS η NS

a0 a0

η NS

a0

η NS

a) b)

c) d)

- -

+

Fig. 1. Bubble graphs and tadpole graphs

fully) the e�e
t of the gluon anomaly whi
h in�uen
es strongly the masses in the η − η′


omplex.

This other way to avoid quadrati
 divergent amplitudes is to subtra
t mass shell bubble

(and tadpole) graphs of Fig. 1. Sin
e the quadrati
 divergent tadpole graphs of Figs. 1

b,d 
learly 
an
el (due to the LσM 
oupling relation g′a0a0σ = g′ηNSηNSσ
), the remaining

quadrati
ally divergent bubble graph di�eren
e (Figs. 1 a,
) give the formal result

m2

a0
−m2

ηNS
= −8iNc g

2

1
∫

0

dx
∫

d 4p

[

p2 −m2
a0
x(1− x) +m2

(p2 +m2
a0x(1− x)−m2)2

− p2 −m2
ηNS

x(1 − x)−m2

(p2 +m2
ηNS

x(1− x)−m2)2

]

. (10)

Here we have 
ombined propagator denominators using Feynman's tri
k

1

ab
=

1
∫

0

dx

[ax+ b(1 − x)]2
.

In other words, we evaluate the bubble graphs with propagator momentum p→ p−qx
for mass shell values q2 = m2

a0 , m
2
ηNS

for Figs. 1 a, 
. Spe
i�
ally for ma0 = 984.8 MeV

and mηNS
= 757.9 MeV and a 
onstituent nonstrange quark mass of 315 MeV, a 
omputer


al
ulation detailed in the Appendix, evaluates Eq. (10) as

m2

a0 −m2

ηNS
= 5.83m2 − i 3.83m2 . (11)
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We negle
t the negative imaginary part of Eq. (11) (
ompatible with unitarity) sin
e

quarks in the bubble graph of Figs. 1 should be 
on�ned. Considering the deli
ate 
an-


ellation due to the mean value (6
∫

1

0 x(1 − x) = 1) giving in the se
ond denominator

in Eq. (10) m2
ηNS

x(1 − x) − m2 ≈ −0.035m2
, and espe
ially re
alling i) that we have

used only the lowest order graphs and ii) that it is known that the gluon anomaly shifts

mηNS
upwards [whi
h is taken into a

ount in the result (11) only partially and indire
tly,

through the mass shell value q2 = m2
ηNS

= (757.9 MeV)2℄ so that the di�eren
e (11) is

understandably somewhat overestimated, we suggest that the real part of (11) is not far

from the numeri
al values of Eqs. (8) and (9), i.e. [12℄,

m2

σNS
−m2

π = m2

a0
−m2

ηNS
= 4m2 ≈ 0.397 GeV

2 . (12)

Stated another way, 
ombining the partial fra
tion integrands in Eq. (10), we note that

the leading p6 terms in the numerator of (10) exa
tly 
an
el sin
e they are quadrati
ally

divergent terms. Moreover, the log�divergent p4 terms in (10) are proportional to 6(m2
a0 −

m2
ηNS

)x(1 − x) −m2
; they 
an
el using the mean value, resulting in m2

a0
−m2

ηNS
= 4m2

.

Thus again we support the MSESLs of Eq. (12).

4 Dynami
al η′�η Mixing

Given the MSESL Eq. (12), one may extra
t the NS eta mass as mηNS
≈ 757 MeV.

Alternatively we may express the eta NS�S mass matrix as







m2
ηNS

γ

γ m2
ηS







→
φP







m2
η 0

0 m2
η′






, (13)

where the NS�S pseudos
alar mixing angle φP determines the mixing relations

|η〉 = cosφP |ηNS〉 − sinφP |ηS〉 , |η′〉 = sinφP |ηNS〉+ cosφP |ηS〉 . (14)

The angle φP is uniquely determined via the tra
e 
onstraint

m2

ηNS
+m2

ηS
= m2

η +m2

η′ ≈ 1.217 GeV

2 , (15)

(be
ause the diagonal masses mη and mη′ are measured [6℄) with o��diagonal hamiltonian

matrix elements vanishing 〈η′|H|η〉 = 〈η|H|η′〉 = 0, giving

m2

ηNS
= cos2 φP m

2

η + sin2 φP m
2

η′ , m2

ηS
= sin2 φP m

2

η + cos2 φP m
2

η′ . (16)
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The two�level quantum me
hani
al solution of Eqs. (13), (15), (16) is the angle

φP = arctan

√

√

√

√

m2
ηNS

−m2
η

m2
η′ −m2

ηNS

= 41.840 , (17)

with masses

mηNS
= 757.9 MeV , mηS = 801.5 MeV . (18)

Not only is the eta NS mass in (18) 
lose to 757 MeV found via the MSESL Eq. (12),

but the mixing angle in (17) is pre
isely the dynami
al angle obtained via nonperturbative

QCD. More spe
i�
ally, Refs. [13,11℄ predi
t φP as

φP = arctan

√

√

√

√

(m2
η′ − 2m2

K +m2
π)(m

2
η −m2

π)

(2m2
K −m2

π −m2
η)(m

2
η′ −m2

π)
= 41.840 , (19)

found from the nonperturbative QCD gluon quark annihilation strength

β =
(m2

η′ −m2
π)(m

2
η −m2

π)

4(m2
K −m2

π)
≈ 0.278 GeV

2
(20)

and a 
onstituent quark mass ratio X ≈ 0.78 ≈ m̂/ms obtained from the NS�S QCD

mass matrix [13,11℄







m2
π + 2β

√
2βX

√
2βX 2m2

K −m2
π + βX2







→
φP







m2
η 0

0 m2
η′





 . (21)

Equations (18), (20), (21) have the solution

tan(2φP ) = 2
√
2βX(m2

ηS
−m2

ηNS
)−1 = 9.02 or φP = 41.840 . (22)

Again we see that φP in (17), (19) and (22) are extremely 
lose in magnitude. Moreover,

the dynami
al approa
h to η�η′ using the S
hwinger�Dyson (SD) and Bethe�Salpeter (BS)
integral equations found φP ≈ 420 (that is, in terms of the singlet�o
tet state mixing

angle θP ≡ φP − arctan
√
2 ≈ −12.70) [14℄. Its subsequent re�nement [11℄ also in
luded

the e�e
t of the �strangeness attenuation parameter� X in the SD�BS mass matrix. The

SD�BS estimate was X = 0.663, again 
lose to the 
onstituent quark mass ratio m̂/ms

found there. Fitting the tra
e 
onstraint (15) then led to β = 0.277 GeV

2
, pra
ti
ally the

same as Eq. (20), to mηNS
= 757.87 MeV and mηS = 801.45 MeV, almost the same as Eq.

(18), and to θP = −13.40, that is, φP = 41.30, very 
lose to φP in Eq. (22). (These results
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were for the original parameters of Ref. [14℄. Referen
e [11℄ also varied the parameters to


he
k the sensitivity on SD-BS modeling, but the results 
hanged little.) Be
ause of the


lose link between Eqs. (17), (18), the QCD Eqs. (19), (22) and the SD�BS s
heme, we

suggest that φP ≈ 41.840 is the dynami
al η′�η mixing angle in the NS�S quark basis. It


orresponds to [4,5℄ the singlet�o
tet angle θP = φP −arctan
√
2 ≈ −12.90. Also note that

Ref. [11℄ showed there is no 
ontradi
tion between our approa
h utilizing one state�mixing

angle, and the mixing s
heme employing two angles pertaining to the mixing of the de
ay


onstants (see Refs. [5℄, esp. the se
ond referen
e for review.) Not only is the di�eren
e

small in the NS-S basis, but our Ref [11℄ also showed that our results are in agreement

with what is found in the two�angle s
heme [5℄.

It is also satisfying that the phenomenologi
al analysis of the NS�S η′�η NS mixing

angle extra
ts [4℄ φP = 43.2◦±2.8◦ from T → PP de
ays, φP = 36.6◦±1.4◦ from V → Pγ
and P → V γ de
ays, φP = 41.3◦ ± 1.3◦ from P → γγ de
ays and φP = 40.2◦ ± 2.8◦ from
J/ψ → ρη, ρη′ and ωπ0

de
ays. Moreover the re
ent Refs. [5℄ obtain φP = 39.3◦ ± 1.0◦ by
global phenomenologi
al �ts and φP = 42.4◦ as their theoreti
al predi
tion, whi
h is all

within the region of the dynami
al φP angles in Eqs. (17) or (19).

5 SU(3) LσM Strong De
ay Rates

We have thus far used the LDGE (4), indu
ed the MSESLs m2
σNS

−m2
π = m2

a0
−m2

ηNS
=

m2
κ−m2

K = 4m2 ≈ 0.397GeV2
(for κ(805−820) advo
ated by, e.g., Delbourgo and S
adron

[12℄) and the NS�S mixing angle φP ≈ 41.840 all while avoiding quadrati
 divergent

graphs and extending the SU(2) LσM to SU(3). In the latter 
ase the 
ubi
 meson LσM
Lagrangian density has the SU(3) form [12℄

LLσM

ubi


= dijk
(

g′SPPS
iP jP k + g′SSSS

iSjSk
)

. (23)

Then with fπ ≈ 93 MeV and m ≈ MN/3 ≈ 315 MeV, the MSESLs above suggest the

Lagrangian g′SPP 
ouplings

g′σNSππ
=
m2

σNSππ
−m2

π

2fπ
≈ 2.13 GeV , (24)

g′a0ηNSπ
=
m2

a0
−m2

ηNS

2fπ
≈ 2.13 GeV , (25)

g′κKπ =
m2

κ −m2
K

2fπ
≈ 2.13 GeV , (26)

along with g′a0ηπ = cosφP g
′

a0ηNSπ
, g′η′a0π = sin φPg

′

a0ηNSπ
, et
.
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The nonstrange σ de
ay rate is predi
ted as [6,15℄

Γ(σNS → ππ) =
3

2
(2g′σNSππ

)2
|~p|

8πm2
σNS

≈ 754 MeV , (27)

for mσNS
≈ 650 MeV and |~p| = 294 MeV. This rate is 
ompatible with Weinberg's mended


hiral symmetry estimate [16℄:

ΓσNS
≈ 9

2
Γρ ≈ 676 MeV . (28)

Likewise the SU(3) LσM a0 → ηπ de
ay rate is

ΓLσM (a0 → ηπ) =
|~p|

8πm2
a0

[

2g′a0ηNSπ
cosφP

]2 ≈ 133 MeV (29)

for p = 321 MeV, g′a0ηNSπ
≈ 2.13 GeV, φP = 41.840. One may infer a nearby a0 rate from

the PDG tables [6℄. Spe
i�
ally the rate ratio

Γ(a0 → KK̄)

Γ(a0 → ηπ)
= 0.177± 0.024 (30)

and Γ(a0 → KK̄) ≈ 24.5 MeV from Refs. [17℄, then suggests Γ(a0 → ηπ) ≈ 138 MeV,

near Eq. (29). Also, this predi
ted LσM de
ay rate (29) is not too distant from the high

statisti
s data [18℄

Γa0ηπ = (95± 14) MeV . (31)

The SU(3) 
ompanion f0(980) → ππ rate is estimated [6℄ to be

Γ(f0ππ) ≈ (47 MeV)(0.781) ≈ 37 MeV (32)

assuming the small Γ(f0γγ) ≈ 0.56 keV rate in the 1998, 1996 PDG tables 
ombined with

the measured bran
hing ratio B(f0γγ) ≈ 1.19×10−5
. On the other hand we must a

ount

for s
alar σ�f0 mixing (the analogue of pseudos
alar η�η′ mixing). Thus in the NS�S basis

we de�ne in parallel with Eq. (14)

|σ〉 = cosφS|σNS〉 − sin φS|σS〉 , |f0〉 = sin φS|σNS〉+ cosφS|σS〉 , (33)

and estimate φS from the measured de
ay rate ratio

Γ(f0ππ)

Γ(a0ηπ)
≈ 3

2

(

470 MeV

321 MeV

)(

sin φS

cosφP

)2

≈ 37 MeV

95 MeV

≈ 0.39 or |φS| ≈ 18.30 . (34)

9



Prior theoreti
al estimates were |φs| ∼ 160, 200 [12℄ and 140 [19℄. The DM2 data of 1989

[6℄ also suggests from J/ψ → ωππ that f0(980) is mostly s̄s (not nonstrange), 
ompatible

with (34) (and near the φ (1020) whi
h is known to be almost all s̄s) [12,20℄.

Lastly we 
al
ulate the strong de
ay rate η′ → ηππ in the 
ontext of the SU(3)

LσM [21℄, with a0, σ, f0 poles 
ontributing as η′ → a0π → ηππ (4 modes), η′ → ησ →
ηππ, η′ → ηf0 → ηππ. Although the 4a0 pole modes should dominate, the well�known

LσM η′ → ηππ 
onta
t term 3λ [normalized to the quarti
 term in the SU(2) Lagrangian

Eq. (1)℄ has the opposite sign relative to a0, σ and f0 poles and �mira
ulously 
an
els�

them [22℄ due to 
hiral symmetry - assuming one treats the a0, σ, f0 poles in narrow

width approximation. While Γa0/ma0 , Γf0/mf0 ∼ 1/10 as needed, the σ is broad with

Γσ/mσ ∼ 1.

Then after the 
hiral 
an
ellation, we must still a

ount for the broad�width σ inverse

propagator as s−m2
σ + imσΓσ with |s−m2

σ| << |imσΓσ|. Thus the net η′ → ηπ0π0LσM
amplitude has the magnitude

|Mnet

LσM (η′ → ηπ0π0)| ≈ |g
′

η′ησg
′

σππ

mσΓσ

| ≈ |g
′

η′ησ

2fπ
| ≈ 5.7 . (35)

Here we [11℄ estimated g′η′ησ ≈ cos φP sin φP g
′

σππ ≈ 1.06 GeV. Then the net SU(3) LσM
de
ay rate is predi
ted to be (folding in the 3�body phase spa
e integral [23℄)

ΓLσM (η′ → ηπ0π0) = 1.06|Mnet

LσM |2 keV ≈ 34.4 keV . (36)

A slight in
rease of this rate (36) is due to the 10% non�narrow widths of the a0 and f0
poles. Re
ent data gives [6℄ Γ(η′ → ηπ0π0) = (42±4) keV. The total de
ay rate assuming

isospin invarian
e is

ΓLσM (η′ → ηππ)≡ΓLσM (η′ → ηπ0π0) + ΓLσM (η′ → ηπ−π+)

= 3× (34.4± 4) keV = (103± 12) keV , (37)

near the total observed rate of 3×(42±4) = (126±12 )keV. We know of no other dynami
al

s
heme (su
h as using the original singlet-o
tet mixing angles [21℄) whi
h re
over all the

approximately needed SU(3) strong de
ay rates (27), (29), (36), (37) as found above.

6 Con
lusion

In this paper we have 
onsistently avoided dealing with quadrati
 divergent graphs when


omputing SU(2) and SU(3) linear σ model (LσM) diagrams. Instead in Se
s. 2 and

10



3 we work only with self�
onsistent log�divergent gap equation integrals Eqs. (4), (10).

Se
tions 3 and 4 extend this pattern from SU(2) to SU(3) dynami
al mass-shell equal

splitting laws, leading to the o��diagonal eta nonstrange and strange 
onstituent quark

masses mηNS
≈ 757.9 MeV and mηS ≈ 801.5 MeV. Then the dynami
al η′�η mixing angle

in the NS�S basis is φP ≈ 41.840 
ompatible with nonperturbative QCD and near many

phenomenologi
al analysis of this NS�S angle (see, e.g., Refs. [4,5,13℄).

Stated another way, the only SU(3)�breaking pattern we allow is 
hara
terized by the


onstituent quark mass GTR ratio [24℄ as used in the phenomenologi
al analysis of Refs. [4℄

ms/m ≈ 2fK/fπ − 1 ≈ 1.44 for fK/fπ ≈ 1.22 as measured [6℄. Then in Se
. 5 the SU(3)

SPP LσM 
ouplings (again following the above MSESLs) of Eqs. (8), (9), (11), (12) in

turn predi
t strong intera
tion σNS → ππ, a0 → ηπ, f0 → ππ, η′ → ηππ de
ay rates all


ompatible with data [6℄.
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Appendix: On the bubble graph integral

If the integrand of Eq. (10) is rewritten using the 
ommon denominator D(x, p2), as
f(x, p2) ≡ N(x, p2)/D(x, p2), one should note that the O(p6) terms in its numerator

N(x, p2) 
an
el exa
tly. The numerator is thus a polynomial of degree 2 in (p2): N(x, p2) =
c0(x) + c1(x) p

2 + c2(x) (p
2)2 . The integrand is therefore 
onveniently written as the sum

f(x, p2) =
2
∑

i=0

fi(x, p
2) =

2
∑

i=0

ci(x)
(p2)i

D(x, p2)
. (38)

The four�dimensional integral over p is e�e
tively one-dimensional be
ause the integrand

depends on p2 only. After the Wi
k rotation, we performed this integration analyti
ally, us-

ing the Mathemati
a program pa
kage. The log�divergent integral

∫

d4p f2(x, p
2) depends

on our ultraviolet 
uto� Λ = 750 MeV required by Eq. (4). After the p2�integration, the
logarithmi
 forms

l(x) = ln

(

m2 −m2
ηNS

(1− x)x

m2 −m2
a0
(1− x)x

)

(39)

appear in the integrand, requiring some 
are. The mild divergen
es at the points x0 =
0.115698, x1 = 0.222046, x2 = 0.777954, and x3 = 0.884302 
orrespond to the roots of

polynomials x 7→ m2 − m2
ηNS

(1 − x)x and x 7→ m2 − m2
a0(1 − x)x. In order to perform

11



the residual x integration of the fun
tions x 7→ ∫

d4p fi(x, p
2) (i = 0, 1, 2), the interval

[0, 1] is divided into �ve integration regions, [0, x1], [x1, x2], [x2, x3], [x3, x4], and [x4, 1].
These integrations were numeri
al, with an adaptive algorithm whi
h 
an handle the mild,

integrable singularities appearing at the edges of the integration regions.

12
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